La chimica del cappuccino

Reading Time: 4 minutes

Nelle mie lezioni di chimica del suolo c’è una parte del programma che riguarda la chimica dei colloidi. Ogni anno accademico, quando descrivo i colloidi del suolo, alleggerisco la lezione facendo esempi di sistemi colloidali nella vita di tutti i giorni discutendo, tra le altre cose, della schiuma del cappuccino.

Ma andiamo con ordine.

Cos’è un sistema colloidale?

Un sistema colloidale si definisce tale solo in base alle dimensioni delle particelle di soluto che lo costituiscono. Qui sotto una tabella in cui si riportano le dimensioni delle particelle di soluto che ci consentono di distinguere tra soluzioni vere, dispersioni colloidali e sospensioni solide

Sistemi chimici                Dimensioni delle particelle di soluto

Soluzioni vere                               < 2 x 10-9 m (ovvero < 2 nm)

Dispersioni colloidali                tra 2 x 10-9 e 2 x 10-6 m (cioè tra 2                                                                                nm e 2 μm)

Sospensioni solide                     > 2 x 10-6 m (ovvero > 2 μm)

Un sistema colloidale può essere del tipo liquido-solido (come, per esempio, nel caso della soluzione suolo in cui i minerali argillosi, delle dimensioni indicate in tabella, sono disperse nell’acqua dei suoli), liquido-liquido (come, per esempio, nel caso delle microgoccioline di olio disperse in acqua o della maionese), gas-liquido (come, per esempio, nel caso della panna montata,  dei gelati o del cappuccino, di cui si dirà fra poco) e gas-gas (come, per esempio, nel caso della dispersione di microgocce di acqua in aria così da costituire la nebbia).

Per convenzione si ritiene che una dispersione colloidale sia stabile quando il tempo di flocculazione è > 2 h, ovvero se ci vogliono più di due ore prima che cominci la flocculazione. Quest’ultima consiste nel processo di aggregazione delle diverse particelle colloidali che, dopo il raggiungimento di certe dimensioni limite, risentono più della forza di gravità che delle forze di dispersione. Nel caso di particelle colloidali cariche elettricamente, le forze di dispersione sono le repulsioni elettrostatiche e le dispersioni vengono indicate come elettrocratiche. Nel caso di soluti neutri, le forze di dispersione dipendono dalle interazioni soluto-solvente e le dispersioni vengono indicate come solventocratiche.

La schiuma del cappuccino

Alla luce delle poche cose scritte, si evince che la schiuma del cappuccino è una dispersione colloidale di un gas in un liquido. Il  liquido è il latte usato per il cappuccino, mentre il gas è costituito dall’aria e dal vapor d’acqua usati per montare il latte. Le goccioline di aria possono formare una dispersione colloidale nel latte grazie alla presenza in esso di surfattanti1, ovvero di molecole in grado di abbassare la tensione superficiale2 del liquido in cui esse sono presenti.  La caratteristica chimica più importante dei surfattanti è l’anfifilicità, ovvero la presenza nella struttura sia di gruppi idrofili che di gruppi idrofobi. Nel latte queste molecole sono le proteine (di cui le caseine rappresentano l’80% del totale proteico) ed i fosfolipidi (che mediamente sono lo 0.8% della massa grassa).

Quando il latte viene insufflato col vapore acqueo mediante l’utilizzo di una tipica macchina da bar (Figura 1), si forma una schiuma in cui goccioline di gas delle dimensioni comprese tra 2 nm e 2 μm sono disperse nel mezzo liquido.

Figura 1. Macchina da caffè per bar. In fondo a destra c’è il cannello usato per insufflare aria e vapore acqueo nel latte per la preparazione del cappuccino (Fonte)

La stabilità di questa schiuma dipende dalla concentrazione relativa di surfattanti. Più essa è elevata, più la schiuma è stabile, ovvero le goccioline di gas non si uniscono a formare gocce più grandi che si allontanano dalla bevanda3. È per questo motivo che più è bassa la concentrazione di grassi come i trigliceridi che non sono surfattanti e rappresentano circa il 90% della massa grassa del latte, e più persistente è la schiuma o “cappuccio” del caffé. Tuttavia, l’uso del latte scremato o parzialmente scremato produce un cappuccino non molto gustoso; è meglio usare un latte intero per avere una bevanda migliore in termini di sapore, sebbene con una schiuma meno persistente.

È importante la temperatura del latte?

Chi ha familiarità con la chimica, come i miei studenti, avrà sicuramente sentito dire che la solubilità di un gas in un liquido dipende sia dalla pressione esercitata dal gas sulla superficie del liquido che dalla temperatura.

Più alta è la pressione del gas sulla superficie del liquido, maggiore è la quantità di gas disciolta (Figura 2).

Figura 2. Più alta è la pressione del gas sulla superficie del liquido, maggiore è la quantità di gas disciolta in soluzione (Fonte)

All’aumentare della temperatura la quantità di gas disciolto in un liquido diminuisce (Figura 3).

Figura 3. Dipendenza della solubilità di un gas dalla temperatura (Fonte)

Alla luce di quanto appena scritto, appare chiaro che per avere una schiuma consistente per il cappuccino occorre sciogliere quanto più gas possibile. Questo si può realizzare se il latte viene preso direttamente dal frigorifero e se il bricco entro cui si prepara la schiuma è freddo.

Quanto appena scritto è la lezione di chimica del cappuccino che faccio ad ogni barista nuovo che si mette dietro al bancone nel bar di fronte al mio dipartimento. Lo so, sembro arrogante, ma ci tengo a bere un buon cappuccino la mattina. Il latte e caffè me lo faccio da solo a casa e non ho bisogno del bar per questo. Buon cappuccino a tutti

Note
  1. Per quei chimici che hanno il vezzo del purismo della lingua italiana: il termine “surfattante”, anche se non piace, esiste nel dizionario di italiano ed è sinonimo di “tensioattivo”. Esso è entrato nell’uso comune e non è più da considerarsi errore o cattiva traduzione dell’inglese surfactant che è l’acronimo di surface active agent. (Surfattante nel dizionario Treccani)
  2. La locuzione “tensione superficiale” si riferisce alle forze di coesione che, all’interfaccia liquido-gas, tengono unite le molecole del liquido alla superficie del liquido stesso. In termini quantitativi, la tensione superficiale è la forza necessaria a tener uniti i lembi di un ipotetico taglio fatto sulla superficie del liquido. All’aumentare della temperatura, le forze di coesione che tengono unite le molecole alla superficie del liquido diminuiscono di intensità e la tensione superficiale diminuisce.
  3. Le microparticelle di soluto tendono ad unirsi ed a formare aggregati a dimensione progressivamente maggiore per diminuire l’area superficiale a contatto col mezzo liquido in cui esse sono insolubili. Per questo motivo, nel tempo, tutte le dispersioni colloidali tendono a subire una separazione di fase: le emulsioni olio-acqua tendono a formare una fase acquosa sul fondo ed una fase organica sulla superficie; la maionese tende a formare uno strato di olio superficiale per effetto della separazione di quest’ultimo dalla fase acquosa; le sostanze umiche (acidi umici, fulvici ed umina) tendono ad aggregarsi ed a flocculare;  etc etc.
Per saperne di più

I colloidi in breve 1

I colloidi in breve 2

Una lezione sui colloidi

Breve lezione sui tensioattivi

Un’altra lezione sui tensioattivi

La composizione dei grassi nel latte

Le proteine del latte

Il latte migliore per i cappuccini

Fonte dell’immagine di copertina: By Scoti5 – Originally from he.wikipedia; description page is/was here., Attribution, https://commons.wikimedia.org/w/index.php?curid=2710311

I dolcificanti. L’aspartame

Reading Time: 6 minutes

Faccio molto uso di dolcificanti. Quando vado al bar per prendere il mio cappuccino mattutino chiedo sempre un dolcificante per rendere più dolce la bevanda che già di per sé è dolce. In genere mi viene sempre fornito aspartame, qualche volta acesulfame-K, molto meno spesso sucralosio o altri tipi di dolcificanti. Quante volte ho dovuto sentire, anche da parte di colleghi universitari, “ma non hai paura? I dolcificanti sono tossici” oppure “inducono il cancro” ed altre amenità del genere. Non parliamo poi delle sciocchezze che ascolto nei locali cosiddetti “bio”: è un apoteosi di cretinate salutistiche e di sparate pseudo chimiche nei confronti di questi prodotti “alternativi” al saccarosio che sono estremamente utili per chi ha serie patologie come il diabete e, per questo, non può fare uso di “zucchero normale” – ovvero di dolcificanti contenenti glucosio.

Se l’informazione veicolata dalla stampa generalista non scientifica oppure di nicchia (come per esempio qui) in base alla quale “i dolcificanti fanno male” attecchisce nei professori universitari – che hanno tutti i mezzi per poter controllare la validità di certe informazioni – non posso aspettarmi maggiore maturità culturale da parte di persone senza un background scientifico. Ed allora cerchiamo di fare un po’ di chiarezza. Oggi parliamo di aspartame

aspartamE: cos’é?

L’aspartame è un dipeptide il cui nome IUPAC è “N-(L-α-Aspartyl)-L-phenylalanine, 1-methyl ester”(Figura 1A). In altre parole, è ottenuto per formazione di un legame peptidico tra l’acido aspartico (Figura 1B) e la fenilalanina (Figura 1C). Il gruppo carbossilico (-COOH) della fenilalanina è esterificato mediante l’inserzione di un gruppo metile.

Figura 1. Struttura dell’aspartame (A), acido aspartico (B) e fenilalanina (C)

L’aspartame è anche indicato con la sigla E951, per cui quando leggete gli ingredienti presenti in un alimento e notate la sigla anzidetta, sapete che l’alimento contiene aspartame.

Dei due amminoacidi presenti nell’aspartame, la fenilalanina (Figura 1C) è essenziale, ovvero il nostro organismo non è in grado di sintetizzarlo; la conseguenza è che dobbiamo assumere fenilalanina attraverso la dieta per consentire la corretta sintesi delle proteine che contengono tale amminoacido, per consentire la sintesi di alcuni ormoni e quella di alcuni neuro trasmettitori (per esempio qui).

L’aspartame è tossico?

La Figura 2 mostra la reazione di decomposizione cui può essere soggetto l’aspartame per effetto dell’interazione con molecole di acqua in ambiente acido, come quello presente nel nostro stomaco, o per azione della temperatura, come quelle usate per cucinare i nostri alimenti. Da quanto appena detto, si capisce che il dolcificante in oggetto non può essere usato per preparare alimenti che devono essere soggetti a cottura. Infatti, l’aspartame, quando sottoposto ad elevate temperature, si decompone nelle sue componenti elementari (ovvero acido aspartico, fenilalanina e metanolo) perdendo completamente il suo potere dolcificante (che è circa 200 volte più intenso di quello del saccarosio.

Figura 2. Degradazione dell’aspartame per idrolisi. Quest’ultima può avvenire in ambiente acido come quello del nostro stomaco, o per effetto delle alte temperature, come quelle usate per cucinare.

Delle tre componenti, il metanolo è quello che può fare più paura. Infatti, il metanolo provoca mal di testa e vertigini, può portare a crampi, nausea, vomito e cecità oltre che alla morte quando assunto in quantità superiori a circa 0.1 g/kg. Tradotto in altre parole, se un individuo dal peso medio di 80 kg assume circa 8 g di metanolo in un giorno, può morire. Se, per sua fortuna, non muore, può tuttavia rimanere menomato per effetto di gravi danni neurologici permanenti (scheda di sicurezza del metanolo).

Alla luce di quanto scritto, mi potreste chiedere: “ma allora già solo per la formazione del metanolo, l’aspartame deve essere considerato pericoloso. Perché ci dici che non dobbiamo preoccuparci?”.

Come ho appena scritto, perché il metanolo prodotto dalla degradazione dell’aspartame possa dare gravi danni neurologici e finanche la morte, è necessario superare una certa soglia limite che è, mediamente, intorno agli 0.1 g/kg.

La Figura 3 mostra la composizione chimica di un dolcificante comprato in una nota catena di supermercati. La confezione contiene 200 pillolette dal peso complessivo di 8.4 g. Ogni pilloletta pesa, quindi, 0.042 g. Il 43% di tale peso è dovuto all’aspartame. Questo vuol dire che ogni pilloletta contiene 0.019 g di aspartame. Alla luce della reazione riportata in Figura 2, la quantità di metanolo ottenuta per decomposizione di 0.019 g di aspartame è pari a 2.0 mg, ovvero una quantità circa 4000 volte più piccola di quella che può provocare danni permanenti o uccidere un individuo dal peso medio di 80 kg. Insomma, per avere problemi dovuti alla formazione di metanolo, un individuo del peso di 80 kg deve usare almeno 4000 pillolette di quelle descritte in Figura 3; si tratta, cioè di 20 scatolette al giorno. Un po’ troppo, non trovate? Conoscete qualcuno che mangia pillolette di dolcificante come fossero caramelle o prende tanti di quei caffé da arrivare a far uso di un tale ammontare di aspartame? Io, personalmente, no. Peraltro se un individuo prende tanti caffè da far uso di oltre 4000 pillolette di aspartame, rischia seri problemi di salute non solo a causa del dolcificante, ma anche a causa del numero spaventoso di caffè giornalieri.

Figura 3. Dolcificante a base di aspartame comprato in una nota catena di supermercati

E le altre due componenti che si formano per degradazione dell’aspartame hanno qualche conseguenza sulla salute? In realtà, l’unica componente che può avere seri effetti sulla salute umana è proprio la fenilalanina. Infatti, esiste una patologia rara che si chiama iperfenilalaninemia che provoca seri danni neurologici. Questa malattia è genetica e consiste nella incapacità da parte dell’organismo di metabolizzare la fenilalanina per la sintesi di un altro amminoacido che si chiama tirosina. Rimando a pagine più dettagliate e specifiche della mia per approfondimenti su questa patologia (per esempio qui). E’ per questo motivo che la dose giornaliera di aspartame consigliata è di circa 40 mg/kg. Un individuo del peso medio di 80 kg può assumere fino a 3.2 g di aspartame al giorno prima di avere problemi di salute legati alla fenilalanina. Ma 3.2 g di aspartame corrispondono a un po’ più di 200 pillolette al giorno di quelle mostrate in Figura 3; si tratta, cioè, di utilizzare una scatoletta al giorno del dolcificante di Figura 3. Insomma, ancora una volta, bisogna assumere aspartame in dosi massicce prima di poter riscontrare un qualche effetto sulla nostra salute.

Aspartame e cancro: cosa c’è di vero?

Come già accennato sopra, di tanto in tanto tornano alla carica informazioni pseudo scientifiche in merito al rapporto assunzione di aspartame ed insorgenza di tumori o altra tipologia di patologia. Per esempio, nel 2005 un gruppo di ricerca Italiano (Soffritti M, Belpoggi F, Esposti DD, Lambertini L. Aspartame induces lymphomas and leukaemias in rats. European Journal of Oncology 2005; 10(2):107–116) ha evidenziato una correlazione tra uso di aspartame ed insorgenza di linfomi e leucemia nei ratti. A seguito di questo studio, la Food and Drug Administration americana (l’equivalente della nostra Agenzia Europea del Farmaco) ha messo sotto la lente di ingrandimento l’uso alimentare dell’aspartame ed ha potuto evidenziare non solo che tale correlazione non esiste su basi meta-analitiche, ma che lo studio citato era anche affetto da limiti metodologici. Se siete curiosi, potete leggere qui le informazioni sull’aspartame, mentre qui le conclusioni della FDA e qui la storia completa sulla canceroginità inesistente di tale dipeptide. Insomma, per non farla tanto lunga, la correlazione tra insorgenza di tumori ed uso di aspartame è solo una leggenda metropolitana. Come ogni sistema chimico destinato all’alimentazione, anche l’aspartame è soggetto a controlli molto stringenti che escludono categoricamente ogni effetto negativo ad esclusione di quelli già evidenziati nel paragrafo precedente.

Aspartame, dieta e diabete

Siamo tutti umani, diciamo la verità. E come esseri umani siamo convinti che se usiamo dei dolcificanti che non forniscono “calorie” al nostro organismo, possiamo permetterci  “sgarri” più frequentemente di quanto faremmo se fosse presente il tradizionale saccarosio. Ecco; forse il problema dell’aspartame, come, in effetti, di tutti i dolcificanti, è che ci fanno illudere di poter abusare degli alimenti che li contengono.

“Bevo la coca cola zero, tanto è senza zuccheri e non fa ingrassare”; quante volte abbiamo pensato una cosa del genere? In effetti la coca cola zero non contiene quello che nel linguaggio comune è indicato come zucchero, ovvero il saccarosio, ma contiene vari dolcificanti tra cui l’aspartame. La Figura 4 mostra la composizione della coca cola zero.

Figura 4. Composizione chimica della Coca Cola zero (Fonte)

Come si può leggere, oltre ai dolcificanti (del ciclammato di sodio e dell’acesulfame-K parleremo in altro momento), la coca cola zero contiene anidride carbonica, il 4-metilimidazolo (indicato come  colorante E 150d), l’acido fosforico, aromi naturali (inclusa caffeina) e, come correttore di acidità, il citrato trisodico.

Un consumo eccessivo di coca cola zero, oltre a comportare assunzione di aspartame in quantità elevate, determina senzazioni di gonfiore ed aerofagia (a causa della presenza di anidride carbonica), carenza di calcio con conseguente possibile osteoporosi negli adulti e rachitismo nei bambini (l’acido fosforico forma sali di calcio insolubili; la dose giornaliera consigliata per i fosfati è di circa 70 mg/kg, ovvero un individuo adulto del peso medio di 80 kg può assumere circa 6 g di fosfato al giorno) e  possibile insorgenza di cancro per effetto della presenza del 4-metilimidazolo. Infatti, quest’ultimo, se assunto in quantità superiori a 751 mg/kg/die (ovvero pari a circa 60 g al giorno per un individuo dal peso medio di 80 kg), può portare ad insorgenza di tumori (qui la scheda di sicurezza del 4-metilimidazolo). Insomma, come aveva già stabilito Paracelso nel XIII secolo, è la dose che fa il veleno. Bevete pure la coca cola zero, ma senza abbuffarvi.

E che c’entra il diabete con l’aspartame? Nel 2014 è stato pubblicato su Nature un lavoro dal titolo “Artificial sweeteners induce glucose intolerance by altering the gut microbiota” in cui gli autori hanno evidenziato che il consumo eccessivo di dolcificanti di sintesi comporta una alterazione della flora microbica intestinale con conseguenze negative sulla capacità dell’organismo di metabolizzare il glucosio. Per poter ristabilire le condizioni pre-esperimento è necessario far uso di antibiotici in grado di ripristinare le condizioni microbiche di partenza.

Conclusioni

L’aspartame non è pericoloso se assunto in modo equilibrato ed al di sotto delle dosi consigliate. I prodotti della sua degradazione vengono escreti dalle vie urinarie, per cui non ci sono problemi di accumulo. Del resto anche una fetta di sachertorte (Figura 5) è una delizia per il palato e migliora l’umore. Tutto quanto della sachertorte serve al nostro organismo viene metabolizzato, il resto viene escreto. Il consumo eccessivo, oltre che frequente, di intere sachertorte comporta, invece, l’insorgenza del diabete di tipo II con le conseguenze che tutti conosciamo. In altre parole, a distanza di circa cinque secoli, è ancora valida la locuzione “è la dose che fa il veleno”.

Figura 5. Sachertorte (Fonte)
Fonte dell’immagine di copertina: Wikimedia Commons

Omeopatia e fantasia. Parte V. Aggiornamenti

Reading Time: 10 minutes

Sta girando in rete una notizia in merito ad uno studio denominato EPI3 che secondo gli amici dell’omeopatia avrebbe prodotto le prove definitive sulla validità di questa pratica risalente al XIX secolo e basata su teorie metafisiche oggi non più  valide, considerando lo sviluppo che la chimica, la biologia e, non ultima, la medicina hanno avuto negli ultimi 150 anni.

Ho già avuto modo di parlare dell’omeopatia in più articoli su questo blog. Li potete trovare a questo link in ordine inverso di apparizione temporale.

I principi dell’omeopatia

In breve, nel 1810, Hahnemann pubblica il suo “Organon of medicine” nel quale pone le basi teoriche dell’omeopatia:

  1. il simile cura il simile
  2. più alta è la diluizione, più efficace risulta il rimedio omeopatico
  3. l’efficienza del rimedio omeopatico raggiunge il suo massimo non solo con la diluizione, ma anche con la succussione, ovvero una agitazione meccanica operata in modo sistematico con un movimento verticale (dall’alto verso il basso) e sbattendo il recipiente contenete il rimedio su una tavoletta rivestita di pelle morbida o crine di cavallo
  4. le malattie sono il risultato di alterazioni delle condizioni psico-fisiche soggettive del paziente per cui i rimedi non hanno tutti la stessa efficacia per la stessa tipologia di malattia in pazienti differenti
  5. la cura omeopatica non sopprime la malattia, ma la espelle

I principi omeopatici si basano sul concetto di vis vitalis, ovvero di una forza metafisica che permeerebbe tutti gli esseri viventi ed i sistemi riconducibili al mondo dei viventi. La vis vitalis era ritenuta assente in tutti i sistemi riconducibili al mondo dei non viventi o dell’inanimato. Questa teoria, introdotta da Berzelius – uno dei padri fondatori della chimica moderna – è stata definitivamente accantonata nel 1828, quando Whöler riuscì a convertire l’isocianato di ammonio – una sostanza inorganica che come tale appartiene ai sistemi non viventi – in urea – una sostanza tipica del mondo dei viventi.

Nel momento di massima espansione della teoria della vis vitalis, quando ancora non si conosceva il risultato del lavoro di Avogadro apparso nel 1811, Hahnemann elaborò il suo codice in base al quale un qualsiasi sistema organico poteva essere soggetto a diluizione infinita senza perdita alcuna di efficacia biologica. Infatti, il processo di diluizione, associato a quello di succussione, “estraeva” la vis vitalis dal sistema organico – ovvero riconducibile al mondo dei viventi – e la trasferiva al solvente. In definitiva, non era importante la presenza del principio attivo per la cura delle patologie – come anche la farmacologia dell’epoca riteneva – ma bastava la sola presenza della vis vitalis “estratta” dal principio attivo per allontanare le perturbazioni della vis vitalis dall’organismo vivente.

Da quanto detto, potete facilmente rendervi conto che la teoria omeopatica di Hahnemann poteva avere un senso nel XIX secolo quando il mondo chimico/biologico/medico, ancora in fasce, era affiancato dal mondo magico i cui esponenti potevano essere considerati a tutti gli effetti maghi, fattucchiere e stregoni (qui).

Lo sviluppo della moderna chimica, di cui potete trovare espressione nei libri della foto di Figura 1, ci consente di dire, semmai ce ne fosse bisogno, che le teorie di Hahnemann – a cui dobbiamo essere comunque grati per l’apporto dato allo sviluppo delle conoscenze umane – sono basate sul nulla.

Figura 1. Nella mia collezione di libri di chimica ce ne sono alcuni che sono i capisaldi della materia. Vanno studiati con attenzione se uno decide di intraprendere il percorso chimico come professionista
Un invito

Prima di entrare nel merito del progetto EPI3 voglio suggerire a naturopati, pseudo-chimici (sono i chimici passati al lato oscuro della scienza), pseudo-medici (sono tutti quelli che, sebbene laureati in medicina, prestano le loro conoscenze alla pseudo-medicina/pseudo-scienza) e a tutti gli amici dell’omeopatia, di ristudiare o di studiare ex-novo i testi riportati nell’immagine di Figura 1 (o anche simili) prima di addentrarsi in critiche di ogni tipo nei commenti di questo blog. Commenti spazzatura in cui non si entra nel merito, ma si applicano pedissequamente le fallacie logiche che potete trovare qui, non saranno neanche minimamente presi in considerazione se non per esporre l’autore al pubblico ludibrio scientifico.

Il progetto EPI3

Ed entriamo ora nel merito. Scrivevo poco più su che gira in rete la notizia di un mega studio, durato alcuni anni e che ha consentito la pubblicazione di ben undici lavori scientifici, che confermerebbe la validità dei trattamenti omeopatici per alcune patologie quali ansia, depressione, disturbi del sonno, infezioni del tratto respiratorio superiore e dolori muscolo-scheletrici. Il link alla notizia è qui. Naturalmente, come ogni buon giornalista NON dovrebbe fare, in calce all’articolo non si riporta alcun riferimento degli undici lavori pubblicati. Tuttavia, c’è un link ad un sito in francese (qui) che riporta una bibliografia di dodici lavori. Tra questi i primi undici sono relativi al progetto EPI3. Ecco la lista degli undici lavori:

  1. Rossignol et al., Who seeks primary care for musculoskeletal disorders (MSDs) with physicians prescribing homeopathy and other complementary medicine ? Results form the EPI3-LASER survey in France. BMC Musculoskeletal Disorders, 2011, 12:21 doi:10.1186/1471-2474-12-21 ; 1-6.
  2. Rossignol et al., Benchmarking clinical management of spinal and non-spinal disorders using quality of life. Results from the EPI3-LASER survey in primary care. European Spine Journal, 2011, doi:10.1007/s00586-011-1780-z ; 1-7.
  3. Grimaldi-Bensouda et al., EPI3-LA-SER group. Benchmarking the burden of 100 diseases. Results of a nationwide representative survey within general practices. BMJ Open, 2011, 1:e000215. doi:10.1136/bmjopen-2011-0002 ; 1-11.
  4. Grimaldi-Bensouda et al., EPI3-LA-SER group. Who seeks primary care for sleep, anxiety and depressive disorders from physicians prescribing homeopathic and other complementary medicine? Results from the EPI3 population survey. BMJ Open, 2012, 2(6): e001498. doi: 10.1136/bmjopen-2012-001498. ; 1-10.
  5. Lert et al., EPI3-LA-SER Group. Characteristics of patients consulting their regular primary care physician according to their prescribing preferences for homeopathy and complementary medicine. Homeopathy, 2014, 103(1) ; 51-57.
  6. Rossignol et al., EPI3-LA-SER group. Impact of physician preferences for homeopathic or conventional medicines on patients with musculoskeletal disorders. Results from the EPI3-MSD cohort. Pharmacoepidemiology and Drug Safety, 2012, 21(10) : 1093-1101. doi:10.1002/pds. 3316 ; 1-9.
  7. Grimaldi-Bensouda et al., EPI3-LA-SER Group. Utilization of psychotropic drugs by patients consulting for sleeping disorders in homeopathic and conventional primary care settings: the EPI3 cohort study. Homeopathy. 2015 Jul;104(3):170-5.
  8. Grimaldi-Bensouda et al., Management of upper respiratory tract infections by different medical practices, including homeopathy, and consumption of antibiotics in primary care: the EPI3 cohort study in France 2007-2008. PLoS ONE, 2014, 9(3) doi: 10.1371/journal.pone.0089990. eCollection 2014 ; 6 p.
  9. Danno et al., Physician practicing preference for conventional or homeopathic medicines in elderly subjects with musculoskeletal disorders in the EPI3-MSD cohort. Clinical Epidemiology, 2014, 6 ; 333-341.
  10. Colas et al.,  Economic impact of homeopathic practice in general medicine in France. Health Econ Rev. 2015 Dec;5(1):55. doi:10.1186/s13561-015-0055-5.
  11. Grimaldi-Bensouda et al., EPI3-LA-SER group. Homeopathic medical practice for anxiety and depression in primary care: the EPI3 cohort study. BMC Complement Altern Med. 2016 May 4;16(1):125. doi:10.1186/s12906-016-1104-2.

La lista riportata è copia-incollata dal sito in francese. Ho evidenziato il termine EPI3 contenuto nel titolo delle pubblicazioni ed ho inserito – per consentire una più facile consultazione – il link ai lavori quando disponibili.

Le riviste

I lavori sono stati pubblicati nelle seguenti riviste di settore:

BMC Musculoskeletal disorders (Impact factor 1.739; n. lavori pubblicati: 1)

European Spine Journal (Impact factor non noto; n. di lavori pubblicati: 1)

BMJ open (Impact factor 2.369; n. di lavori pubblicati: 2)

Homeopathy (Impact factor 1.160; n. di lavori pubblicati: 2)

PDS Pharmacoepidemiology & Drug Safety (Impact factor 2.552; n. di lavori pubblicati: 1)

PlosOne (Impact factor 2.806; n. di lavori pubblicati: 1)

Clinical Epidemiology (Impact factor 7.056; n. di lavori pubblicati: 1)

Health Economics Review (Impact factor non noto; n. di lavori pubblicati: 1)

BMC Complementary Alternative (Impact factor non noto; n. di lavori pubblicati: 1)

Come si evidenzia dalla tabella appena letta, 3 riviste non sono indicizzate, ovvero non hanno impact factor. Una sola ha un impact factor abbastanza alto (si tratta di Clinical Epidemiology), tutte le  altre non vanno oltre un impact factor di 3. Non sono esperto di riviste del settore medico per cui non posso dire nulla in merito alla qualità delle riviste anzidette. Conosco solo PlosOne, rivista di carattere generalista, di cui pensavo molto meglio. Ed infatti, andando a spulciare la storia dell’impact factor di questa rivista, risulta che essa aveva nel 2015 un impact factor di 4.411. In altre parole, dal 2015 al 2016 l’impatto di questa rivista è sceso di ben 1.605 punti. E’ molto. Vuol dire che i lavori pubblicati nei tre anni precedenti al 2016 non sono stati citati quanto quelli nei tre anni precedenti al 2015. Come mai? Questo non lo posso sapere, naturalmente. Dovrei entrare nel merito di tutto quanto pubblicato tra il 2012 ed il 2015. Si tratta, ovviamente, di lavori molto diversificati (ed io non ho una cultura enciclopedica che mi permette di entrare nel merito di tutto), oltre che di una quantità di lavori molto elevata la cui lettura richiederebbe un tempo che non ho a disposizione. In questa sede analizzo solo il dato numerico. Ciò che posso dire è che l’insieme di riviste in cui sono apparsi i lavori del progetto EPI3 sono del settore medico o del settore generalista tutte con peer review. In altre parole, ognuna di esse sottopone i manoscritti ricevuti al giudizio di scienziati dello stesso settore degli autori. Questo va bene. E’ così che funziona il mondo delle pubblicazioni in ambito scientifico.

Essendo pubbliche ed accessibili a tutti, ognuno di noi può leggere ciò che è scritto in queste pubblicazioni (nello specifico basta cliccare sui link presenti nella lista precedente). Se chi legge ha familiarità col metodo scientifico può giudicare da solo la validità di quanto è riportato. Considerando la mia attività, entro, allora, nel merito della validità del metodo scientifico usato negli undici lavori elencati sopra.

I limiti metodologici

Quando si fa un disegno sperimentale per validare/falsificare un certo modello scientifico bisogna cercare di essere quanto più dettagliati e precisi possibile. Faccio un esempio molto semplice per me. Se penso di monitorare (lo so, i puristi della lingua italiana mi diranno strali. Ma non me ne importa. Io uso e continuerò ad usare questo termine che è del gergo tecnico scientifico) la contaminazione di un suolo rispetto ad un elemento qualsiasi della tavola periodica, non posso campionare solo il suolo che ho deciso di analizzare e “vedere” se quell’elemento è semplicemente presente in esso. Mi chiederete: perché? Perché quasi sicuramente io troverò quell’elemento nel suolo che voglio studiare. Per dire che esso è contaminato ho necessità di confrontarlo con uno del tutto analogo che mi deve servire da “bianco”, ovvero da termine di paragone. Nel linguaggio tecnico quest’ultimo suolo viene indicato come “suolo vergine”. Questa locuzione indica un suolo che non è stato sottoposto alla contaminazione che ho deciso di monitorare.

Se l’elemento che voglio osservare è presente sia nel bianco che nel suolo sotto osservazione, posso parlare di contaminazione solo se la quantità di quell’elemento è molto più alta nel suolo “incriminato” rispetto al bianco. Se le quantità sono confrontabili tra loro, posso dire che non c’è contaminazione oppure che il bianco era contaminato come il suolo osservato. Per eliminare il dubbio in merito alla qualità del suolo vergine, posso andare a campionare un altro suolo e considerarlo come controllo rispetto agli altri due. Se ancora una volta le quantità dell’elemento che ho deciso di monitorare sono confrontabili, posso dire che rispetto al nuovo suolo controllo, gli altri due non sono contaminati. La conseguenza è che la scelta del primo suolo controllo era giusta. Se voglio essere ancora più pignolo (i siciliani usano un termine che a me fa morire dal ridere: pillicusu) posso campionare un quarto suolo come bianco e confrontarlo con gli altri tre. E si potrebbe continuare.

Dall’esempio fatto, si comprende che in un disegno sperimentale bisogna prendere in considerazione sempre un campione controllo rispetto al quale poter trarre le conclusioni dell’esperimento.

Prendiamo, ora, in considerazione gli undici lavori elencati sopra.

I lavori dal n. 1 al n. 6 sono uno screening di pazienti, medici, farmaci etc in cui si cominciano a porre le basi per le valutazioni statistiche che vengono proposte nei lavori successivi. In tutti questi lavori vengono considerati pazienti a cui si prescrivono farmaci convenzionali (indichiamoli per semplicità con la sigla FC), rimedi omeopatici (indichiamoli RO) e pazienti sottoposti sia all’azione di farmaci convenzionali che di rimedi omeopatici (indichiamoli con la sigla Mix).

Dopo lo screening, vengono confrontati gli effetti che i FC hanno rispetto ai RO e ai Mix (lavoro n. 7, n. 8, n. 9 e n. 11). Le conclusioni sono che le tre tipologie di rimedi apportano  i medesimi benefici ai pazienti cui essi vengono somministrati.

Nel lavoro n. 10 viene riportato un confronto economico, nell’ambito della sanità francese, nell’uso di FC, RO e Mix. Il lavoro conclude che l’uso dei RO è più conveniente, economicamente parlando, rispetto a quello dei FC.

Dall’analisi, neanche troppo attenta, dei lavori pubblicati grazie al progetto EPI3, salta subito all’occhio che non vengono presi in considerazione “suoli vergini”, ovvero controlli. In altre parole, si confrontano pazienti a cui vengono somministrati FC, RO e Mix e si conclude che RO e Mix hanno la stessa efficacia dei FC, ovvero non è vero che l’omeopatia non funziona. L’omeopatia sembra funzionare almeno quanto i farmaci convenzionali per le patologie prese in considerazione e per il numero statisticamente significativo di pazienti protagonisti del progetto. Neanche tanto velatamente, gli autori sembrano indicare che i rimedi omeopatici hanno il medesimo effetto biologico dei farmaci convenzionali.

La domanda nasce spontanea: come mai non hanno preso in considerazione l’effetto placebo? (ne ho parlato qui). Come mai hanno escluso la considerazione che sia la somministrazione dei farmaci convenzionali che quella dei rimedi omeopatici potesse comportare un miglioramento delle condizioni di salute dovute ad un effetto di carattere psicologico, piuttosto che a un effetto di un principio attivo più o meno diluito?

La risposta a questa domanda è che, sebbene in tutti i lavori che ho letto gli autori facciano un copia/incolla dei limiti che essi hanno visto nel loro disegno sperimentale, manca una popolazione di controllo con le patologie summenzionate ed a cui fosse somministrato un rimedio placebo. Gli autori hanno voluto vedere l’aspetto positivo del loro progetto sperimentale. Hanno dimenticato che i loro dati possono essere letti anche in un altro modo: i farmaci convenzonali non hanno alcun effetto biochimico esattamente come non ne hanno i rimedi omeopatici. Sia i farmaci convenzionali che i rimedi omeopatici agiscono attraverso l’azione del solo effetto placebo.

Conclusioni

Gli autori del progetto EPI3 sono rimasti “fulminati” dal loro pregiudizio di conferma. Hanno voluto vedere degli effetti positivi dell’omeopatia senza prendere in considerazione letture diverse dei loro dati sperimentali.

Come mai, nonostante questo, i lavori sono stati pubblicati? Beh, la validità di un modello scientifico o la bontà di dati sperimentali devono passare il vaglio temporale. Non dimentichiamoci che ci son voluti 12 anni prima che ci si rendesse conto che il lavoro di Wakefield sulla relazione vaccini-autismo fosse un falso; altrettanti ne sono passati prima che qualcuno si accorgesse che i lavori di Schoen sui superconduttori organici fossero anche essi dei falsi; e tanti altri casi di falsa scienza potete leggere qui. In definitiva: lasciamo lavorare gli anticorpi presenti nell’apparato scientifico. Se sono riuscito ad accorgermi io di questo limite metodologico, altri, più preparati di me nel campo, si accorgeranno non solo di questo, ma anche di altri limiti che io non sono stato in grado di vedere, vuoi per noia, vuoi per impreparazione medica.

Integrazioni

Dopo la pubblicazione di questo articolo sul blog sono arrivati tantissimi commenti. Uno di questi da parte di Stefano Cervigni, autore di utilissimi libri di chimica, in cui scrive:

Ciao Rino, per curiosità mi sono andato a guardare un po’ più in dettaglio gli articoli che hai indicato. Anzi, dico la verità: mi sono letto per bene solo il numero 9, quello di Clinical Epidemiology, l‘articolo del giornale col più alto impact factor.
Oltre alla completa mancanza di prove in bianco, come giustamente osservavi, mi permetto di far notare qualche altra „peculiarità“ di questo articolo (ripeto, quello pubblicato sul posto ‘migliore’ di tutti)
1) Due su quattro autori dell’articolo lavorano per la Boiron, mentre uno lavora per il Cyklad Group, che Google mi dice essere “une société spécialisée dans le coaching des entreprises.” (?)
2) I risultati sono molto incoraggianti. Guarda la figura: qualsiasi cosa prendi, dopo 1 anno di trattamento stai messo esattamente uguale a prima.
3) La conclusione a cui arrivano è da incorniciare: tanto dal mal di schiena e artrite non si guarisce comunque. Tanto vale che ti prendi la caramellina mia.

Come gli omeopatici siano riusciti da questo a strombazzare titoli come: Omeopatia vs allopatia, il piùgrande studio fatto in Francia, EPI3, dice che l’efficacia delle cure è la stessa”e che: “Dopo 7 anni di osservazioni su oltre migliaia di pazienti, EPI3 mostra che la percentuale di guarigione è la stessa, ma usando l’omeopatia ci sono meno effetti collaterali” mi è completamente oscuro.
Grazie ancora e in bocca al lupo!

Fonte dell’immagine di copertina: Wikipedia Commons

La chimica-fisica dei camaleonti

Reading Time: 2 minutes

Quando ero piccolo rimasi affascinato dalla capacità che hanno i camaleonti nel cambiare velocemente il colore della propria pelle. All’epoca mi era stato spiegato che questa caratteristica fosse legata alla necessità di mimetizzazione (il cosiddetto mimetismo criptico) per evitare gli attacchi di eventuali predatori. Come possibile spiegazione chimica mi era stata proposta la presenza di particolari cellule, indicate come cromotofori , contenenti dei pigmenti tipo melanina in grado di modulare la lunghezza d’onda della luce assorbita in funzione dei cambiamenti strutturali cui essi potevano essere sottoposti.

Nel tempo la cosa mi è passata di mente. Certo i camaleonti con la loro caratteristica erano sempre presenti nella mia memoria, ma come qualcosa di collaterale di cui si decide di approfondire la conoscenza quando se ne ha il tempo non essendo, l’erpetologia, l’oggetto principale delle mie ricerche.

Ma ecco il punto di svolta. Mi capita sotto gli occhi, durante una delle mie tante sessioni di ricerca bibliografica, un lavoro dal titolo: “Photonic crystals cause active colour change in chameleons”. Gli autori sono di un centro di ricerca Svizzero ed il lavoro è del 2015. Mi sono detto: “oilà, vuoi vedere che hanno compreso perché i camaleonti usano il cambiamento di colore come strategia di mimetizzazione?”. La mia sorpresa è stata enorme quando ho letto il lavoro che potete trovare in originale qui.

Provo a spiegare la mia sorpresa legata sia al fascino che la chimica fisica esercita sempre su di me che al fatto che ho dovuto abbandonare le mie vecchie convinzioni in merito al motivo per cui i camaleonti cambiano colore.

Infatti, il lavoro pubblicato su Nature Communications di cui ho messo il link sopra, ha evidenziato che la strategia adottata dai camaleonti non è tesa ad ingannare i predatori. Il cambiamento di colore viene messo in atto quando questi rettili sono eccitati, ovvero si trovano ad affrontare situazioni nuove ed inusuali come un combattimento, un corteggiamento, una patologia oppure un semplice cambio di ambiente. Quindi sfatiamo la leggenda metropolitana tanto in auge quando io ero piccolo: il cambiamento di colore non è una mimetismo criptico.

Ma quali sono i meccanismi alla base  del cambiamento di colore dei camaleonti?

È qui che entra in gioco la chimica-fisica.

I ricercatori svizzeri hanno evidenziato che la pelle dei camaleonti è fatta da due strati sovrapposti. Lo strato superficiale contiene dei cristalli di guanina (Figura 1)

Figura 1. Struttura della guanina, base azotata presente anche nel DNA (Fonte)

delle dimensioni di circa 127 nm ed organizzati a formare dei reticoli triangolari (Figura 2).

Figura 2. Reticoli di cristalli di guanina (Fonte)

I cristalli di guanina hanno un proprio indice di rifrazione, ovvero sono in grado di deviare la traiettoria delle onde luminose di un certo angolo (Figura 3).

Figura 3. Rifrazione della luce (Fonte)

Le onde luminose rifratte dai vari cristalli di guanina interferiscono tra loro generando i colori tipici dei camaleonti in assenza di stress.

Quando sottoposti a stress, i camaleonti riescono a modificare le distanze tra i vari cristalli di guanina modificando l’interferenza tra le varie onde rifratte e, di conseguenza, il colore della pelle.

In altre parole, la variazione delle distanze tra i cristalli di guanina è associata ad una variazione dell’indice di rifrazione della superficie della pelle dei camaleonti e, quindi, dei cambiamenti reversibili di colorazione.

Variazioni dell’indice di rifrazione possono portare ad un aumento della temperatura corporea dei camaleonti. Lo strato cutaneo sottostante, che non contiene cristalli di guanina, serve per la termoregolazione corporea conseguente alle variazioni anzidette.

Volete una spiegazione un po’ più dettagliata e scenografica di quella che ho proposto molto semplicisticamente? Potete guardare il video sottostante (in Inglese) elaborato dagli autori del lavoro di cui suggerisco la lettura.

Interessante, vero?

Fonte dell’immagine di copertina

http://www.cnascientific.com/could-this-new-chameleon-discovery-lead-to-camouflage-technology/

Chimica e musica: il segreto di Stradivari

Reading Time: 2 minutes

Conoscete Stradivari? Beh, chi non conosce il famoso liutaio i cui strumenti sono entrati nella leggenda? Fino a qualche tempo fa si diceva che Stradivari avesse un segreto ben custodito che gli consentiva di ottenere strumenti musicali dalle caratteristiche eccezionali. Certamente la scelta di materiali di ottima qualità gioca un ruolo importantissimo nella definizione del suono di uno strumento, Ma come mai ancora oggi tali strumenti conservano intatte le loro caratteristiche rendendoli ineguagliabili e preziosissimi?

All’inizio di quest’anno è apparso su PNAS (rivista molto prestigiosa in ambito scientifico) un articolo in cui gli autori spiegavano che la conservazione della qualità degli strumenti di Stradivari era legata ai processi messi in atto dal liutaio  in fase di costruzione e di rifinitura di ognuno di essi. Potete trovare qui il lavoro su PNAS  e qui una breve sintesi dello stesso in italiano.

Devo aggiungere con tanto orgoglio per tutta una serie di questioni che vanno al di là della semplice appartenenza istituzionale, che è stato recentemente pubblicato su Journal of Polymer Science, Part A: Polymer Chemistry un lavoro  a primo nome di un mio carissimo amico, Alberto Spinella, in cui, per la prima volta, vengono delucidati i meccanismi alla base delle resine che Stradivari ha usato per assicurare la conservazione dei suoi famosissimi strumenti musicali. Il lavoro originale lo potete trovare a questo link. Purtroppo non esiste una sintesi in Italiano perché le riviste di divulgazione scientifica generaliste italiane non sembrano interessate a lavori pubblicati su riviste meno impattate di Nature, PNAS o Science. È un vero peccato perché si trovano lavori innovativi anche su riviste meno quotate di quelle citate ma col difetto di essere un po’ troppo tecnici per quelle summenzionate.

Ma veniamo ai dettagli.

Alberto è un ottimo NMR-ista. Come me si occupa, cioè, di risonanza magnetica nucleare. Io applico la tecnica ai comparti ambientali, Alberto la applica ai materiali.

Con la collaborazione di colleghi dell’universitã di Pavia, ha messo a punto una serie di esperimenti grazie ai quali ha potuto stabilire la composizione esatta delle  vernici usate da Stradivari costituite da olio di semi di lino e colofonia. Quest’ultima è una resina che si ottiene dalla distillazione delle trementine ed il cui componente principale è l’acido abietico (Figura 1).

Figura 1. Acido abietico, principale costituente della colofonia

Quando colofonia ed olio di semi di lino vengono mescolati in rapporti differenti e riscaldati ad una temperatura di 270  °C si realizza una reazione di esterificazione simile a quella descritta nella Figura 2.

Figura 2. Reazione di esterificazione tra un componente dell’olio di semi di lino e l’acido abietico, componente della colofonia

Tra tutte le possibili miscele, quella 25 : 75 (colofonia : olio di semi di lino) è la più simile alla vernice usata da Stradivari. Perché proprio quel rapporto e non un altro? Perché quel rapporto rappresenta il rapporto stechiometrico 1 : 1 tra i reagenti riportati in Figura 2 ed è quello che assicura la massima protezione dall’invecchiamento dei legni usati per la fabbricazione degli strumenti del liutaio Cremonese.

Quando si dice la chimica al servizio della musica. Interessante, vero?

Per saperne di più

http://biografieonline.it/biografia-antonio-stradivari

http://www.gussetviolins.com/varnish.htm

http://www.chemistryviews.org/details/ezine/2058533/Chemical_Secrets_of_the_Violin_Virtuosi__Part_1.html

http://www.chemistryviews.org/details/ezine/2067505/Chemical_Secrets_of_the_Violin_Virtuosi__Part_2.html

http://www.chemistryviews.org/details/ezine/2085627/Chemical_Secrets_of_the_Violin_Virtuosi__Part_3.html

https://phys.org/news/2009-12-secret-composition-varnish-stradivari-violins.html

Fonte dell’immagine di copertinahttps://en.wikipedia.org/wiki/Antonio_Stradivari

Sui somari, sugli stupidi e della pseudoscienza

Reading Time: 9 minutes
Scienza e democrazia

Ho appena finito di leggere il libro del Prof. Burioni dal titolo “La congiura dei Somari. Perché la scienza non può essere democratica”, in cui l’autore spiega, semmai ce ne fosse bisogno, cosa vuol dire la locuzione “la scienza non è democratica”.
In breve, come sanno tutti coloro che a vario titolo si occupano di scienza, questa non è democratica nel senso che chiunque si svegli la mattina ha diritto di parola e può dire ciò che vuole su qualunque argomento; la scienza è democratica perché chiunque lo desideri può approfondire un particolare aspetto della realtà che ci circonda e dare il suo personale contributo nella spiegazione dei fatti che ha deciso di osservare. In altre parole, la scienza non si basa sulle opinioni di nessuno – sia scienziati che gente che fa altro nella propria vita – ma sui fatti. Si osserva un fenomeno, si ipotizza un modello interpretativo, si conducono esperimenti per validare o falsificare quel modello; nel primo caso il modello funziona e diventa teoria, nel secondo il modello non funziona e bisogna riformularlo; a questo punto gli esperimenti devono essere ripetuti. Come si capisce da questa breve disamina, la modellizzazione dei fatti sperimentali è alla base di quella che viene indicata come verità scientifica. La verità scientifica non ha una valenza assoluta ma è relativa alle condizioni entro le quali le ipotesi sono state formulate.

Ottimismo scientifico

Da quanto appena descritto nasce l’ottimismo scientifico in base al quale una nuova idea o una nuova osservazione mai fatta prima possono condurre ad una nuova verità scientifica che può inglobare quella precedente oppure semplicemente sostituirla: è accaduto per il modello geocentrico dell’universo sostituito da quello eliocentrico, sebbene entrambi avessero pari dignità in termini di formulazione matematica, per la teoria del flogisto sostituita dalle leggi di Lavoisier, per la fisica di Newton inglobata nella meccanica quantistica e così via di seguito.
L’ottimismo scientifico viene male interpretato da chi non conosce la scienza. Infatti, spesso si nasconde la propria ignoranza affermando che le proprie idee siano valide perché si è sicuri che in un futuro non si sa bene quanto lontano, ci sarà qualcuno che proverà la validità delle affermazioni formulate. Il più delle volte ci si riferisce alla vita romanzata di Galilei o di Einstein attraverso un confronto piuttosto spinto: “come quei due grandi scienziati sono stati avversati dall’establishment dei loro tempi, così vengo avversato io perché le mie idee sono innovative e contrarie alle opinioni comuni. Tuttavia, ci sarà in futuro chi mi darà ragione come è accaduto a Galilei ed Einstein”. Chi fa questi pensieri, che io definisco osceni, non si rende conto che quei due hanno avuto ragione non perché avessero espresso delle opinioni generiche basate sul nulla, ma perché avevano generato un impianto fisico che si è dimostrato valido alla prova del tempo. Hanno fatto esperimenti, hanno controllato e ricontrollato i loro dati, e le loro teorie hanno subito l’attacco del mondo scientifico che ha tentato di falsificarle. Non è stato possibile trovare incrinature nel loro impianto teorico. La conseguenza è che esse sono state accettate. Ma solo fino a prova contraria. Se c’è qualcuno che pensa che le teorie di Galilei ed Einstein siano verità assolute, farebbe meglio a ricredersi. Non è così. E non è così per tutte le teorie scientifiche che oggi studiamo sui libri. Sono sicuro che in qualche laboratorio in giro per il mondo c’è qualcuno che sta tentando di falsificare – in senso popperiano – uno qualsiasi dei modelli attualmente accettati nella letteratura scientifica. Tuttavia, i tentativi di falsificazione sono condotti non sulla base di teorie astruse venute in mente durante notti di plenilunio dopo aver mangiato pesante ed ecceduto in libagioni, bensì sulla base di disegni sperimentali sempre più innovativi che servono per comprendere fino a dove ci possiamo spingere con le teorie al momento accreditate.

Sui somari

Il Prof. Burioni va oltre le spiegazioni appena riassunte. Egli, infatti, da ottimo docente quale è, definisce il termine “somaro” che è attualmente desueto, ma era molto di moda quando persone della mia età, che grosso modo è la stessa di Burioni, andavano alle elementari. Un “somaro” nella accezione dell’autore – che poi è l’accezione di quando eravamo piccoli noi – è colui che, pur non avendo studiato, pensa di poter dare un contributo ad argomenti di cui non conosce nulla, alla pari di chi di quegli argomenti ha fatto non solo il proprio oggetto di studi, ma anche la propria ragione di vita.
Alla luce di quanto scritto, tutti siamo dei somari. Prendendo spunto da quanto scrive il Prof. Burioni, io chimico sono un somaro se pretendo di discutere alla pari col mio elettricista, col mio meccanico o finanche con un altro chimico che si occupi di un settore completamente differente dal mio. Ma questo è chiaro. Ho passato la mia vita a studiare chimica; certo ho studiato anche la fisica ed, in particolare, l’elettromagnetismo per cui so cos’è una corrente alternata ed una corrente continua, ma da qui a poter mettere le mani sull’impianto elettrico di casa mia ce ne passa: ho bisogno di un elettricista esperto che sappia cosa fare. Potreste dirmi: ma se hai studiato chimica, come mai non puoi confrontarti con un chimico che lavora in un campo che non è il tuo? Appunto! Io passo la mia vita a studiare la dinamica molecolare dell’acqua e dei nutrienti nei vari comparti ambientali; come potrei anche solo pensare di discutere alla pari con un chimico che si occupa di dinamica di nutrienti nel corpo umano? Come potrei discutere alla pari con un chimico che si occupa di chimica computazionale o di chimica di sintesi? Solo chi non conosce le varie sfumature dei vari rami della chimica può pensare che un chimico abbia familiarità con lo scibile chimico. Se mi addentrassi con le mie conoscenze attuali in una discussione con un esperto sulla chimica computazionale, verrei riconosciuto subito per quello che sono in quell’ambito: un somaro. Ma non ho motivo di offendermi. Sono consapevole di non conoscere tutto, per cui cerco di discutere alla pari solo con chi ha la mia stessa formazione. In tutti gli altri casi o ascolto ed imparo oppure sono io che do lezioni. Certo sono in grado di seguire una discussione in un qualunque ambito chimico, ma non sono in grado di dare un contributo significativo se non nel mio ristretto ambito professionale.
Sulla base di quanto ho finora scritto, non capisco perché apostrofare gli antivaccinisti col termine “asini” abbia scatenato in rete tutta una serie di invettive da parte di chi, volendo applicare le modalità del pensiero debole, ritiene che l’approccio di Burioni non serva per convincere le persone. Qui non si tratta di convincere nessuno. Qui si tratta di dire le cose come stanno: la mamma informata che non vaccina i figli perché ritiene che gli adiuvanti siano tossici o che il sistema immunitario degli infanti sia perfetto o che l’igiene protegga dai virus, altro non é che una somara perché rientra nella tipologia di persone che non solo parla di cose che non sa, pretendendo di dare consigli come se fosse un medico, ma nemmeno si informa correttamente perché cerca solo le informazioni che avallano le sue personalissime opinioni.

Sugli stupidi

Ed ora vengo al punto. Quanto riportato dal Prof. Burioni non è cosa nuova nel panorama culturale italiano. Molto prima di lui, uno storico Italiano, specializzato in storia economica, definisce con il termine “stupido” quello  che è il “somaro” di Burioni. Si tratta di Carlo M. Cipolla la cui biografia si può leggere qui. In realtà, lo “stupido” del Prof. Cipolla ha una accezione più ampia del “somaro” di Burioni. Infatti, mentre il “somaro” è colui che non ha studiato ma, soggetto all’ effetto Dunning-Kruger, ritiene di sapere tutto di un qualsiasi ramo dello scibile umano intervenendo così a sproposito in ogni discussione, lo “stupido” è colui che ha un comportamento grazie al quale arreca un danno sia a se stesso che alla società di cui fa parte.

Ma andiamo con ordine.

Nel suo “Le leggi fondamentali della stupidità umana”, Carlo Cipolla descrive quattro tipologie umane che, in modo analitico, egli dispone nei quattro quadranti di un sistema di assi cartesiani (Figura 1).

Figura 1. Distribuzione delle varie tipologie umane. L’asse x riporta il vantaggio crescente (da sinistra a destra) per il singolo soggetto, mentre l’asse y mostra il vantaggio crescente (dal basso verso l’alto) per un insieme di persone o la società (Fonte)

La disposizione delle quattro tipologie umane segue un andamento ben preciso in funzione del vantaggio crescente che l’individuo dà a se stesso ed alla comunità di individui a cui appartiene. In questo modo, è possibile distinguere individui intelligenti che, col loro comportamento, riescono ad ottenere vantaggi per se stessi e per gli altri (quadrante I del sistema di assi cartesiani in Figura 1); se, invece, gli individui ottengono solo vantaggi per se stessi, ma non per la società, allora si identificano come banditi (quadrante II del sistema di assi cartesiani in Figura 1); quando gli individui oltre ad essere dannosi per se stessi fanno anche danno alla società, vengono catalogati come stupidi (quadrante III del sistema di assi cartesiani in Figura 1); quando un individuo arreca danno a se stesso, ma nel contenpo un vantaggio alla società, può essere catalogato come uno sprovveduto (quadrante IV del sistema di assi cartesiani in Figura 1). Oggi lo sprovveduto verrebbe identificato col termine “sfigato”; ma come si diceva una volta “o tempora, o mores”. Cipolla ha pubblicato le sue leggi fondamentali all’inizio degli anni ’70 del ventesimo secolo, quando ancora non era in uso il termine “sfigato”.

Non esiste un modo oggettivo per poter catalogare ognuno di noi in uno qualsiasi dei quattro quadranti considerati in Figura 1. Lo si può fare solo caso per caso andando a valutare le conseguenze delle nostre azioni su noi stessi e sulla società. Come regola generale possiamo dire che gli intelligenti tendono ad agire in modo tale da non apportare danni a nessuno. Può, tuttavia, capitare che in un determinato momento della propria esistenza, una persona intelligente possa commettere degli errori così da diventare o uno sprovveduto o un bandito. La probabilità che una persona intelligente  ha di essere catalogata tra gli stupidi in un qualsiasi momento della propria vita è piuttosto bassa, se non addirittura nulla. Infatti, riprendendo l’attenta analisi del Prof. Cipolla si può dire che “la grande maggioranza delle persone stupide sono fondamentalmente e fermamente stupide — in altre parole essi insistono con perseveranza nel causare danni o perdite ad altre persone senza ottenere alcun guadagno per sé, sia esso positivo o negativo. Ci sono tuttavia persone che, con le loro inverosimili azioni, non solo causano danni ad altre persone, ma anche a se stesse. Queste sono un genere di super-stupidi che, in base al nostro sistema di computo, appariranno in qualche punto dell’area S alla sinistra dell’asse delle Y (si tratta del quadrante III di Figura 1, NdA)”.

I somari, Gli stupidi e la scienza

Perché ho fatto questa lunga premessa citando sia il libro del Prof- Burioni che l’opera del Prof. Cipolla? Semplicemente perché, sebbene il primo si riferisca ai somari nel contesto scientifico ed il secondo agli stupidi in un contesto economico (il Prof. Cipolla, ricordo, era uno storico dell’economia), non riesco a non catalogare tra gli stupidi tutti quelli che il Prof. Burioni cataloga tra i somari; sono quelli che si professano anti-vaccinisti o seguaci dell’omeopatia; allo stesso modo non riesco a non catalogare tra i banditi tutti coloro che propagandano il credo antivaccinista e quello omeopatico.

Provo a spiegarmi meglio.

Quante volte abbiamo letto che qualcuno è morto per gli effetti di una malattia che avrebbe potuto evitare attraverso la vaccinazione? Quante volte abbiamo letto di morti causate dalla cattiva pratica medica che ha impedito l’uso di cure efficaci per applicare l’omeopatia? Vogliamo parlare del bimbo morto per le conseguenze di un’otite curata con l’omeopatia (qui)? Vogliamo discutere delle vittime della difterite (qui) o di quelle del morbillo (qui)?

Quando dei genitori decidono di non vaccinare il proprio figlio sulla base di paure infondate nonostante tutte le rassicurazioni dei medici, fanno un danno a se stessi (perché la possibile perdita di un figlio è certamente un danno per se stessi), un danno al proprio figlio (che da adulto non vaccinato potrà essere soggetto a malattie mortali come è capitato recentemente in Sicilia, qui) ed un danno alla società (perché consentono la riduzione dell’immunità di gregge, qui, con il conseguente ritorno di malattie oggi ritenute impropriamente scomparse o poco importanti). In altre parole, l’atteggiamento no-vaxx o quello di chi segue le medicine alternative è un atteggiamento che nel linguaggio moderno potrebbe venir catalogato come atteggiamento lose-lose-lose, ovvero tutti ci perdono: dai genitori, ai figli, alla società. Non è detto che i genitori che rifiutano le vaccinazioni o utilizzano medicina alternativa per i propri cari siano somari nell’accezione usata dal Prof. Burioni. Se un somaro è colui che non conosce la materia di cui parla, non può essere il caso di quei genitori che hanno perso il figlio come riportato nella notizia a questo link. Non può essere considerato somaro neanche l’operatore sanitario che, seguendo la filosofia antivaccinista, non somministra i vaccini procurando un danno sia a se stesso che agli altri (la notizia è qui). In questi casi specifici va applicata la teoria della stupidità elaborata dal Prof. Cipolla, con la conclusione che ognuno di noi può trarre autonomamente.

E i banditi?

Alla luce della definizione data in modo analitico dal prof. Cipolla, i banditi sono quelli che per procurare un vantaggio per se stessi, fanno un danno agli altri. Esempi di banditi secondo questa accezione? Indubbiamente Wakefield che, per procurare a se stesso dei guadagni, ha fatto grossi danni alla società dal momento che, grazie a lui, oggi spopola la falsa correlazione vaccini-autismo alla base del movimento antivaccinale. La storia di Wakefield è qui. In generale, tutti coloro che hanno tanto da guadagnare dalla pseudo scienza (per esempio con la vendita di libri, con le comparsate ai convegni, con fondi di qualsiasi tipo) e dall’aumento del numero di seguaci, sono da considerarsi banditi.

Conclusioni

Cosa ho voluto evidenziare con questo articolo neanche tanto breve? Che i personaggi che si muovono nell’ambito della pseudo scienza non sempre possono essere catalogati come somari. Io li distinguo in due tipologie: stupidi e banditi. I primi sono quelli che, anche se in buona fede, perserverano nelle loro false convinzioni provocando danni a se stessi, alle loro famiglie ed alla società che li circonda;  vanno tenuti sotto controllo in modo tale da difendere sia la società che loro stessi dal loro comportamento. I secondi sono quelli che, pur avendo gli strumenti adatti per poter discriminare verità scientifiche da falsi miti, non lo fanno o scientemente – ed allora sono banditi intelligenti che vanno perseguiti per evitare danni alla società – o inconsapevolmente – ed allora sono banditi stupidi da perseguire come i primi perché oltre alla società fanno danni anche a se stessi.

Per approfondire

La stupidità: http://www.aepsi.it/Stupidita_2.pdf

Le leggi fondamentali della stupidità umana

Fonte dell’immagine di copertina

http://funnystack.com/category/funny-donkey/page/9/

La lucentezza dei metalli

Reading Time: 4 minutes

Vi siete mai chiesti perché uno specchio restituisce la nostra immagine riflessa? Si tratta di una tipica propietà dei metalli che noi indichiamo col termine di “lucentezza”.

La tavola periodica

La tavola periodica è, ormai, nota a tutti. Tuttavia, una cosa è sapere che esiste una “tabella” in cui sono riportate le proprietà fondamentali di tutti gli elementi chimici noti, altra è conoscere i dettagli di queste proprietà tra cui va certamente annoverata la lucentezza dei metalli.

Avete sicuramente maneggiato i fogli di alluminio come quello mostrato in Figura 1A. Si usano, per esempio, per conservare gli alimenti (Figura 1B), cucinare (Figura 1C) o applicare la tintura per capelli (Figura 1D).

Figura 1. Foglio di alluminio (A) e suoi usi. Conservazione degli alimenti (B); cottura (C); applicazione della tintura per capelli (D)

Come potete vedere si tratta di un materiale caratterizzato da una certa lucentezza, ovvero dalla capacità di riflettere la luce. Come l’alluminio, anche gli altri metalli della tavola periodica (tutti quelli colorati in verde nella Figura 2) hanno la medesima caratteristica.

Figura 2. Tavola periodica con, in verde, indicazione degli elementi metallici (Fonte)
A cosa è dovuta la lucentezza?

Per poterlo spiegare dobbiamo innanzitutto comprendere come è fatto un atomo.

Struttura dell’atomo

È ben noto che un atomo è costituito da un nucleo, contenente protoni e neutroni, e da elettroni. Questi ultimi  si muovono attorno al nucleo formando una nuvola generalmente indicata come “nuvola elettronica” (Figura 3).

Figura 3. Schema di atomo. Gli elettroni, che si muovono attorno al nucleo, formano una una nuvola elettronica (Fonte)

La nuvola elettronica è piuttosto complessa. Gli elettroni non possono semplicemente “ammucchiarsi” e stare tutti assieme. A coppie di due, essi si devono disporre a distanze differenti dal nucleo e devono occupare degli spazi la cui forma geometrica è variabile. La Figura 4 mostra proprio la forma di questi spazi occupati dagli elettroni e che chiamiamo “orbitali”.

Figura 4. Forma degli orbitali atomici s, p, d, f (Fonte)
Gli orbitali di valenza

Quando combiniamo più atomi assieme per formare un sistema multiatomico complesso, in realtà stiamo combinando le varie nuvole elettroniche ognuna fatta dall’insieme di orbitali descritti in Figura 4. In genere, per comodità, quando si descrive l’interazione tra atomi in un sistema multiatomico, si trascura il contributo alla interazione da parte degli elettroni che sono più vicini al nucleo, ovvero degli elettroni che occupano la parte più interna della complessa nuvola elettronica summenzionata. Il motivo per cui viene trascurato questo contributo è intuitivo. Immaginate ogni orbitale come se (*) fosse un palloncino. La nuvola elettronica può essere pensata come se fosse un inviluppo di palloncini la cui rigidità diminuisce man mano che aumentano le sue dimensioni, ovvero man mano che gli elettroni si allontanano dal nucleo. Il palloncino che ospita gli elettroni più lontani dal nucleo (chiamato anche orbitale di valenza) è quello più facilmente deformabile (il termine tecnico è “polarizzabile”). La deformabilità dei palloncini più esterni consente la loro migliore interazione per la formazione del legame chimico.

I legami nei metalli

Quando si raggruppa un insieme di atomi di un qualsiasi metallo della tavola periodica  (come nel caso del foglio di alluminio di Figura 1), si può pensare che si formi un sistema come quello descritto in Figura 5.

Figura 5. Schema di legame metallico

In altre parole, si può pensare che gli orbitali di valenza dei singoli atomi perdano la loro identità e si combinino (grazie alla loro elevata capacità di “deformarsi”) in modo da formare un unico “contenitore” in cui si muovono tutti gli elettroni di valenza. Questo vuol dire che gli elettroni dei palloncini più esterni non appartengono più ad un singolo specifico atomo, ma diventano elettroni dell’insieme di atomi. Immaginiamo, quindi, che i nuclei (in Figura 5 indicati con pallini gialli) siano immersi in un mare di elettroni (in Figura 5 indicati con pallini azzurri).

A questo punto mi si potrebbe dire che con questa descrizione io stia violando i principi più elementari della meccanica quantistica. Infatti, poco sopra ho scritto che gli elettroni non possono ammucchiarsi, ma devono occupare, a coppie, spazi dalle forme ben precise e disporsi ad una distanza ben definita dal nucleo. Al contrario ora io sto scrivendo che si è formato un “mare elettronico” in cui tutti gli elettroni sembrano essere tutti assieme appassionatamente. Volendo essere un po’ più precisi, possiamo dire che quando le nuvole elettroniche di valenza si combinano per formare il “mare elettronico”, si realizzano, in realtà, bande energetiche differenti molto vicine tra di loro in cui gli elettroni possono “entrare” ed “uscire”   mediante acquisizione o rilascio di una minima quantità di energia.

La lucentezza dei metalli

Quando una radiazione elettromagnetica (ovvero un raggio di luce) colpisce la superficie di una lamina metallica, gli elettroni si muovono da una banda energetica all’altra passando da uno stato fondamentale ad uno eccitato. Nel momento in cui gli elettroni tornano allo stato fondamentale, emettono dei fotoni alla stessa lunghezza d’onda della luce incidente con la conseguenza che viene restituito il riflesso dell’immagine che ha emesso la radiazione luminosa.

Maurits Cornelis Escher, Mano con sfera riflettente (Fonte)

Note ed approfondimenti

(*) la locuzione “come se” viene spesso usata dai chimici per fare delle analogie tra il mondo chimico e quello quotidiano. In altre parole, nel delucidare i modelli chimici e chimico-fisici, il “come se” viene usato per generare immagini mentali che, pur non essendo corrette, consentono la comprensione qualitativa dell’argomento di cui si discute. Gli orbitali NON sono palloncini, ma li immaginiamo come tali per comodità; un elemento chimico, una molecola NON sono sferici, ma le descriviamo come tali perché conosciamo tutto di una sfera ed è più semplice definirne il comportamento sotto l’aspetto qualitativo. Quando però dobbiamo applicare la matematica per la descrizione quantitativa del modello, non possiamo più usare le immagini mentali che abbiamo generato col “come se” e dobbiamo fare delle astrazioni che, per i non addetti ai lavori, risultano poco chiare o del tutto incomprensibili. Per comprendere le astrazioni dobbiamo passare dalla divulgazione scientifica al tecnicismo scientifico che può essere appreso solo attraverso uno studio specifico e settoriale.

Il legame chimico (1) e (2)

Il legame metallico

Il binario 9 e ¾ ovvero del perché non possiamo attraversare i muri come Harry Potter

Orbitali atomici ed ibridazione

Una lezione di Rai Scienza sul legame metallico

Fonte dell’immagine di copertina:

larapedia.com. Metalli e leghe

Biochar: ultime rivelazioni sul suo meccanismo d’azione

Reading Time: 3 minutes

Chi frequenta questo blog o la mia pagina facebook sa che la mia attività di ricerca degli ultimi anni, oltre ad essere centrata sullo sviluppo della risonanza magnetica nucleare a ciclo di campo in ambito ambientale, è imperniata sulla valutazione della chimica fisica del biochar, un carbone ottenuto per degradazione termica in assenza o scarsità di ossigeno (ovvero pirolisi) di biomassa animale e vegetale. Faccio anche parte della European Biochar Certificate (EBC), una organizzazione internazionale che promuove l’uso del biochar in agricoltura e si interessa della standardizzazione delle metodiche analitiche per la valutazione delle caratteristiche chimico fisiche di tale materiale. Lo scopo ultimo è quello di suggerire una agricoltura sostenibile mediante l’uso, il riciclo e la trasformazione delle biomasse di scarto delle attività antropiche.

Alla luce di quanto appena scritto, sono felicissimo del fatto che la stampa scientifica divulgativa  stia facendo da cassa di risonanza per un lavoro apparso su Nature Communications a firma di venti persone, tra cui il sottoscritto, in cui cominciano ad essere chiariti i meccanismi molecolari attraverso cui il carbone applicato ai suoli consente l’incremento  della fertilità. Qui, qui,  qui la notizia apparsa su alcune testate di divulgazione scientifica, mentre qui trovate il link al lavoro originale pubblicato su Nature Communications.

Biochar sì, biochar no?

Sebbene sia noto che l’uso del carbone in agricoltura consenta un aumento della produzione agricola (per esempio qui e qui), ci sono ricerche che ne demonizzano l’uso invocando la sua tossicità legata ad una presunta capacità di rilasciare idrocarburi policiclici aromatici e diossine o alla sua inerzia chimica che non consentirebbe il miglioramento della fertilità dei suoli (un libro in cui c’è una visione ecologista abbastanza spinta sull’uso del biochar è questo). In realtà, come si può leggere nella review qui, la probabilità che il carbone ha di cedere all’ambiente idrocarburi policiclici aromatici e diossine è praticamente nulla a fronte di un miglioramento delle proprietà idrauliche (qui), della struttura (qui) ed, in generale, della fertilità (qui) dei suoli.

Come funziona il biochar? In che modo promuove la fertilità di un suolo?

Nel 2013, il gruppo di ricerca di cui sono responsabile ha pubblicato un lavoro in cui è stata analizzata la dinamica dell’acqua sulla superficie di un biochar (qui). Perchè tra i tanti liquidi proprio l’acqua? Semplice. Perché l’acqua è direttamente coinvolta nei processi di nutrizione vegetale e, di conseguenza, è il mezzo attraverso cui il biochar nei suoli consente la veicolazione dei nutrienti alle piante. I risultati di questo lavoro hanno evidenziato che acqua e biochar interagiscono tra loro attraverso due tipologie di legame: da un lato legami a idrogeno non convenzionali tra il piano dei sistemi aromatici del carbone e le molecole di acqua, dall’altro legami di coordinazione tra le componenti metalliche delle impurezze inorganiche e le coppie solitarie dell’acqua (Figura 1).

Figura 1. Interazioni tra biochar e acqua

La presenza di queste interazioni, associate a quelle che l’acqua forma con i soluti in essa disciolti, ha consentito di ipotizzare che la capacità che il carbone ha di assorbire e poi rilasciare gradualmente nutrienti come il nitrato sono dovute proprio alla mediazione delle molecole di acqua.  Queste, mediante il loro caotico movimento, consentono ai nutrienti di penetrare nei pori della superficie del biochar; una volta lì, il nutriente solvatato rimane “agganciato” alla superficie grazie alle interazioni anzidette (Figura 2).

Figura 2. Interazioni tra nutrienti (pallini verdi e viola) e biochar mediate da molecole di acqua

Se il biochar è invecchiato, la sua capacità assorbente migliora perché la chimica della superficie del biochar cambia nel tempo. Infatti, il numero di gruppi funzionali idrofilici (per esempio quelli contenenti ossigeno che si inserisce sulla superficie del biochar per effetto dell’ossidazione con l’atmosfera) aumenta con l’invecchiamento (Figura 3. Qui il lavoro in cui sono descritti tutti i dettagli sperimentali che hanno portato alle conclusioni brevemente descritte).

Figura 3. Interazioni tra nutrienti e biochar invecchiato

Un miglioramento delle capacità assorbitive/desorbitive del biochar si ottiene attraverso la funzionalizzazione della sua superficie mediante l’inserimento di un film organico usando un processo chimico che prende il nome di co-compostaggio. In parole povere, il carbone viene inserito assieme a biomassa vegetale fresca in un compostatore (ovvero un sistema che consente l’ottenimento del compost); una volta avviato il processo di degradazione ossidativa della miscela biochar-biomassa, si ottiene un carbone la cui superficie risulta più idrofilica di quella del carbone non co-compostato; la maggiore idrofilicità superficiale permette a questo materiale di intrappolare meglio i nutrienti e di funzionare meglio del carbone tal quale come ammendante dei suoli (qui il lavoro in cui si discute delle migliori caratteristiche qualitative del biochar co-compostato).

Perché è importante la comprensione dei meccanismi di funzionamento del carbone?

Delucidare le modalità con cui qualcosa funziona consente di indirizzare in modo opportuno la sintesi di nuove tipologie di materiali.

Nel caso specifico, si pongono le basi per la progettazione di nuovi ammendanti che permettono pratiche agricole sostenibili.

Effetto placebo: le ultime novità

Reading Time: 2 minutes

Ed eccoci di nuovo qui a parlare di effetto placebo. Ne avevo già discusso qui quando avevo evidenziato l’assenza di effetto terapeutico dell’omeopatia attribuendo al solo effetto psicologico l’eventuale successo di preparati che di farmacologico non hanno assolutamente nulla.

Naturalmente ogni volta che si parla male dell’omeopatia c’è la sollevazione popolare perchè a nessuno piace ammettere di cadere preda di ciarlatani e stregoni; oggetto della sollevazione è sempre lo stesso argomento “su di me funziona”; argomento questo che ha un senso logico solo per chi non capisce nulla di scienza oppure per chi, pur avendo studiato a qualsiasi livello una qualche materia scientifica, non ha “digerito” molto bene le materie che ha studiato.

In realtà l’effetto placebo è tenuto in debito conto dalla comunità scientifica, tanto è vero che ci sono numerosissimi studi che cercano di spiegarne l’importanza nel coadiuvare l’azione di farmaci di ogni tipo.

Una disamina divulgativa sull’effetto placebo la si può trovare nel libro del Prof. Dobrilla dal titolo “Cinquemila anni di effetto placebo”.

Perché ho deciso di tornare alla carica con l’effetto placebo? Semplicemente perché mi è caduta sotto gli occhi una notizia in merito ad uno studio condotto da un team di ricercatori svizzeri sull’importanza dell’effetto placebo nella sensazione del dolore (qui).

Di solito si riporta che perchè un placebo possa avere un qualche effetto è necessario che l’individuo sia cosciente ed in stato di veglia; in più si ritiene che il soggetto debba essere sottoposto ad inganno, ovvero non deve sapere che sta assumendo il placebo.

La novità dello studio dei ricercatori svizzeri è che sembra non sia necessario l’inganno perché un rimedio placebo possa avere effetto. Infatti, questi studiosi hanno sottoposto un gruppo di volontari a shock termico, ovvero hanno analizzato la loro resistenza e tolleranza alle alte temperature con e senza l’aiuto di un farmaco antiustioni. In particolare, in una delle prove è stato chiaramente esplicitato che il farmaco era un semplice placebo.

Ebbene, a quanto pare, la tolleranza alle ustioni sembra sia stata superiore alle aspettative anche quando i soggetti sapevano di assumere un formulato senza alcuna valenza farmacologica. La domanda a questo punto è: quali sono i meccanismi alla base del fenomeno osservato?

Dal momento che quello appena descritto è il primo studio del genere, è necessario attendere ulteriori sviluppi per confermarne la validità e per approfondire i meccanismi che aumentano la tolleranza al dolore anche in condizioni in cui si è consci di star assumendo un sistema placebo.

Fonte dell’immagine di copertinahttp://www.stateofmind.it/2016/01/effetto-placebo-psicologia/

Breaking news – Premio Nobel per la Chimica 2017: il regalo della Elsevier

Reading Time: 1 minute

Qualche giorno fa è stato annunciato il premio Nobel per la chimica. Ne ho parlato qui. Si tratta del contributo al miglioramento della microscopia crio-elettronica, una tecnica molto utile in campo biochimico.

Come ogni anno, il mondo scientifico si stringe intorno ai vincitori di questo ambito riconoscimento e fioccano informazioni ed iniziative in merito alla biografia dei vincitori o all’importanza della loro scoperta.

Una delle iniziative più interessanti, a mio avviso, è quella di avere la possibilità di leggere i lavori che hanno consentito l’attribuzione del Nobel in originale. Come docente universitario, ricevo costantemente lettere di ogni tipo da case editrici di ogni tipo. La sorpresa stamattina è stata quella di trovare una lettera dalla Elsevier, una delle case editrici più importanti in ambito scientifico.

È, quindi, con enorme piacere che ricevo e  condivido, la lettera della Elsevier con il link ai lavori più significativi dei tre vincitori del premio Nobel per la Chimica 2017. Eccola nella versione online: link

Cliccando su “read more” si apre una pagina da cui si possono leggere/scaricare i lavori suddetti gratuitamente.

Per i pigri come me, la pagina è questa.

Buona lettura