Dormire nella stazione spaziale ISS

Oggi ero in auto. In genere mentre guido ascolto la radio. In uno dei tanti zapping veloci, mi capita di ascoltare un programma in cui l’ospite è un astrofisico. Questi parla della stazione spaziale ISS e della vita che si conduce a bordo.

Stazione spaziale ISS (Fonte)

Ciò che mi ha colpito moltissimo è stata la descrizione del come dormono gli astronauti.

Sapete che quando dormono in condizioni di assenza di peso, gli astronauti devono trovarsi in un ambiente con ottima aerazione?

La domanda vi sembrerà banale, ma ogni volta che ascolto notizie scientifiche mi trovo ad essere come un bambino di fronte ad un giocattolo. Anche se già lo conosce perché lo ha usato altre volte, lo guarda con meraviglia e pensa a cosa si possa ancora nascondere in quei meccanismi che ha visto centinaia di volte.

In effetti, siamo così abituati a vivere sulla Terra che neanche ci rendiamo conto che la vita in condizioni chimico-fisiche differenti richiede delle attenzioni particolari senza le quali essa non potrebbe esistere.

Quando ci sentiamo stanchi ed andiamo a letto, ci addormentiamo ma non per questo smettiamo di vivere. Continuiamo a respirare. Durante questa azione inspiriamo ossigeno ed espiriamo anidride carbonica. L’aria che circonda il nostro corpo, inclusa quella ricca di anidride carbonica che esce mentre respiriamo, è calda. Per questo motivo, si generano delle correnti convettive grazie alle quali l’aria calda (e per questo meno densa, ovvero più leggera) ricca di anidride carbonica che espiriamo si allontana verso l’alto venendo sostituita da aria fredda e più ricca di ossigeno.

Nelle condizioni di microgravità presenti nella stazione spaziale ISS, questi moti convettivi non si realizzano perché la microgravità porta ad assenza di peso e, quindi, non esistono zone di aria più leggere rispetto ad altre. La conseguenza è che durante il sonno, la testa degli astronauti viene circondata da una nuvola di anidride carbonica. Senza una corrente d’aria artificiale come, per esempio, quella generata da un ventilatore, la nuvola anzidetta non si disperderebbe turbando il sonno degli astronauti o, addirittura, portando alla morte, nel caso più drammatico.

Articoli simili

Svelato il mistero dei venti da eclisse

FONTE DELL’IMMAGINE DI COPERTINA

Oli, sali e zuccheri

Oggi ho trovato una bella sorpresa on line. La C1V edizioni ha reso disponibili le presentazioni fatte nel 2018 in occasione del secondo Convegno Nazionale Medicina e Pseudoscienza (CNMP).  Durante il convegno ho fatto una lunga lezione divulgativa sulle false informazioni in merito agli oli, ai sali ed agli zuccheri. Qualche mese dopo avrei pubblicato “Frammenti di Chimica” in cui si trovano molte delle cose che ho detto in quel convegno.
Se volete divertirvi ad ascoltarmi, qui sotto ci sono i miei tre interventi.

Prima parte

Seconda parte

Terza parte

In realtà il congegno del 2018 è stato molto ricco. Hanno partecipato tutti gli scienziati attivi nella lotta alle bufale: da Silvio Garattini a Piero Angela, da Roberto Burioni a Francesco Galassi e tanti tanti altri. Se volete fare un viaggio nel tempo e partecipare al convegno, potete iscrivervi al canale YouTube della C1V e ascoltare tutte le presentazioni. Basta cliccare sull’immagine qui sotto.

 

La chimica-fisica nell’esplosione di Beirut

Ieri, 4 Agosto 2020, siamo tutti stati testimoni, grazie alle immagini che ci sono giunte attraverso i vari canali internet, della esplosione che ha fatto tanti morti e feriti in Libano. Qui sotto un filmato preso da YouTube in cui si vedono diverse prospettive dell’esplosione.

Questo articolo non vuole essere di carattere politico, né avallare alcuna ipotesi sulle cause dell’esplosione. In questa sede voglio solo prendere in considerazione la chimica-fisica che c’è stata dietro l’esplosione attribuita da diverse fonti giornalistiche al nitrato di ammonio.

il nitrato di ammonio è ben noto come fertilizzante.

Come fertilizzante, il nitrato di ammonio (NH4NO3) è veramente efficiente. Si tratta di un sale con una solubilità in acqua, a 20°C, di circa 1900 g per litro . Quando viene disposto sul suolo, esso si scioglie nella soluzione circolante (ovvero l’acqua che è lì presente) dissociandosi in anione nitrato (NO3) e catione ammonio (NH4+).

Dei due ioni, il nitrato, la forma di azoto direttamente disponibile per la nutrizione vegetale, può essere perso facilmente per lisciviazione, mentre l’ammonio rimane legato ai colloidi del suolo e si può perdere per volatilizzazione attraverso la sua conversione in ammoniaca. La sua maggiore capacità di rimanere legato ai colloidi del suolo dà il tempo ai microorganismi di poterlo convertire in nitrato e, quindi, renderlo disponibile per le piante.

Ma non è certo per una lezione sui fertilizzanti che sto scrivendo questo post.

Il nitrato di ammonio si decompone termicamente a protossido di azoto (N2O) e acqua fino a una temperatura di circa 250 °C:

NH4NO3 → N2O + 2 H2O

Al di sopra di questa temperatura avviene un’altra reazione:

2 NH4NO3 → O2  + 2 N2 +  4 H2O

Come si vede, entrambe le reazioni producono dei gas (N2O, N2 e O2). Anche l’acqua riportata nelle reazioni anzidette non si presenta in forma liquida, ma sotto forma di vapore alle temperature ben al di sopra dei 100 °C che servono per innescare le reazioni descritte.

Adesso facciamo due conti facili facili e cerchiamo di capire quanto gas si produce.

Se partiamo da 1.00 g di nitrato di ammonio, corrispondenti a 0.0125 mol, si ottengono, dalla prima reazione, il medesimo numero di moli di protossido di azoto (che corrispondono a 0.550 g di prodotto) e il doppio delle moli di acqua, ovvero 0.450 g di acqua sotto forma di vapore.

Se la temperatura aumenta oltre i 250 °C, dalla seconda reazione si ricava che 1.00 g di nitrato di ammonio si trasforma in 0.350 g di azoto molecolare, 0.200 g di ossigeno molecolare e 0.450 g di acqua sotto forma di vapore.

Su tutti i giornali si legge che la quantità di nitrato di ammonio stoccata nel porto di Beirut fosse di circa 3000 ton, ovvero 3 x 109 g (si legge 3 miliardi di grammi). È facile, a questo punto, calcolare che se la prima reazione (quella in cui si produce protossido di azoto e acqua) fosse stata l’unica responsabile della deflagrazione, si sarebbero ottenuti circa 1.4 x 103 tonnellate di acqua e circa 1.6 x 103 tonnellate di protossido di azoto. Se, invece, solo la seconda reazione fosse stata responsabile della deflagrazione si sarebbero ottenuti circa 1.4 x 103 tonnellate di acqua, 1.0 x 103 tonnellate di azoto molecolare e circa 0.6 x 103 tonnellate di ossigeno molecolare.

È intuitivo pensare che entrambe le reazioni abbiano avuto luogo, assieme a tante altre di cui però non si conosce la natura (per esempio, c’erano tubazioni di gas? oltre al nitrato di ammonio quante altre sostanze potenzialmente esplodenti potevano essere presenti? etc. etc.). In definitiva, provate a comprimere in uno spazio ristretto come quello di un capannone o di un deposito, dove sono già presenti altri gas, ovvero quelli atmosferici, le tre tonnellate complessive di gas ad alta temperatura ed in espansione e vi renderete conto del perché si è avuto l’effetto devastante osservato nel filmato che ho messo all’inizio dell’articolo.

Ma facciamo parlare i numeri.

La temperatura sviluppata durante la detonazione del nitrato di ammonio è all’incirca di un migliaio di gradi centigradi (Fonte). Considerando il numero totale di moli dei diversi gas sviluppati ed applicando banalmente la legge dei gas ideali (per avere solo qualitativamente idea della forza per unità di superficie sviluppata durante l’esplosione) si ottiene una pressione di circa 1.1 x 104 atm.  Per darvi solo un’idea di cosa significhi una pressione del genere, immaginate di scendere sott’acqua. Ogni 10 m, la pressione esercitata dalla massa di acqua che circonda il vostro corpo aumenta di una atmosfera. Per arrivare a circa 11000 atmosfere dovete scendere a una profondità approssimativa di circa 110 km. Il punto più profondo che si conosca è la fossa delle Marianne a circa 11 km dalla superficie dell’oceano Pacifico. La fossa delle Marianne è individuata dal puntino rosso che vedete in Figura 1.

Figura 1. Fossa delle Marianne. La sua profondità è di circa 11 km

Impressionante!

Il fungo “atomico”.

Qualcuno ha paragonato il fungo bianco che si osserva nel filmato all’inizio dell’articolo a quello prodotto da un’esplosione atomica. In realtà le cose stanno diversamente.

Un’esplosione atomica sarebbe stata seguita da una contaminazione radioattiva che avrebbe messo in allarme tutti i paesi nelle vicinanze del Libano, inclusa l’Italia. Per quanto è dato sapere, fino ad ora non pare siano state previste precauzioni per contaminazione nucleare come quelle che furono adottate all’indomani dei disastri della centrale di Chernobyl o di quella di Fukushima.

Allora cos’era quel fungo bianco?

Vi ho spiegato più su che le reazioni di degradazione del nitrato di ammonio hanno prodotto tonnellate di gas (incluso il vapor d’acqua) che si sono espanse prima nel capannone dove il sale era conservato e poi nell’atmosfera. La forza esercitata dalle molecole dei vari gas prodotti durante le reazioni di decomposizione termica del nitrato di ammonio ha generato un’onda che si è propagata molto velocemente. L’elevata velocità dell’onda ha compresso molto rapidamente tutte le molecole di gas presenti in atmosfera, incluse quelle dell’acqua sotto forma vapore. Come conseguenza, molto verosimilmente, si è avuta una rapida condensazione di queste ultime con formazione della nuvola bianca osservata. Nelle condizioni atmosferiche di Beirut al momento dell’esplosione, la nuvola bianca ottenuta verosimilmente  per condensazione delle molecole di acqua vapore si è, poi, rapidamente dissipata.

Il fenomeno osservato non è né più né meno che quello che accade quando un aereo supersonico abbatte la barriera del suono generando una nuvola di acqua condensata intorno a se stesso. Ma di questo ho parlato in un altro articolo.

Più veloci del suono

Aggiornamento in tempo reale.

Mi fanno giustamente notare che un’altra possibile reazione di degradazione termica del nitrato di ammonio è:

4 NH4NO3 → 2 NH3 + 3 NO2 + NO + N2 + 5 H2O

In questa reazione si ha la formazione del biossido di azoto e dell’ammoniaca che sono altri gas che vanno ad aggiungersi a quelli già descritti. In più essi sono anche tossici. A quanto pare, dalle ultime notizie, è stata consigliata l’evacuazione di quella parte di Beirut coinvolta nell’esplosione. Questo si potrebbe giustificare non solo per il pericolo dovuto alla instabilità delle abitazioni, ma anche a quello dovuto alla contaminazione dell’aria. Inoltre, il biossido di azoto è un gas rossastro e questo giustificherebbe il colore che si vede dopo la dissipazione della nube bianca. Bisogna anche dire, però, che il colore rossiccio potrebbe essere dovuto anche ad altro. Ne ho parlato anche in un altro articolo:

La chimica dei giochi pirotecnici

Aggiornamento n. 2

Ho fatto un po’ di calcoli. L’esplosione di Beirut potrebbe aver sprigionato un’energia di circa 1.26 kT (si legge kilotoni). Qui trovate informazioni un po’ più dettagliate su questa unità di misura. La bomba atomica di Hiroshima sprigionò un’energia di circa 15 kT (riferimento). In pratica, la potenza dell’esplosione di Beirut potrebbe essere stata circa l’8 % di quella di Hiroshima. Aspettiamo, ovviamente, le valutazioni degli esperti.

Disclaimer

Quanto ho scritto in questo articolo si basa sulle informazioni lette sui principali quotidiani che attribuiscono la responsabilità dell’esplosione di Beirut al nitrato di ammonio. I miei calcoletti mi permettono di dire che è plausibile. Una quantità elevata di nitrato di ammonio conservata in un luogo chiuso può dar luogo a degli effetti devastanti. Resta, naturalmente, da capire come mai si siano innescate le condizioni che hanno portato alla decomposizione termica del nitrato di ammonio. Ma questo è un lavoro che devono fare gli investigatori.

Ringraziamenti

Devo dire che questo articolo ha ricevuto un grande successo. Nel momento in cui scrivo questi ringraziamenti, l’articolo ha raggiunto oltre 40000 lettori. Molti mi hanno fatto notare errori ed incongruenze. Li ringrazio veramente tantissimo uno per uno. Mettere i nomi di tutti è impossibile perché critiche e commenti sono sparsi un po’ ovunque ed è difficile ritrovarli tutti. Sappiate solo che cerco di leggere tutto e di tener conto di tutto quello che mi fate notare. Questo articolo non è più solo mio, ma di tutti quelli che hanno contribuito al suo miglioramento.

Altre letture

L’ennesima strage da trascuratezza chimica.

Molecole a due facce

Incidente di Tianjin.

Il Disastro di Texas City

Il Disastro di Halifax

Chimica e fisica degli incendi (documento dei vigili del fuoco)

Fonte dell’immagine di copertina

 

Giulio Cesare ed i cambiamenti climatici

“Cosa c’entra Giulio Cesare con i cambiamenti climatici?”, vi starete chiedendo. Oppure state pensando: “ed ecco un altro prof. che è andato fuori di testa e fa associazioni pseudoscientifiche come capita a tutti”.

Ebbene no, miei cari lettori. Proprio ieri ho comprato il numero di Agosto 2020 della rivista Le Scienze. Ogni tanto ho bisogno di leggere riviste divulgative serie per fare pace con il mondo e convincermi che non tutto è perduto. Sapeste cosa mi scrivono certi figuri nei commenti del blog! Faccio passare solo i commenti che mi divertono di più, ma ce ne sono altri che, al confronto, la teoria della memoria dell’acqua è roba seria.

Ma torniamo a Giulio Cesare ed ai cambiamenti climatici.

Dicevo che ho preso Le Scienze di Agosto. A pagina 24, ci sono 13 righe in cui si parla delle cause che hanno portato Roma a diventare Impero dopo l’assassinio di Giulio Cesare occorso alle idi di Marzo del 44 a.C.. La notizia la potete leggere anche qui.

Devo dire che la lettura mi ha incuriosito ed ho cominciato a cercare in rete. Quello che ho trovato mi ha molto affascinato.

Pensate: è documentato che nel periodo immediatamente successivo a quello in cui Cesare fu assassinato, ci sono stati un paio di anni di freddo intenso. La temperatura, pare, si sia abbassata di circa 7 °C, mentre le precipitazioni si fecero molto più intense aumentando dal 50 al 120 % rispetto agli anni precedenti. Potete facilmente immaginare cosa vuol dire a livello agricolo un abbassamento della temperatura ed un aumento della pioggia di tale intensità. Ci sono stati sicuramente momenti di carestia che, assieme ai problemi politici che si sono presentati nello stesso periodo, possono essere considerati la concausa del passaggio dalla Repubblica all’Impero. In effetti, le peggiorate condizioni di vita dei contadini nel I secolo avanti Cristo, portarono a scontri sociali che si conclusero con la pace Augustea che riportò ordine nella società romana (Riferimento).

Una delle ipotesi che è stata formulata per spiegare le peggiorate condizioni di vita dei contadini romani nel I secolo a.C. è l’eruzione dell’Etna avvenuta nel 44 a.C. (Riferimento). Si è ipotizzato che tale eruzione avesse portato in atmosfera una quantità tale di polveri sottili da schermare i raggi del sole e provocare gli sconvolgimenti climatici associati ai periodi di carestia summenzionati. Tuttavia, pur rimanendo valida l’idea che una eruzione vulcanica fosse stata responsabile del cambiamento climatico iniziato a cavallo del 43-44 a.C., l’ipotesi dell’effetto dell’eruzione dell’Etna sul clima della penisola è stata sempre abbastanza controversa (Riferimento).

All’inizio di Luglio è apparso su Proceedings of the National Academy of the United States of America (PNAS), una rivista molto quotata nel mondo scientifico, un articolo a firma di un gruppo di ricercatori di diversa nazionalità dal titolo: “Extreme climate after massive eruption of Alaska’s Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom”. Lo potete scaricare, previo pagamento di 10 USD, cliccando sull’immagine qui sotto.

In questo lavoro i ricercatori hanno discusso delle analisi effettuate su carote di ghiaccio prelevate nell’Artico. Essi hanno evidenziando come la più probabile causa degli sconvolgimenti climatici occorsi nel I secolo a.C. fosse  non l’eruzione dell’Etna, ma quella del vulcano Okmok situato in Alaska.

Fonte dell’immagine

Nell’immagine qui sotto potete avere contezza delle distanze a livello planetario tra la posizione del vulcano ed il continente Europeo.

Sembra strano che l’eruzione di un vulcano così distante dall’Europa possa averne influenzato il clima, vero?

Vediamo allora cosa hanno fatto gli studiosi.

A quanto pare ogni vulcano ha una impronta chimica univoca in termini di molecole immesse in atmosfera per effetto delle eruzioni. I ricercatori hanno non solo attribuito le sostanze trovate nelle carote di ghiaccio proprio al vulcano Okmok, ma hanno anche datato l’eruzione relativa alla seconda metà del I secolo a.C.. Inoltre, usando i dati chimici identificati nelle carote di ghiaccio, i ricercatori hanno fatto delle simulazioni computazionali. In base ad esse, hanno potuto stabilire che intorno al 43 a.C. l’eruzione dell’Okmok ha portato in atmosfera tante di quelle particelle che si è avuta una riduzione della temperatura non solo in Europa, ma anche nel continente Africano. Come controprova delle loro simulazioni, i ricercatori hanno anche effettuato analisi dendrologiche  che hanno confermato le ipotesi sul ruolo dell’Omkok nelle variazioni climatiche del I secolo a.C..

Interessante, vero, come un’eruzione vulcanica a migliaia di chilometri di distanza dall’Europa possa aver indirizzato la politica romana.

Fonte dell’immagine di copertina

Le armi chimiche: i veleni naturali

Sapete che cosa è la chimica delle sostanze naturali? Si tratta di una branca della chimica che studia le proprietà chimiche (per esempio, struttura e conformazione) e la reattività di metaboliti primari e secondari delle piante e degli animali. La Treccani ne dà una bella definizione:

“È quel settore delle scienze chimiche che ha per oggetto lo studio della struttura, delle proprietà chimiche, delle trasformazioni delle sostanze organiche presenti negli organismi viventi (animali, piante o microorganismi), nonché del loro ruolo biologico”.

Perché vi sto dando questa definizione? Semplicemente perché sto leggendo un bel libro dal titolo “Storia dei veleni. Da Socrate ai giorni nostri” (Figura 1) in cui si descrivono le potenzialità venefiche di tantissime sostanze di origine naturale.

Figura 1. Libro sui veleni che ho acquistato recentemente

Non credo sia una novità che l’uso dei veleni sia noto fin dall’antichità. Essi venivano utilizzati sia per la caccia che per la guerra. Per esempio, nella seconda metà del XIX secolo, Alfred Fontan descrisse degli interessantissimi ritrovamenti nella grotta inferiore di Massat, nell’Ariège (Figura 2), un sito risalente all’epoca magdaleniana.

Figura 2. Zona dell’Ariege dove si trovano le grotte di Massat (Di TUBS – Opera propria. Questa grafica vettoriale non W3C-specificata è stata creata con Adobe Illustrator. Questa immagine vettoriale include elementi che sono stati presi o adattati da questa:  France adm-2 location map.svg (di NordNordWest)., CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=45555827)

In particolare, tra i tanti reperti, furono individuate delle punte di lancia e freccia con delle interessanti scalanature (Figura 3).

Figura 3. Punte di lancia e freccia del periodo Magdaleniano (Fonte)

Negli anni successivi gli studiosi hanno compreso che le scanalature sulle punte di freccia e lancia servivano per fare aderire i veleni in modo tale che le prede (o i nemici), una volta colpiti anche in modo non mortale, potessero morire per effetto del veleno introdotto attraverso le ferite. Ancora oggi le popolazioni primitive che vivono nelle zone meno esplorate del pianeta fanno uso,  per la caccia o per la guerra, di punte  simili a quelle ritrovate nelle grotte di Messat .

Siete curiosi di sapere come si fa a rendere “velenosa” una punta di freccia o di lancia?

I veleni, come leggerete nel paragrafo successivo, vengono per lo più estratti dalle piante.  Jean de Maleissye, nel libro che sto leggendo, ci spiega come facevano alcune popolazioni dello Zimbabwe a preparare le loro armi. Molto verosimilmente, la stessa tecnica era applicata dalle popolazioni primitive.

“Si faceva a pezzi la pianta, la si mescolava ad acqua e si faceva bollire il tutto per molto tempo. Poi si lasciava ridurre il liquido finché non si addensava, assumendo la consistenza della pece. Il veleno veniva fissato sull’estremità superiore dell’arma tramite una cordicella che gli indigeni arrotolavano attorno alla punta. Lo spazio libero fra ogni spira di corda tratteneva infatti il veleno, quando vi si immergeva la punta dell’arma. Si lasciava seccare il preparato velenoso, poi si toglieva il filo. Con tutta probabilità, la cordicella consentiva di trattenere il veleno su superfici minuscole. Tale artificio impediva infatti al veleno di staccarsi prematuramente in grandi placche”.

Come cacciavano le popolazioni della civiltà magdaleniana?

Non lo sappiamo, in realtà. Possiamo immaginare dalle ricostruzioni basate sugli utensili ritrovati in giro per l’Europa, che i magdaleniani “dopo aver colpito con una o più frecce avvelenate un grande cervo o una renna, [ne seguono] le tracce per ore o anche per giorni, fintanto che, stremato dal veleno, dalla perdita di sangue e dallo sforzo compiuto, il grande animale non crolla in un bosco ceduo” (Fonte). Una volta catturata la preda, i cacciatori rimuovono la parte avvelenata e fanno a pezzi tutto il resto della carcassa che viene usata per alimentarsi.

Origine dei veleni

In genere si tratta di sostanze che vengono estratte dalle piante. Una di queste è la Aconitum napellus o aconito,  una pianta che cresce in zone montuose e nota, per le sue proprietà tossiche, già a i tempi dei Galli e dei Germani (Figura 4).

Figura 4. Aconito, pianta molto comune ed estremamente tossica

Le sue parti, incluse le radici, contengono miscele complesse di alcaloidi quali: aconitina, napellina, pseudoaconitina, aconina, sparteina, efedrina (Figura 5).

Figura 5. Struttura chimica dei principali alcaloidi presenti nei tessuti di Aconitum napellus.

Tutte queste molecole hanno attività neuro- e cardio-tossica. La loro dose letale è dell’ordine di pochi milligrammi (1-4 mg) per chilogrammo di peso corporeo.  Immaginate, quindi, cosa può succedere se una freccia avvelenata con questa miscela di alcaloidi vi colpisse anche in un punto non vitale. Il veleno entrerebbe nel sangue e sareste soggetti a “rallentamento dei battiti cardiaci, diminuzione della pressione arteriosa e rallentamento del ritmo respiratorio” fino a  paralisi cardiaca e respiratoria (Fonte). Anche l’ingestione di questa miscela di alcaloidi porta alla stessa fine.

Ma volete sapere un’altra cosa? Avete presente la “potentissima” medicina tradizionale cinese?

Ebbene, nel 2018, è stato pubblicato un lavoro di revisione della letteratura scientifica in merito alla tossicità degli alcaloidi dell’aconito. Il lavoro è liberamente scaricabile qui. Nell’introduzione si evidenzia come gli estratti della radice di questa pianta siano usati nella medicina tradizionale cinese come rimedi per problemi cardiovascolari, artriti reumatoidi, bronchite, dolori generici e ipotiroidismo. Non sono un medico, però a me sembra quasi la panacea di ogni male (mi correggano i medici che leggono questo articolo se sbaglio, per favore). Nella stessa introduzione viene anche rilevato che le autorità sanitarie di molti paesi asiatici sono costrette a regolamentare l’uso di questo preparato a causa della sua elevata tossicità. Infatti, tra il 2001 e il 2010 sono stati osservati, per esempio, ben 5000 casi di tossicità da alcaloidi di aconito. Come mai tutte queste intossicazioni? Semplicemente perché, come evidenziato anche in un lavoro del 2019 pubblicato su Forensic Science, Medicine and Pathology, una rivista della Springer con impact factor nel 2019 di 1.611 (si può liberamente scaricare qui), gli estratti di aconito vengono usati senza prescrizione medica ed è facile usare la logica spicciola secondo cui se la quantità x mi permette di guarire, allora la quantità xn mi farà guarire più velocemente. 

Conclusioni

La natura ci è nemica? Neanche per sogno. Allora ci è amica? neanche per sogno parte seconda. Alla natura non importa nulla di noi. I veleni possono essere considerati  la risposta evolutiva delle prede ai predatori. Quando, in modo casuale ed imprevedibile, una modifica genetica consente la nascita di una pianta con un corredo metabolico appena un po’ diverso da quello delle sue “compagne”, è possibile che essa diventi indigesta, ovvero tossica, per i predatori. Questa nuova caratteristica favorisce la sopravvivenza della pianta modificata rispetto alle sue “sorelle” non modificate. Nel momento in cui tutte le piante non modificate si sono esaurite a causa della pressione alimentare dei predatori, rimangono in vita solo quelle modificate da cui i predatori si tengono lontani… a meno di non capire che esse possono essere sfruttate non a fini alimentari ma per la caccia e per la guerra.

Fonte dell’immagine di copertina
Share