L’atomo della pace: This is the dawning of the Age of Aquarius

“L’energia liberata dall’atomo non sarà più impiegata per la distruzione, ma per il bene dell’umanità.” Con queste parole, nel 1953, il presidente degli Stati Uniti Dwight D. Eisenhower lanciava al mondo il programma Atoms for Peace, in un celebre discorso all’Assemblea Generale delle Nazioni Unite. Era il tentativo, ambizioso e visionario, di trasformare il simbolo stesso della guerra in una promessa di progresso, usando le tecnologie nucleari non per armare le nazioni, ma per alimentare ospedali, centrali elettriche e laboratori scientifici.

Settant’anni dopo, quella visione resta più attuale che mai. In un pianeta che affronta crisi ambientali sempre più gravi e una domanda crescente di energia, l’atomo torna a farsi sentire: non come spettro del passato, ma come possibile chiave per un futuro più sostenibile.

Eppure, mentre la scienza offre strumenti per usare l’energia nucleare a beneficio della società, c’è ancora chi preferisce impiegarla per rafforzare equilibri di potere instabili, costruendo arsenali atomici in grado di distruggere il pianeta che abitiamo. Una scelta anacronistica, fondata su interessi politici miopi e incapaci di cogliere il potenziale positivo di una delle scoperte più straordinarie del Novecento.

Nel dibattito sulla transizione energetica, l’energia nucleare torna oggi al centro dell’attenzione. Di fronte all’urgenza climatica e alla crescente domanda globale di energia, le tecnologie nucleari civili si presentano come una delle soluzioni più promettenti per garantire una produzione elettrica stabile, sicura e a basse emissioni di carbonio.

Nonostante il peso simbolico lasciato da eventi come Chernobyl e Fukushima, i dati raccolti in decenni di esercizio mostrano che il nucleare civile è, per unità di energia prodotta, una delle fonti più sicure e pulite disponibili. Le nuove tecnologie oggi in sviluppo, come i reattori modulari di piccola taglia (SMR) e i reattori di IV generazione, puntano a migliorare ulteriormente la sicurezza, l’efficienza del combustibile e la gestione dei rifiuti. Alcuni progetti prevedono sistemi di sicurezza passiva, in grado di spegnere il reattore in caso di emergenza senza intervento umano né alimentazione elettrica esterna. Altri lavorano su cicli del combustibile chiusi, per ridurre drasticamente la quantità di scorie radioattive a lunga vita.

Parallelamente, progetti come ITER e numerose iniziative private stanno esplorando la strada della fusione nucleare, l’unica tecnologia in grado di imitare il funzionamento del Sole: energia virtualmente illimitata, senza il rischio di fusione del nocciolo e con rifiuti di gran lunga meno problematici rispetto alla fissione.

La chimica ambientale resta al cuore di queste sfide: dalla separazione degli attinidi alla progettazione di materiali resistenti, dalla speciazione degli isotopi radioattivi alla modellazione del loro comportamento nel suolo e nelle acque sotterranee. Capire come gli elementi si muovono, decadono, si adsorbono o si fissano in forma solida non è solo un esercizio accademico: è una condizione necessaria per progettare impianti più sicuri, prevedere il comportamento delle scorie e gestire correttamente il rischio.

Tuttavia, un ostacolo importante resta la percezione pubblica del rischio. L’energia nucleare continua a suscitare paure profonde, spesso basate su eventi eccezionali e su una comunicazione scientifica carente. Colmare questo divario tra realtà tecnica e immaginario collettivo è una responsabilità etica, oltre che culturale.

I radionuclidi non sono pericolosi per natura. Lo diventano solo quando vengono gestiti con superficialità, trascuratezza o opacità. Gli stessi elementi che in passato hanno provocato danni enormi se impiegati in modo irresponsabile, oggi ci permettono di curare malattie, studiare il passato, comprendere il clima e produrre energia pulita.

Abbiamo ereditato l’età dell’atomo come simbolo di potere e minaccia, ma possiamo ancora trasformarla in qualcos’altro. Forse è il momento di farla coincidere, almeno in parte, con quella età dell’Acquario cantata negli anni ’60: un’epoca immaginata di pace, di fiducia nella scienza, di armonia tra progresso e umanità.

Non si tratta di utopia, ma di responsabilità. Perché l’atomo, da solo, non porta né salvezza né rovina. È la mano che lo guida, e la visione che lo orienta, a determinarne il destino.

Sta a noi decidere se vivere nella paura del passato o costruire, con consapevolezza, un futuro possibile e migliore.

Parabrezza puliti e insetti scomparsi: ma davvero davvero?

Nel 2020, durante la pandemia, pubblicai una breve nota sul cosiddetto “windscreen phenomenon“. Per chi volesse rileggerla, ecco il link:

Sugli insetti e sui parabrezza – www.pellegrinoconte.com

Negli ultimi anni, questa teoria ha continuato a circolare. L’idea che il numero di insetti stia diminuendo drasticamente perché i parabrezza delle auto si sporcano meno rispetto al passato è oggi più attendibile di quanto non lo fosse cinque anni fa?

Osservazioni aneddotiche vs. evidenze scientifiche

È importante distinguere tra osservazioni personali e dati scientifici. Il fatto che oggi i parabrezza sembrino più puliti non costituisce una prova concreta del declino globale degli insetti. Le variabili in gioco sono molteplici: cambiamenti nei modelli di traffico, aerodinamica delle auto moderne, variazioni climatiche locali e stagionali, per citarne alcune.

Studi recenti sul declino degli insetti

Diversi studi scientifici hanno documentato un effettivo declino delle popolazioni di insetti:

Il problema del “windscreen phenomenon” come indicatore

Utilizzare il numero di insetti sul parabrezza come misura del declino globale presenta diverse problematiche:

  • Variabilità delle condizioni di guida: percorsi, velocità, condizioni climatiche e tipologie di veicoli influenzano significativamente il numero di insetti che colpiscono il parabrezza.
  • Effetti di bordo e distribuzione degli insetti: le strade creano discontinuità nel paesaggio, influenzando la distribuzione degli insetti e rendendo difficile generalizzare le osservazioni.
  • Bias di campionamento: le osservazioni sono spesso limitate a determinate aree e periodi, non rappresentando accuratamente la situazione globale.

Conclusione

Come scrivevo già nel 2020, anche oggi è necessario ribadire che, sebbene il declino degli insetti sia un fenomeno reale ed allarmante, le conclusioni devono basarsi su studi scientifici solidi, non su impressioni personali. Il “windscreen phenomenon” può forse stimolare la curiosità o fornire uno spunto iniziale, ma non rappresenta in alcun modo una prova scientifica.

L’aneddotica non è probante e il “lo dicono tutti” non è – né sarà mai – un metodo scientificamente valido.

Come disse un celebre divulgatore: la scienza non si fa per alzata di mano.

La democrazia scientifica non funziona come quella politica: non tutte le opinioni hanno lo stesso peso. E, a ben vedere, nemmeno in politica tutte le opinioni sono uguali – quelle che negano i diritti fondamentali dell’uomo non possono e non devono essere considerate accettabili.

In ambito scientifico, il confronto è possibile solo tra persone con un background adeguato, perché solo così si può parlare la stessa lingua: quella del metodo.

Microplastiche: i rischi che conosciamo, le sorprese che non ti aspetti

Quando pensiamo all’inquinamento da plastica, ci vengono subito in mente bottiglie che galleggiano negli oceani, sacchetti impigliati tra i rami degli alberi o imballaggi abbandonati nei fossi (Figura 1).

Figura 1. Tracce invisibili del nostro tempo: bottiglie, sacchetti e frammenti di plastica si insinuano nei paesaggi naturali, segnando il confine sottile tra quotidiano e catastrofe ambientale.

Ma esiste un tipo di plastica molto più subdolo e pericoloso, perché invisibile ai nostri occhi: le microplastiche. Questi minuscoli frammenti, spesso più piccoli di un chicco di riso, sono ormai ovunque: nell’acqua che beviamo, nell’aria che respiriamo, nel suolo che coltiviamo e persino, come recenti studi hanno dimostrato, dentro il nostro corpo.

Le microplastiche possono essere prodotte intenzionalmente, come accade ad esempio per le microperle usate in alcuni cosmetici e detergenti industriali. In altri casi, invece, derivano dalla frammentazione di oggetti di plastica più grandi, spezzati nel tempo da sole, vento, onde e attrito. Qualunque sia la loro origine, una volta disperse nell’ambiente, diventano praticamente impossibili da recuperare.

Se inizialmente l’attenzione della ricerca si è concentrata soprattutto sull’ambiente marino, oggi sappiamo che le microplastiche si trovano ovunque. Sono presenti nei mari, nei laghi, nei fiumi, ma anche nei ghiacciai e nell’atmosfera. Sono state rinvenute in alimenti di uso comune, come il pesce, il sale e perfino il miele. E non si tratta solo di contaminazione esterna: alcune ricerche hanno individuato tracce di microplastiche in campioni biologici umani, come sangue, feci e placenta. È una diffusione capillare, e proprio per questo difficile da controllare.

Un campo che ha attirato crescente interesse negli ultimi anni è quello dei suoli. Spesso trascurato rispetto agli ambienti acquatici, il suolo si sta rivelando un enorme serbatoio di microplastiche. La plastica può arrivarci attraverso molteplici vie: dai fanghi di depurazione usati in agricoltura, dai rifiuti plastici agricoli, dal compost contaminato, fino alla semplice deposizione atmosferica. Alcuni studi stimano che i suoli possano contenere più microplastiche degli oceani.

Ma quello che ha sorpreso molti ricercatori è che, in certi casi e in certe condizioni, la presenza di microplastiche nel suolo sembra produrre effetti inaspettati, non tutti negativi. Ad esempio, le plastiche possono contribuire ad aumentare la porosità del terreno, migliorandone l’aerazione e il drenaggio. In alcune situazioni, è stata osservata una maggiore stabilità degli aggregati del suolo e una migliore ritenzione idrica, caratteristiche che potrebbero essere utili, ad esempio, in contesti agricoli soggetti a siccità (Figura 2).

Figura 2. In alcune condizioni, la presenza di microplastiche nel suolo può modificare la struttura degli aggregati, favorendo aerazione, porosità e ritenzione idrica: effetti apparentemente utili in contesti agricoli aridi, ma non privi di rischi a lungo termine.

Anche dal punto di vista biologico, gli effetti sono controversi. Alcuni esperimenti hanno riportato un incremento dell’attività di lombrichi e di alcuni microrganismi in presenza di microplastiche, suggerendo un adattamento o una stimolazione di certi processi. Tuttavia, altri studi mettono in guardia: le stesse microplastiche possono alterare la composizione delle comunità microbiche del suolo, interferire con l’attività enzimatica, ostacolare la germinazione delle piante e veicolare sostanze tossiche, come metalli pesanti o pesticidi, adsorbiti sulla loro superficie.

Insomma, si tratta di una situazione complessa. Gli effetti variano molto a seconda del tipo di plastica, della sua forma — che siano fibre, frammenti o sfere — della concentrazione e, naturalmente, delle caratteristiche del suolo ospite. Anche se in certi casi le microplastiche sembrano migliorare temporaneamente alcune proprietà fisiche del terreno, la loro persistenza, la potenziale tossicità chimica e gli effetti a lungo termine sulla salute degli ecosistemi rendono il bilancio complessivo tutt’altro che rassicurante.

La chimica gioca un ruolo chiave in questa sfida. Grazie a essa possiamo non solo comprendere meglio il comportamento delle microplastiche nell’ambiente, ma anche sviluppare strategie per contrastarne la diffusione. La ricerca lavora su materiali biodegradabili, su metodi per separare e rimuovere microplastiche da acque e fanghi, su traccianti molecolari per seguirne il destino nell’ambiente e su tecnologie per limitarne l’ingresso nelle filiere produttive.

Ma anche nel nostro piccolo possiamo contribuire. Ridurre l’uso di plastica monouso, preferire materiali naturali per abbigliamento e oggetti di uso quotidiano, evitare prodotti cosmetici contenenti microperle — basta leggere le etichette con attenzione — sono scelte semplici che, moltiplicate per milioni di persone, possono fare una differenza reale. E soprattutto, possiamo diffondere consapevolezza. Perché le microplastiche sono piccole, sì, ma la loro portata è enorme. Capirle, raccontarle e affrontarle è un passo essenziale per costruire un rapporto più equilibrato tra l’uomo, la chimica e l’ambiente.

Riferimenti

Campanale, C., et al. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17(4), 1212. (https://www.mdpi.com/1660-4601/17/4/1212)

de Souza Machado, A.A., et al. (2019). Microplastics Can Change Soil Properties and Affect Plant Performance. Environmental Science & Technology, 53(10), 6044–6052. (https://pubs.acs.org/doi/10.1021/acs.est.9b01339)

Hale, R.C., et al. (2020). A Global Perspective on Microplastics. Journal of Geophysical Research: Oceans, 125(3), e2018JC014719. (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JC014719)

Ng, E.-L., et al. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. (https://www.sciencedirect.com/science/article/pii/S0048969718303838?via%3Dihub)

Prata, J.C., et al. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. (https://www.sciencedirect.com/science/article/pii/S0048969719344468?via%3Dihub)

Ragusa, A., et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, 106274. (https://www.sciencedirect.com/science/article/pii/S0160412020322297?via%3Dihub)

Rillig, M.C., et al. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, 1805. (https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.01805/full)

Wright, S.L., Kelly, F.J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51(12), 6634–6647. (https://pubs.acs.org/doi/10.1021/acs.est.7b00423)

Zhang, G.S., Liu, Y.F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12–20. (https://www.sciencedirect.com/science/article/pii/S0048969718320667?via%3Dihub)

Dal ppm al femtogrammo: i pesticidi c’erano anche prima ma non li vedevamo

Ogni tanto circolano articoli dai toni allarmistici che mostrano quanto spesso oggi si trovino tracce di pesticidi negli alimenti, nell’acqua, nel suolo. “Una volta queste cose non c’erano”, si legge. Ma è davvero così? La risposta è semplice: no, non è che una volta non ci fossero, è che non eravamo in grado di vederle.

La differenza sta negli occhi, non nelle cose

In chimica analitica, quando si parla di rilevare una sostanza, non si usa mai dire con leggerezza “non c’è”. Si dice invece “non determinabile” (N.D.): vuol dire che non è rilevabile con gli strumenti disponibili, non che la sostanza non sia presente. È come cercare di vedere le stelle con un binocolo da teatro: non le vedi, ma non vuol dire che non ci siano.

E proprio come un telescopio moderno rivela galassie invisibili a Galileo, gli strumenti di oggi vedono tracce infinitesimali di sostanze che gli strumenti di ieri non riuscivano minimamente a percepire.

Un po’ di storia: quanto si vedeva ieri?

  • Anni ’50-’60: i primi gascromatografi (GC) usavano rivelatori come il TCD (rilevava a partire da 1-10 ppm, cioè parti per milione) o il più sensibile FID (circa 0.1 ppm). I pesticidi? Difficili da vedere, se non in quantità elevate.
  • Anni ’70-’80: entra in scena l’Electron Capture Detector (ECD), molto sensibile per sostanze come i pesticidi: arriva a livelli di 0.1 picogrammi, cioè un miliardesimo di milligrammo! Anche il GC-MS (gascromatografia accoppiata a spettrometria di massa) comincia a essere usato per rilevare composti in tracce.
  • Anni ’90-2000: con strumenti più raffinati come il GC-MS/MS, si scende ancora: si arriva a livelli di femtogrammi (mille miliardesimi di grammo). La sensibilità è altissima e il rumore di fondo si riduce grazie a nuove tecnologie (Figura 1).

Dal 2010 in poi: l’uso di spettrometri ad alta risoluzione (HRMS), colonne capillari e nuovi algoritmi di elaborazione dei dati ci porta a una capacità di rilevazione fino a 0.001 picogrammi.

Figure 1. il grafico mostra l'evoluzione dei limiti di rilevazione (LOD) in picogrammi, su scala logaritmica, per alcune delle tecniche analitiche più usate nella chimica analitica dal 1960 a oggi. Negli anni ’60 si vedevano solo concentrazioni nell’ordine dei ppm, oggi possiamo rilevare sostanze anche a femtogrammi, cioè mille miliardesimi di grammo.

Figura 1. il grafico mostra l’evoluzione dei limiti di rilevazione (LOD) in picogrammi, su scala logaritmica, per alcune delle tecniche analitiche più usate nella chimica analitica dal 1960 a oggi. Negli anni ’60 si vedevano solo concentrazioni nell’ordine dei ppm, oggi possiamo rilevare sostanze anche a femtogrammi, cioè mille miliardesimi di grammo.

Quindi oggi i pesticidi sono più usati?

No, non è questo il punto. È che oggi possiamo vedere concentrazioni che una volta erano semplicemente invisibili. È come se avessimo acceso una torcia in una stanza buia. Le cose nella stanza c’erano anche prima. Solo, non potevamo vederle (Figura 2).

Figura 2. Come vediamo gli analiti oggi. Il miglioramento della sensibilità strumentale ci consente di vedere cose che cinque, dieci, venti e più anni fa non eravamo in grado di rilevare.

Un esempio pratico

Un pesticida presente in un campione d’acqua nel 1970 in quantità pari a 5 picogrammi per litro non sarebbe stato rilevato da nessuno strumento allora disponibile. Oggi sì. Ma non significa che quel pesticida non ci fosse allora.

Conclusione

Quando leggiamo “oggi si trovano più pesticidi”, chiediamoci prima se si tratta di un aumento reale o semplicemente di un salto nella capacità di osservazione. La chimica analitica, nel frattempo, ha fatto un balzo gigantesco: non siamo più immersi nei veleni, siamo immersi nei dati. E questo è un enorme passo avanti.

Riferimenti

“Bella e Potente” (L. Cerruti)

Basic Gas Chromatography (H.M. McNair, J.M. Miller)

Gohlke, R.S. (1959)Analytical Chemistry, 31, 535–541.

Karayannis, M.I.; Efstathiou, C.E. (2012). Talanta, 102, 7-15

Perché studiare chimica e fisica? L’innalzamento ebullioscopico

Avete presente la classica robetta sul mettere il sale prima o dopo che l’acqua ha cominciato a bollire? Questa cosa mi ha sempre lasciato perplesso perché ho sempre pensato che chiunque abbia frequentato con profitto le scuole superiori conosca le proprietà colligative e sa cosa significa innalzamento ebullioscopico. Traduco per i meno esperti: l’innalzamento ebullioscopico è l’innalzamento della temperatura di ebollizione di un solvente quando in esso vengano aggiunti dei soluti. Nel caso specifico, il solvente è l’acqua mentre il soluto è il cloruro di sodio (NaCl), popolarmente conosciuto come sale da cucina.

La solubilità in acqua del cloruro di sodio a 100 °C è di circa 400 g L-1.

L’innalzamento ebullioscopico si calcola usando la formuletta:

ΔT=keb · m · i                                                                                         (1)

dove ΔT è la variazione della temperatura di ebollizione tra il solvente che contiene il soluto e quella del solvente puro; keb è una costante che si chiama costante ebullioscopica. Essa è tabulata per ogni solvente. Per l’acqua, la keb assume il valore di 0.512 °C kg mol-1. Infine, m è la cosiddetta molalità, ovvero la concentrazione di soluto espressa in mol kg-1, dove il peso si riferisce al solvente usato, mentre i è il cosiddetto coefficiente di Vant’Hoff.

Adesso possiamo applicare la formuletta (1) per calcolare quale quantità di cloruro di sodio permette di alzare la temperatura di ebollizione dell’acqua di quantità note. Quelle che che ho preso in considerazione sono le seguenti:

ΔT = 0.01; 0.025; 0.05; 0.075; 0.1; 0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2; 2.25; 2.5; 2.75; 3; 3.25; 3.5

Dal grafico riportato nella figura qui sotto, ne viene che per aumentare di un solo grado centigrado la temperatura di ebollizione di un litro di acqua occorrono circa 114 g di NaCl. In realtà, noi non aggiungiamo mai oltre 100 g di sale nell’acqua che mettiamo a bollire per la pasta. Tutt’al più ne usiamo un decimo, ovvero circa una decina di grammi. Dallo stesso grafico si evince come l’aggiunta di una decina di grammi di NaCl ad un litro di acqua innalza il punto di ebollizione nell’intervallo 0.075 – 0.1 °C. In altre parole, la temperatura di ebollizione passa da 100 °C all’intervallo di temperature compreso tra 100.08 e 100.1 °C.

Ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

Edit: nel calcolo dell’innalzamento ebullioscopico non ho tenuto conto del coefficiente di Vant’Hoff che, per il cloruro di sodio, è pari a 2. Questo vuol dire che, introducendo questo fattore di correzione, l’aumento di temperatura dell’acqua a cui si aggiungono grosso modo una decina di grammi di NaCl è intorno a 0.1-0.2 °C. Insomma, da 100 °C si passa a 100.1-100.2 °C. Rimane sempre valida la domanda: ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

 

Fonte dell’immagine di copertina

I segreti della grandine

Ogni anno sentiamo parlare di enormi “palle” di ghiaccio che cadono dal cielo e fanno danni enormi non sono solo alle cose (auto, case, etc.), ma anche alle attività produttive come l’agricoltura.

Oggi non mi voglio interessare dei danni che può fare la grandine, ma solo concentrarmi  sui meccanismi della sua formazione per capire a cosa essa sia dovuta e perché i chicchi di grandine possono avere dimensioni variabili fino ad arrivare a quelle di una palla come evidenziato nella foto di copertina.

La geografia dell’atmosfera

La parte di spazio che si estende dalla superficie terrestre fino a circa 16 km di altezza prende il nome di troposfera. È qui che avvengono i fenomeni climatici. L’aria della troposfera è composta non solo da ossigeno e azoto, ma anche da acqua, ossidi di azoto e zolfo, anidride carbonica, monossido di carbonio, gas nobili, sostanze organiche volatili che derivano sia dall’attività antropica che da quella naturale (per esempio, le molecole odorose che vengono rilasciate dalle piante), virus, batteri, funghi, spore e molto altro ancora. Naturalmente tutti questi sistemi sono posizionati a quote differenti in funzione delle loro dimensioni, cosicché, per esempio, virus, batteri, funghi e spore sono più vicini al suolo.

L’esperienza comune ci insegna che quando andiamo su in montagna la temperatura si abbassa. E chi è abituato a viaggiare in aereo sa che più in alto si sale più la temperatura tende a scendere: quanti di quelli che viaggiano in aereo non hanno mai letto sui monitor all’interno delle cabine che la temperatura esterna è di -32 °C oppure addirittura di -50 °C?

Vi siete mai chiesti perché?

Ne avevo già parlato l’anno scorso. Una spiegazione approfondita sulle variazioni di temperatura al variare della quota è al link seguente:

Fa freddo lassù?

In breve, possiamo dire che più vicini siamo al suolo, più risentiamo della radiazione elettromagnetica (indicata come infrarosso) proveniente dalla Terra.

Rimando al mio articolo dell’anno scorso per capire perché ci sono oscillazioni termiche man mano che si passa dalla troposfera alla stratosfera, da questa alla mesosfera e da quest’ultima alla termosfera.

E’ proprio la troposfera che dobbiamo tener d’occhio per spiegare la formazione della grandine.

Come si forma la grandine

Tutto ha inizio nei cumulonembi. Si tratta di nuvole a forte sviluppo verticale che si formano per effetto di processi convettivi attraverso cui enormi quantità di aria, contenente acqua, vengono movimentate sia verso l’alto che verso il basso, raggiungendo altezze che possono arrivare fino a 12-16 km. In queste enormi nubi le temperature sono molto variabili potendo passare da valori pari a 0 °C a valori compresi tra -50 e -60 °C.

Tutti noi sappiamo che quando l’acqua è a 0 °C si trova nello stato solido. Tuttavia, non tutti sanno che esiste una condizione che si chiama sopraffusione nella quale l’acqua è in una condizione metastabile, ovvero, in assenza di perturbazioni, essa permane nella fase liquida. Divertitevi a vedere cosa accade per effetto della sopraffusione:

L’acqua sopraffusa è presente prevalentemente nelle zone basse dei cumulonembi, mentre nelle zone più alte si formano dei piccolissimi granelli di ghiaccio, detti embrioni – il mio vecchio professore di chimica analitica li avrebbe chiamati “gemme” – che, per effetto delle correnti convettive, tendono a portarsi nelle zone basse delle nuvole. Quando i minuscoli granelli di ghiaccio incontrano l’acqua sopraffusa, la catturano. In questo modo le dimensioni delle gemme aumentano. Le correnti convettive riportano questi granelli accresciuti di nuovo verso l’alto e poi ancora verso il basso dove si accrescono ulteriormente. Quando le dimensioni delle particelle di ghiaccio diventano tali da non poter essere più trasportate dalle correnti convettive, queste ricadono verso terra sotto forma di grandine. Una descrizione più particolareggiata e corretta della formazione della grandine la potete trovare cliccando sull’immagine qui sotto.

Le dimensioni della grandine

Come ho scritto più su, la grandine si presenta di dimensioni molto differenti: si va da piccolissimi chicchi (pochi millimetri) fino a pezzi di ghiaccio delle dimensioni di palle da tennis o da baseball. Come mai c’è questa diversificazione?

Beh…tutto dipende dalla velocità con cui essa si forma, dalla direzione delle correnti convettive, dalla concentrazione di acqua sopraffusa e dalla temperatura alla base ed in quota del cumulonembo.

Nel filmato qui sotto potete osservare un “bombardamento” di grandine occorso a Rozzano circa una settimana fa (la notizia è qui)

Fonte dell’immagine di copertina

Un esperimento sulla validità delle mascherine

Chi mi segue sa che ho già pubblicato un paio di articoli sulla validità delle mascherine che stiamo utilizzando per proteggerci dalla diffusione del Sars-Cov2.

Il primo di essi era una lettera aperta ad Enrico Montesano che, tempo fa, affermò in pubblico che le mascherine ci fanno respirare la nostra anidride carbonica e, quindi, sono pericolose. La mia lettera aperta è qui sotto:

Lettera aperta ad Enrico Montesano

Scrissi, poi, un secondo articolo per ribadire ancora una volta che le mascherine non sono in grado di trattenere l’anidride carbonica. Questo articolo fu scritto per rispondere a quelli che affermavano che la barriera posta davanti alla bocca non era in grado di far passare i miliardi di molecole di CO2 che espiriamo in ogni istante della nostra vita. Se siete curiosi, qui sotto c’è il link all’articolo:

Ancora su anidride carbonica e mascherine

Tuttavia, come sapete, le prove sperimentali regnano sovrane nel mondo scientifico. Qualche settimana fa, Daniel Puente ha pubblicato un interessantissimo video in cui ha provato che il livello di saturazione di ossigeno nel sangue non cambia quando si usa la mascherina (sia chirurgica che FFP2) in diverse condizioni fisiche: camminata normale e veloce. Qui sotto il filmato di una decina di minuti che vi consiglio di vedere.

https://www.youtube.com/watch?v=2xiiTNNXwfg

Fonte dell’immagine di copertina

Risonanza magnetica nucleare, alimenti, ambiente, bufale

Oggi sono stato intervistato sul canale YouTube BioLogic di Daniel Puente. Abbiamo parlato di risonanza magnetica nucleare applicata all’analisi dei prodotti lattiero caseari, con qualche puntata sull’ambiente e su varie scemenze che si leggono in rete.  Mi sono divertito. Buona visione.

https://www.youtube.com/watch?v=zoZlb4cz7tE&feature=emb_imp_woyt

Per iscrivervi al canale BioLogic basta andare sulla pagina https://www.youtube.com/channel/UC-P-5bM3ifklXJtczrtu1_g

Su agricoltura biodinamica: riflessioni scientifiche

Circa un mese fa è comparsa una mia intervista su www.VinOsa.it in merito all’agricoltura biodinamica.

[…] È una pratica agricola che non ha nulla di scientifico, ma si basa su riti e superstizioni inventati da Rudolph Steiner all’inizio del ’900. Steiner era un visionario, ma non nel senso positivo del termine. Non va accomunato con gente del calibro di Newton, Galileo Galilei, Giordano Bruno – solo per mantenerci nel passato, citando persone a cui gli pseudo scienziati tendono sempre a confrontarsi – o Einstein, Planck, Dirac, Pauling – per andare a persone a noi più vicine nel tempo – che erano scienziati nel senso compiuto del termine. Il modo di essere visionari delle persone appena citate ha permesso lo sviluppo verticale della scienza, ovvero del corpo di conoscenze che oggi ci consente di usare i social network, di andare sulla Luna, su Marte o di aver superato le colonne d’Ercole del nostro sistema solare. Le visioni di Steiner sono quelle tipiche di una persona che non ha alcuna idea di come si possa fare scienza e basa le sue conoscenze sulla superstizione e sull’esoterismo […]

Se non avete ancora letto l’intervista ed avete voglia di divertirvi con delle valutazioni scientifiche su questa pratica agricola potete cliccare sull’immagine qui sotto. Quello sono io, stanco per le continue battaglie contro la pseudoscienza, mentre mi riposo per riprendere la lotta.

Grazie e buona lettura

Fonte dell’immagine di copertina

Sugli insetti e sui parabrezza

Avete mai sentito parlare del widescreen phenomenon? No? Eppure, tra gli ecologisti della domenica va per la maggiore. Si tratta della constatazione che il numero di insetti stia diminuendo perché i parabrezza delle auto non sono più così sporchi di insetti spiaccicati come quando eravamo piccoli.

Sono le classiche elucubrazioni di gente che di scienza non capisce niente e capisce ancor meno di come si realizza un disegno sperimentale per trovare una risposta alla domanda “la popolazione di insetti su scala globale sta veramente diminuendo?” oppure “esiste una relazione tra l’uso di agrofarmaci e numerosità della popolazione di insetti?”, e potrei continuare, naturalmente. È la stessa tipologia di approccio pseudoscientifico che viene usato dai fantastici fautori di quella robaccia che si chiama omeopatia e che si riassume con “su di me funziona” (ne ho già scritto qui).

La cosa bella è che queste elucubrazioni vengono diffuse da siti molto seguiti (per esempio qui e qui) che contribuiscono alla cosiddetta disinformazione o cattiva divulgazione scientifica.

Vediamo perché la relazione tra parabrezza, numero di insetti spiaccicati e popolosità degli stessi sia una bufala.

Innanzitutto, dobbiamo cominciare col dire che uno studio su scala globale relativo alla perdita di biodiversità (non solo, ma limitiamoci alla biodiversità) va disegnato in modo tale da ottenere risultati non solo replicabili, ma anche riproducibili[1]. Alla luce di quanto scritto, è possibile pensare che il numero di volte in cui puliamo il parabrezza delle nostre automobili sia un dato attendibile? La risposta è no. Il motivo è abbastanza semplice: percorriamo sempre la stessa strada? Sempre alla stessa velocità? Sempre nelle stesse condizioni climatiche? Sempre con la stessa auto?

Esistono strade di tantissime forme, dimensioni e condizioni, tutti fattori che vengono sempre ignorati quando il windscreen phenomen è usato come indice per misurare la popolazione degli insetti. Non dimentichiamoci, inoltre, che le strade generano i cosiddetti bordi nel paesaggio. Come sanno tutti quelli che si interessano di indagini analitiche di ogni tipo, gli effetti dei bordi sono sempre difficili da misurare e generalizzare.

E come facciamo il campionamento? Guidiamo verso i bordi della carreggiata? Allora ci dobbiamo aspettare di campionare una popolazione di insetti di corporatura più massiccia di quelli che potremmo rilevare sul parabrezza se guidassimo esattamente al centro della strada. E a che ora pensiamo di fare il campionamento? Persino io che non sono un entomologo so che la tipologia di insetti che vivono negli ambienti intorno alle strade differisce a seconda del periodo della giornata in cui ci muoviamo. E cosa andiamo a misurare? Il numero di resti presenti sul parabrezza? La loro densità? La forza che usiamo per staccare i poveri resti degli insetti spiaccicati?

Ma non basta. Se io guido sempre nella stessa microzona del pianeta, mi posso permettere di estrapolare le mie pseudo-osservazioni ad altre zone del pianeta? Ovviamente no, perché le mie pseudo-osservazioni sono valide solo per la strada che percorro abitualmente, non per le altre. Chi mi assicura che gli insetti non si siano evoluti in modo tale da andare a popolare le zone limitrofe a quelle che io frequento abitualmente con la mia auto, solo perché hanno imparato che la zona che frequento è quella più pericolosa del sistema in cui essi vivono?

Eh, sì. Tutte quelle elencate, ed anche di più, sono le domande a cui dobbiamo rispondere per rendere un dato attendibile. Sfido tutti gli pseudo-ambientalisti che usano il windscreen phenomenon a rispondere in modo coerente a tutte le domande sopra elencate.

Letture aggiuntive e note

The windscreen phenomenon: anecdata is not scientific evidence

More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Declining abundance of beetles, moths and caddisflies in the Netherlands

Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years

[1] Replicabilità e riproducibilità non hanno lo stesso significato. La prima si riferisce alla capacità del medesimo ricercatore (o gruppo di ricerca) di ottenere i medesimi risultati nello stesso laboratorio in tempi differenti. La seconda si riferisce alla capacità di ricercatori differenti in laboratori differenti e fisicamente lontani tra loro, di ottenere i medesimi risultati di una data ricerca scientifica.

Fonte dell’immagine di copertina

Share