Sugli idrocarburi policiclici aromatici (PAH o IPA)

Reading Time: 4 minutes

Quante volte abbiamo letto o sentito parlare di “idrocarburi policiclici aromatici”? Talvolta la locuzione viene indicata con gli acronimi PAH (da Polyciclic Aromatic Hydrocarbons) oppure IPA (da Idrocarburi Policiclici Aromatici). Si tratta di una classe di composti chimici che si ottiene per pirolisi (ovvero decomposizione termica in assenza o scarsità di ossigeno) di sostanza organica. Tanto per capirci: il fumo di sigaretta contiene gli IPA. Le sigarette, infatti, sono fatte da sostanza organica (la carta, il tabacco, i filtri) che quando sottoposta alle alte temperature prima subisce il processo di combustione con formazione di ceneri, anidride carbonica ed acqua, poi, man mano che il comburente (ovvero l’ossigeno) si allontana, subisce pirolisi con formazione di IPA.

In questa breve nota voglio puntare l’attenzione sulle caratteristiche strutturali degli idrocarburi policiclici aromatici e la loro tossicità.

1. Le premesse: significato di isomeria, formula chimica e struttura
1.1. Isomeria

“Isomeria” è una proprietà in base alla quale due o più composti chimici, pur avendo la stessa formula bruta, hanno differente struttura e, per questo, differenti proprietà chimico-fisiche.

1.2. Formula bruta, formula empirica e formula molecolare

La locuzione “formula bruta” si può riferire o alla formula empirica con la quale si descrive semplicemente il rapporto tra i diversi atomi che partecipano alla formazione di un composto chimico, oppure alla formula molecolare, in cui si indicano esattamente quanti atomi formano il composto in esame.

L’esempio più semplice per distinguere tra formula empirica e formula molecolare è quello dell’acqua ossigenata. La formula empirica dell’acqua ossigenata è HO, grazie alla quale si evidenzia che questo composto è fatto da idrogeno ed ossigeno nel rapporto 1:1; la formula molecolare dell’acqua ossigenata è H2O2 nella quale si evidenzia che due atomi di ossigeno sono combinati con due atomi di ossigeno.

1.3. La struttura chimica

La struttura di un composto chimico descrive il modo con cui i diversi atomi che lo compongono si dispongono nello spazio.  La Figura 1 mostra, come esempi, le diverse tipologie di formule di struttura dell’acqua ossigenata.

Figura 1. Dioverse tipologie di formule di struttura dell’acqua ossigenata (Fonte: http://www.chimicamo.org/chimica-generale/acqua-ossigenata.html)

In alto a sinistra c’è la formula molecolare dell’acqua ossigenata; in basso a sinistra c’è la formula di struttura “ball-and-stick” della stessa molecola (gli atomi in bianco sono l’idrogeno; gli atomi in rosso, l’ossigeno); in alto a destra la struttura dell’acqua ossigenata è rappresentata con il modello “space-filling“, ovvero ogni atomo è rappresentato da una sfera con il codice colore avente lo stesso significato già illustrato; in basso a destra l’acqua ossigenata è rappresentata con un modello a linee e lettere in cui le prime indicano i legami tra gli atomi rappresentati col proprio simbolo chimico.

2. Le caratteristiche degli IPA
2.1. Struttura chimica e proprietà chimico fisiche degli IPA

La Figura 2 mostra la struttura di due idrocarburi policiclici aromatici molto comuni. Si tratta di antracene e fenantrene. Entrambi hanno formula molecolare C14H10 ma formula di struttura differente. Si tratta quindi di isomeri. Per effetto della differente disposizione spaziale degli atomi di carbonio ed idrogeno, i due idrocarburi hanno proprietà chimico fisiche differenti.

Figura 2. Strutture di antracene e fenantrene

Per esempio, la temperatura di fusione alla pressione atmosferica (ovvero la temperatura alla quale la fase solida di un composto chimico è in equilibrio con la sua fase liquida) di antracene e fenantrene è:

antracene         216°C

fenantrene       94°C

In altre parole, mentre l’antracene diventa un liquido alla temperatura di 216°C, il fenantrene diventa liquido ad una temperatura molto più bassa (94°C). Questa differenza si spiega perché le molecole di antracene e fenantrene interagiscono rispettivamente con altre molecole di antracene e fenantrene attraverso interazioni deboli chiamate interazioni di Van der Waals. La struttura “non-ripiegata” dell’antracene consente un impaccamento migliore (e, quindi, interazioni più forti) rispetto a quella “ripiegata” del fenantrene. La conseguenza è che occorre una temperatura più alta (più energia termica) per liquefare l’antracene rispetto al fenantrene.

La differente disposizione spaziale degli atomi di carbonio ed idrogeno è responsabile anche della differente solubilità in acqua di antracene e fenantrene. Infatti, l’antracene ha solubilità pari a 3.7×10-4 mol/L, mentre il fenantrene pari a 7.2×10-3 mol/L. In altre parole, il fenantrene è circa 20 volte più solubile in acqua rispetto all’antracene. Dal momento che”il simile scioglie il simile“, si potrebbe argomentare che il fenantrene è più simile all’acqua rispetto all’antracene. Questa maggiore similarità è dovuta al fatto che la geometria “ripiegata” del fenantrene conferisce a quest’ultimo una maggiore polarità rispetto all’antracene col risultato di una migliore solubilità in acqua.

2.2. Struttura chimica e carcinogenicità degli IPA

All’aumentare del numero di anelli aromatici condensati (ovvero all’aumentare della complessità strutturale degli IPA) aumenta anche la carcinogenicità di questi composti ( a pagina 35 del documento a questo link, si riporta la carcinogenicità dei diversi IPA).

Più elevato è il peso molecolare degli IPA, più diminuisce la loro aromaticità e maggiore risulta la loro reattività. In particolare, gli IPA tendono a dare reazioni di epossidazione (ovvero reagiscono con l’ossigeno per formare sistemi triciclici altamente reattivi) che poi modificano la struttura a doppia elica del DNA portando a problemi nei processi di replicazione e conseguente insorgenza di tumori.

La Figura 3 mostra la reazione di epossidazione del benzo[a]pireneche produce prima un sistema eposiddico nelle posizioni 7, 8 (reazione in alto in Figura 3), seguita poi da apertura di anello (reazione centrale in Figura 3) ed ulteriore epossidazione (reazione in basso in Figura 3).

Figura 3. Reazione di epossidazione del benzo[a]pirene
 Il diolo epossidico (ovvero la molecola in basso a destra di Figura 3) è il diretto responsabile delle alterazioni strutturali del DNA. Infatti, esso può reagire con il gruppo amminico di una base nucleotidica con formazione di un legame covalente stabile che altera la doppia elica e, impedendo la corretta replicazione del DNA, porta al comportamento “impazzito” delle cellule (Figura 4).

Figura 4. Alterazione della struttura a doppia elica del DNA per effetto della reazione con il derivato diolo epossidico del benzo[a]pirene
3. Conclusioni

Questa breve disanima sugli idrocarburi policiclici aromatici è una sintesi di una delle mie lezioni di chimica del suolo. Gli incendi boschivi sono causa di immissione in atmosfera di questi contaminanti, esattamente come l’uso delle sigarette, o la cottura spinta dei prodotti alimentari (per esempio la carne o la pizza). Quando in atmosfera, questi composti (non solo quelli descritti in questa breve nota ma un insieme complesso di essi come per esempio quelli mostrati nell’immagine di copertina) possono finire nei nostri polmoni ed innescare i processi carcinogenici descritti. Certo non tutti gli individui sono soggetti a tumore. L’insorgenza dei tumori dipende non solo dalle condizioni ambientali, ma anche dalla predisposizione genetica. Questo vuol dire che “mia nonna ha sempre fumato 3 pacchetti di sigarette al giorno ed è arrivata a 90 anni” non ha alcun significato scientifico. Vuol dire solo che giocando alla roulette russa, “la nonna” è stata fortunata ed è sfuggita alla morte solo per una serie di circostanze fortuite tra cui la sua predisposizione genetica. Altri possono non essere ugualmente fortunati e subire insorgenza di tumori anche solo per aver inspirato il fumo passivo della nonna o le polveri sottili (contenenti IPA) normalmente presenti nell’atmosfera delle grandi città e dovute al traffico automobilistico.

Fonte dell’immagine di copertinahttps://ilblogdellasci.wordpress.com/tag/tartrato-di-potassio/

Le figure di Chladni e la pseudoscienza definita “cimatica”

Reading Time: 3 minutes
Avete mai visto figure geometriche come quelle rappresentate in Figura 1 che vengono chiamate figure di Chladni? Belle, vero? Sapete quante volte mi sono trovato a leggere in rete delle elucubrazioni mentali (per non chiamarle in altro modo) in merito all’origine di queste figure? Addirittura c’è chi dice che sono delle rappresentazioni fisiche degli orbitali (SIC!).
Ma andiamo con ordine
Gli effetti scenografici delle figure di cui mi accingo a parlare sono oggetto di una particolare branca della pseudoscienza che va sotto il nome di cimatica. La cimatica nasce piuttosto recentemente. Nel 1967 un tale Hans Jenny, affascinato dagli esperimenti di Chladni del 1787 in merito alla propagazione delle onde nei mezzi solidi, trae delle conclusioni abbastanza arbitrarie sulla natura delle figure geometriche riportate in Figura 1 e chiamate “figure di Chladni” in onore di colui che per primo le ha studiate. Per non andare troppo per le lunghe, Jenny asseriva che le vibrazioni di tutti i materiali (fino ad arrivare alle vibrazioni atomiche) sono in grado di modellare la materia. In pratica, le frequenze delle vibrazioni sono responsabili delle forme materiali che noi conosciamo. Anche le cellule sono soggette a specifiche vibrazioni con determinate frequenze a seconda delle quali predomina una forma animale piuttosto che un’altra. Da qui è facile lo sviluppo di tutta una serie di pseudo teorie sulle vibrazioni energetiche che determinerebbero l’origine delle malattie o, in generale, dello stato di salute degli organismi viventi (un esempio di queste pseudo teorie è riportato qui  e qui).

Figura 1. Esempi di figure di Chladni
Come stanno davvero le cose?
La storia completa è che Jenny era un medico, non un fisico. Evidentemente le sue conoscenze di fisica elementare erano piuttosto povere. Inoltre, era anche un seguace delle pseudo teorie scientifiche di un tal Rudolf Steiner vissuto a cavallo tra il XIX ed il XX secolo ed autore delle teorie sull’agricoltura biodinamica di cui mi riservo di dare informazioni in un nuovo post.
Le “figure di Chladni” sono generate dal processo di vibrazione di una placca metallica su cui è disposta della sabbia. Immaginate la lastra in due sole dimensioni come nella Figura 2 (l’esempio in due dimensioni è quello della corda vibrante. Quando si pensa alla piastra metallica, si passa alle tre dimensioni).

Figura 2. Propagazione di un’onda in una corda vibrante (fonte: Wikipedia)
Se fate vibrare la lastra tra i punti 0 e 1 otterrete un’onda con una certa frequenza. Se disponete la sabbia sulla lastra, questa andrà a cadere nei punti di minima ampiezza dell’onda che sono i nodi indicati con 0 e 1 nella rappresentazione più in alto. Se bloccate la lastra a metà, ovvero mettete un dito proprio in mezzo, l’oscillazione cambia frequenza e la sabbia si disporrà nei tre nodi: i due agli estremi e quello centrale. Se provate ad inserire due altri nodi dividendo la lastra in tre, la sabbia si disporrà lungo tutti i nodi e così via di seguito. Più elevato è il numero di nodi, più complesse saranno le figure geometriche generate dalla sabbia che si dispone in queste zone in cui l’ampiezza dell’onda è nulla.
Note conclusive
La cimatica con tutte le sue teorie è una vera e propria scemenza. Non c’è nulla di sovrannaturale o di esoterico nella disposizione della sabbia su una lastra soggetta a vibrazioni a diversa intensità. Di certo le vibrazioni non hanno alcuna capacità di modellare la materia o di influenzare lo stato di salute degli individui.
A questo link un bell’esperimento che mostra le figure di Chladni: https://www.youtube.com/watch?v=1ya… (avvertenza: abbassate il volume delle cuffie o degli altoparlanti. I suoni che sentirete possono essere molto fastidiosi)
Per approfondimenti:

Più veloci del suono

Reading Time: 3 minutes

Avete mai sentito un aereo superare la barriera del suono? Si sente un rumore assordante ed intorno all’aereo si forma una nuvola come quella che vedete nella foto di copertina. Volete avere un’idea sonora e visiva di quello che accade? Potete vedere il video qui sotto preso da YouTube.

Fin dal tempo delle scuole elementari ci insegnano che la velocità con cui si propaga il suono nell’aria è di circa 300 m/s. Ciò che impariamo alle superiori o nei corsi di Fisica I all’università è che il suono si propaga a velocità differenti a seconda del mezzo e della temperatura.

La tabella qui sotto mostra le diverse velocità con cui il suono si propaga nei mezzi più disparati:

Sì, lo so. L’immagine non è leggibile. Se avete voglia di leggere meglio, potete trovare la tabella qui.

Ma perché si sente il “bang” quando un aereo supera la velocità del suono? E perché si forma quella nuvola?

È tutta questione di aria e di umidità.

Un aereo è in grado di volare grazie alla forza che l’aria esercita sulle sue ali. L’aria ha una ben precisa composizione chimica, ovvero circa 79% di azoto, circa 20% di ossigeno e circa 1% di altri gas come argon, anidride carbonica, acqua, metano etc etc.  In realtà non è importante la composizione chimica dell’aria; ciò che importa è il fatto che essa sia un fluido nel quale “galleggia” l’aereo ed è il mezzo grazie al quale siamo in grado di sentire i suoni.

Le vibrazioni generate da una sorgente sonora (le nostre corde vocali, le corde di un violino, un motore in moto etc etc) si trasmettono alle molecole che compongono l’aria che sono, così, soggette a compressione. In altre parole, una sorgente sonora sposta le molecole di aria ad essa più vicine. Queste ultime a loro volta urtano e spostano le molecole di aria nelle immediate vicinanze. Questo balletto di molecole che si urtano tra loro tende ad attenuarsi all’aumentare della distanza dalla sorgente sonora. Se noi ci troviamo abbastanza vicini alla sorgente del suono, accade che le molecole di aria vadano ad urtare (ovvero comprimere) le componenti interne del nostro orecchio. Il movimento generato dall’urto tra le molecole di aria e le parti più interne del nostro orecchio viene trasformato nel suono che udiamo. Il meccanismo macroscopico con cui le onde sonore di propagano è simile a quello con cui si propagano le onde generate da un sasso lanciato in uno stagno.

Se la sorgente sonora è in movimento (per esempio un’autombulanza a sirene spiegate), le onde sonore si propagano come riportato nella parte più a sinistra della Figura 1. In altre parole, la compressione delle molecole di aria nella direzione del moto (da sinistra a destra) è maggiore che la compressione delle molecole di aria nella direzione opposta. La conseguenza è che il suono prodotto dalla sorgente in movimento è più intenso nella direzione del moto.

Figura 1. Propagazione delle onde sonore di una soriente sonora in movimento (Fonte: Wikimedia commons)

Quando la sorgente sonora (per esempio un aereo a reazione) accelera ad una velocità più alta di quella a cui viaggia il suono, si ode il bang supersonico (parte più a destra della Figura 1).

Un oggetto che viaggia più velocemente del suono genera una serie di onde di forma sferica che si muovono più lentamente dell’oggetto stesso. La dimensione delle onde cresce man mano che l’oggetto si allontana. Tutte queste onde si intersecano tra di loro. Unendo i punti di intersezione si ottiene un cono il cui vertice è l’oggetto in movimento (parte più a destra di Figura 1). Nei punti di intersezione le molecole di aria sono soggette a rapida compressione. È questa rapida compressione delle molecole di aria ad essere responsabile del forte bang che sentiamo. In realtà, sebbene a noi sembra di sentire un unico “bang”, un aereo che accelera ad una velocità più alta di quella del suono genera due bang supersonici; uno dovuto alla rapida compressione delle molecole di aria in “testa” (ovvero alla prua) dell’aereo, ed uno dovuto alla ugualmente rapida decompressione delle stesse molecole in coda all’aereo. La distanza temporale tra i due bang dipende dalla lunghezza dell’aereo: più esso è lungo più distanti tra loro nel tempo saranno i due bang.

Ma perché si forma la nuvola che si vede nell’immagine di copertina?

Ho già scritto che la rapida accelerazione della sorgente sonora ad una velocità più alta di quella del suono provoca la repentina compressione delle molecole di aria da cui il forte boato. Come ho già riportato, l’acqua è una delle componenti molecolari dell’aria. La forte compressione cui sono soggette le molecole di acqua porta alla formazione di una nube di condensazione. In altre parole, le molecole di acqua vapore nell’aria si aggregano a formare goccioline di acqua liquida.

Considerazioni conclusive

La chimica-fisica consente di spiegare quello che accade quando un aereo supersonico supera la barriera del suono. Mi scuso con fisici ed ingegneri per l’enorme semplificazione di un fenomeno che ho deciso di spiegare usando un linguaggio assolutamente non tecnico. Mi scuso anche con i medici per la semplificazione nella descrizione dei fenomeni uditivi.

Immagine di copertinahttps://mannaismayaadventure.com/2011/01/26/in-photos-readers’-best-national-geographic-images/

 

Stucco e cosmetici: breve nota sugli isotiazoloni

Reading Time: 3 minutes

5-cloro-2-metil-2H-isotiazol-3-one (anche indicato come metil cloro isotiazolinone) e 2-metil-2H-isotiazol-3-one (anche indicato come metil isotiazolinone) (Figura 1). Nomi difficili, vero? Hanno destato la mia curiosità perché li ho trovati nell’elenco dei componenti dello stucco che ho comprato per alcune riparazioni a casa (foto di copertina). Mi sono chiesto cosa fossero ed a cosa servissero.

Figura 1. Strutture del metti cloro isotiazolone e del metil isotiazolone

Ne è venuto che si tratta di composti abbastanza comuni e si usano in miscela  3:1 perché, in tale formulazione, hanno ottima attività  antimicrobica. Sono presenti in tanti prodotti come lo stucco della foto di copertina, parecchi disinfettanti per la casa e l’amuchina gel per le mani (Figura 2).

Figura 2. Composizione dell’amuchina gel disinfettante per le mani

Una breve ricerca su Google, però, consente di arrivare alla pagina Wikipedia relativa ai conservanti nei cosmetici (qui).  Da questa si evince che la miscela anzidetta viene anche addizionata ai prodotti cosmetici destinati al risciacquo per aumentarne la shelf life, ovvero, nel linguaggio comune, la data di scadenza.

Come per ogni prodotto, anche per la miscela 3:1 dei due isotiazoloni esiste la scheda di sicurezza.

Una scheda di sicurezza  è un documento in cui si riportano le caratteristiche chimico-tossicologiche di tutti i prodotti chimici e le norme di comportamento in caso di intossicazione da quel determinato prodotto. In altre parole è l’equivalente dei bugiardini presenti nelle confezioni dei farmaci. Tuttavia, mentre i bugiardini riportano gli effetti osservati indipendentemente dalla loro reale correlazione causale col farmaco, le schede di sicurezza riportano tutto quanto scientificamente testato sulla tipologia di prodotto che si sta maneggiando.

Le schede di sicurezza sono obbligatorie in ogni laboratorio perché ci aiutano a capire come dobbiamo comportarci nel caso in cui qualcuno di noi si dovesse intossicare o dovesse avere problemi di qualsiasi tipo con le sostanze che sta maneggiando.

La Figura 3 mostra l’immagine di  una scheda di sicurezza delio stucco contenente la miscela di cui state leggendo. Una scheda più completa e relativa proprio alla miscela dei due isotiazoloni è qui.

Figura 3. Scheda di sicurezza della miscela 3:1 di metil cloro isotiazolone e di metil isotiazolone

Dalla scheda si legge la seguente lista di pericolosità:

Tossicità acuta, Corrosione cutanea, Sensibilizzazione cutanea, Pericoloso per l’ambiente acquatico, tossicità cronica,  Tossico se ingerito. Tossico per contatto con la pelle. Tossico se inalato. Provoca gravi ustioni cutanee e gravi lesioni oculari. Può provocare una reazione allergica cutanea. Molto tossico per gli organismi acquatici. Molto tossico per gli organismi acquatici con effetti di lunga durata. 

Insomma, non è proprio uno scherzo. Si tratta di una miscela certamente utile, ma dal forte impatto ambientale e da maneggiare con cura.

Certamente “è la dose che fa il veleno”; questo vuol dire che solo alte concentrazioni della miscela possono portare agli effetti descritti.

Cosa vuol dire alte? Per esempio, si legge che la concentrazione letale che ha effetto sul 50% della popolazione  di pesci sottoposti a test corrisponde ad una quantità pari a 0.19 mg/L, mentre la concentrazione che ha effetto tossico sul 50% dei crostacei sottoposti a test è 0.16 mg/L. Gli esseri umani rispondono alla presenza di questo prodotto solo se lo ingeriscono o se sono particolarmente sensibili ad esso.

la Figura 4 mostra la foto della pelle irritata di una signora sensibile proprio alla miscela dei due isotiazoloni descritti in questa nota. La foto è presa da questo blog.

Figura 4. Effetti dovuti ad allergia agli isotiazoloni discussi in questa nota (Fonte: http://beautyblahblahblah.blogspot.it/2014/05/my-skin-allergy-methylisothiazolinone.html?spref=pi&m=1)

Cosa voglio concludere? A parte soddisfare la mia curiosità sugli isotiazolinoni di cui non conoscevo le caratteristiche antimicrobiche, voglio solo evidenziare che bisogna sempre agire con prudenza quando usiamo un qualsiasi prodotto sia cosmetico che per la pulizia personale o dei luoghi che frequentiamo. Evitiamo l’uso indiscriminato di cosmetici ed evitiamo di “farci il bagno” nei profumi. Oltre a rilasciare olezzi molto sgradevoli (non so voi, ma io provo fastidio quando sento profumi molto forti), senza saperlo possiamo essere intolleranti o anche allergici a qualunque delle componenti dei prodotti che usiamo e ci possiamo ritrovare nelle condizioni della foto in Figura 4.

 

Oreste Piccioni: storia di un Nobel negato

Reading Time: 4 minutes

1959. Emilio Segrè e Owen Chamberlain ricevono il premio Nobel per la scoperta dell’antiprotone. Pochi sanno, però, che l’ideazione e l’input principale per la scoperta degli antiprotoni è opera di un altro fisico Italiano di nome Oreste Piccioni.

Nato a Siena nel 1915, Oreste Piccioni, pur avendo superato l’ammissione alla Normale di Pisa, si trasferisce a Roma dove si laurea in Fisica con Enrico Fermi. Durante gli anni della seconda guerra mondiale, lavora assieme a Conversi e Pancini con i quali riesce ad identificare il muone, fondando quella che oggi è conosciuta come “fisica delle particelle elementari”. Nonostante questa importantissima scoperta, nessuno dei tre studiosi vinse il premio Nobel.

La strumentazione che il trio Conversi, Pancini e Piccioni utilizzò per la scoperta del muone è oggetto di un aneddoto molto interessante.

Sembra che nella seconda metà del Luglio 1943, gli alleati bombardarono la città di Roma colpendo anche una parte degli edifici universitari. In quella circostanza i locali della Facoltà di Fisica furono risparmiati, ma, temendo un secondo attacco e per proteggere l’apparecchiatura appena ultimata, Conversi e Piccioni trasferirono tutto il loro laboratorio negli scantinati del liceo Virgilio nei pressi del Vaticano che, grazie ad accordi internazionali, non poteva essere bombardato. Fu proprio in questa sede che furono poste le basi per la scoperta del muone avvenuta dopo la liberazione di Roma.

Quella del muone non è stata l’unica scoperta di Piccioni. Quest’ultimo, infatti, mette a punto tra la fine degli anni quaranta e l’inizio degli anni cinquanta, un apparato, chiamato cosmotrone, molto simile al bevatrone della Berkeley in California dove lavorava Segrè. In occasione di un congresso, Piccioni incontra Segrè ed assieme decidono di fare degli esperimenti per l’individuazione dell’antiprotone. Tuttavia, Segrè realizza gli esperimenti assieme a Chamberlain durante l’assenza di Piccioni il quale si trova, quindi, escluso dalla pubblicazione grazie alla quale i due vincono il premio Nobel.

Nonostante Segrè e Chamberlain avessero riconosciuto i suoi meriti sia nel lavoro del 1955 che nel discorso di assegnazione del Nobel nel 1959, Piccioni è sempre stato tenuto dietro le quinte con promesse varie.

Scrive Di Trocchio nel suo libro sulle bugie nella scienza che:

“Segrè riuscì a convincerlo a desistere da passi ufficiali promettendogli che se fosse stato zitto avrebbe ricevuto dei “favori” dalla potente comunità dei fisici di Berkeley. Piccioni aveva molto bisogno di quell’aiuto perché il suo carattere estroso e le simpatie di sinistra continuavano a far ritardare la sua pratica per ottenere la cittadinanza americana. Oltretutto c’era chi lo trattava in modo molto più duro di Segrè. Quando infatti si era azzardato a scrivere una lettera di protesta a Ernest Orlando Lawrence, premio Nobel nel 1939, e allora direttore del Radiation Laboratory dove si trovava il Bevatron, ottenne solo di essere perentoriamente convocato e poi ammonito, in presenza di altri due premi Nobel, a non creare ulteriori disturbi. Uno dei due Nobel presenti a quella discussione era Edwin McMillan, che assunse la carica di direttore alla morte di Lawrence nel 1958. Non appena seppe dell’assegnazione del Nobel a Segrè e Chamberlain Piccioni tornò di nuovo alla carica e si presentò nel suo ufficio. In presenza di Segrè, McMillan gli promise che se fosse stato zitto avrebbe fatto in modo di usare la sua influenza perché egli fosse raccomandato per il conferimento di un premio Nobel.  Fu per queste promesse che Piccioni decise di tacere e di aspettare. Ma aspettò troppo e quando si rese conto che tutti ormai si erano dimenticati del Nobel promesso si decise a far causa. Troppo tardi. Il tribunale riconobbe che il comportamento di Segrè aveva causato notevoli danni alla sua carriera ma non poteva certo conferirgli quel Nobel che si era troppo ingenuamente lasciato scappare. Oltretutto quando nel 1972 egli si decise a rivolgersi alla legge tutta la comunità scientifica gli fu contro perché aveva osato portare nell’aula di un tribunale, per la prima volta in duemila anni di storia della scienza, una polemica che tutti consideravano soltanto scientifica. Uno scienziato che volle rimanere anonimo dichiarò a Deborah Shapley che raccontò la vicenda su «Science»: «Queste sono accuse che si possono fare davanti ad un bicchiere di birra e allora magari riesci anche ad ottenere comprensione e simpatia ma esprimerle ufficialmente ed in pubblico è condannabile da ogni punto di vista».”

In una comunicazione di Piccioni a Conversi del 1971, il primo evidenzia:

“It is a fact which I have discovered, in my silent, so to say, litigation with Segrè and Chamberlain, that people have two notions in their mind as to why they work in scientific research. One is that when they have something of their own interest in question, they would kill their mother in order to have a little bit more credit. But the other one is that we should all work for the beauty of science or maybe for the benefit of mankind, not asking for credit whatsoever. It is amazing how many of our colleagues live their entire life on this double standard, but they do.”

Il passo in grassetto evidenzia che il mondo scientifico è fatto da esseri umani che, pur di assurgere alla gloria dei libri di testo, sarebbero disposti a tutto. In effetti ancora oggi esistono scienziati che passerebbero sopra ogni cosa per i loro interessi personali (il caso Wakefield e la falsa correlazione autismo-vaccini è l’esempio recente)

 

Per saperne di più

F. Di Trocchio, Le bugie della scienza, Ed. Oscar Mondadori

http://www.scienzainrete.it/italia150/oreste-piccioni

http://www.treccani.it/enciclopedia/oreste-piccioni_(Dizionario-Biografico)/

https://agenda.infn.it/getFile.py/access?resId=0&materialId=slides&confId=2016

Fonte dell’immagine di copertinahttp://www.guidetothecosmos.com/about.htm