Biodinamica e scienza: smontare i miti non è mai facile

Negli ultimi anni la biodinamica è tornata con forza nel dibattito pubblico, presentata come un’agricoltura “più naturale”, capace di riconnettere l’uomo con la terra attraverso antichi rituali e influssi cosmici. Ma quando si scava nei lavori scientifici che dovrebbero darle credibilità, il castello crolla.

In un precedente articolo, Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci, avevo già mostrato come l’apparente incontro tra ricerca e pratiche steineriane sia in realtà un dialogo ingannevole. Oggi raccolgo e sintetizzo delle analisi critiche di studi pubblicati su riviste scientifiche, spesso citati a sostegno della biodinamica. Il risultato è un quadro chiaro: tanta tecnologia, poca scienza, e un mare di suggestioni travestite da rigore.

Il mito del Preparato 500

Al centro della biodinamica c’è il Preparato 500, letame fermentato in corna di vacca, elevato a elisir magico. Uno studio del 2013 su Journal of Microbiology and Biotechnology ha tentato di dargli dignità scientifica. Il risultato? Una sequenza di prove deboli: assenza di controlli, attività biologiche senza legame con benefici concreti, repliche non documentate.

Gli stessi autori, del resto, offrono materiale sufficiente per smontare ogni pretesa di scientificità. Non hanno inserito veri controlli: “Different commercial samples of BD Preparation 500… were studied” (p. 645). In pratica, hanno confrontato solo diversi lotti dello stesso preparato, senza mai verificare se i risultati differissero da un letame ordinario.

Le attività enzimatiche riportate sono descritte come promettenti, ma senza legame con effetti pratici: “Preparation 500 displays high specific levels of activity… A high alkaline phosphatase activity indicates its potential” (p. 648). Potenziale, non prova.

Una volta estratto dalle corna, il Preparato viene applicato in campo dopo diluizioni omeopatiche: 200 grammi in decine di litri d’acqua per ettaro. Gli autori non si limitano a descriverne le caratteristiche microbiologiche e chimiche, ma cercano anche di giustificare questa pratica con un ragionamento per analogia: “…they will already be delivered at a 10¹⁰ M concentration… well within their expected windows of biological activity (p. 649). Ma si tratta di pura speculazione: nessuna prova sperimentale mostra che quelle diluizioni abbiano davvero un effetto.

Il linguaggio stesso tradisce l’incertezza. Ovunque compaiono formule ipotetiche: “could possibly contribute” (p. 648), “may account for the biostimulations” (p. 649), “it cannot be excluded that it might act” (p. 650). Non dimostrazioni, ma tentativi di rivestire di retorica ciò che rimane un rituale agronomico.

Qui la scienza si ferma e subentra il wishful thinking. Non c’è alcun dato che dimostri l’efficacia di quelle diluizioni: è una speculazione posticcia, un tentativo di dare un’aura scientifica a un rituale. In sostanza, la giustificazione proposta non è ricerca: è retorica. Nessun esperimento serio ha mai mostrato che spruzzare tracce infinitesimali di letame fermentato possa produrre effetti concreti su un sistema agricolo complesso.

Corna, letame e spettrometri: la scienza usata per dare lustro al mito

Nel paragrafo precedente è stato introdotto il Preparato 500, gioia degli attivisti della biodinamica. Ebbene, esso è stato analizzato mediante risonanza magnetica nucleare (NMR) e gas-cromatografia con pirolisi (pyrolysis-TMAH-GC-MS) in un lavoro pubblicato su Environmental Science and Pollution Research nel 2012. Questo studio si presenta come la “prima caratterizzazione molecolare” del Preparato 500: una vetrina tecnologica impressionante, che tuttavia poggia su fondamenta fragilissime. Una sfilata di strumenti sofisticati al servizio non della conoscenza, ma della legittimazione di un mito. Vediamo perché.

Gli autori hanno analizzato tre lotti di Preparato 500 (“three samples of horn manure… were collected from different European farms”, p. 2558). Tutto qui. Nessun confronto con compost ordinario o letame tradizionale. Senza un vero controllo, attribuire “peculiarità biodinamiche” diventa arbitrario: come distinguere l’effetto del corno interrato da quello della normale fermentazione del letame?

Le analisi rivelano componenti come lignina, carboidrati, lipidi vegetali e marcatori microbici. Gli stessi autori ammettono che “the chemical composition of HM was consistent with that of natural organic materials” (p. 2564). In altre parole, il Preparato 500 non mostra alcuna unicità sorprendente: è esattamente ciò che ci si aspetta da una biomassa organica parzialmente decomposta.

Il paper suggerisce che la presenza di frazioni labili e lignina parzialmente decomposta possa conferire al Preparato 500 una particolare bioattività: “HM was characterized by a relatively high content of labile compounds that might account for its claimed biostimulant properties” (p. 2565). Ma questa è pura congettura: nessun dato in campo supporta l’idea che tali caratteristiche abbiano effetti agronomici specifici.

Le conclusioni parlano di “a higher bioactivity with respect to mature composts” (p. 2565). Ma il solo risultato tangibile è che il Preparato 500 risulta meno stabilizzato e più ricco di composti facilmente degradabili rispetto a un compost maturo. Un’osservazione banale, trasformata in presunta “prova” di efficacia biodinamica.

In altre parole, il lavoro appena analizzato non dimostra alcuna unicità del Preparato 500. Mostra soltanto che un letame lasciato fermentare in condizioni anossiche dentro un corno ha una composizione chimica simile a quella di altri ammendanti poco maturi. L’uso di strumenti spettroscopici di alto livello serve più a conferire prestigio alla pratica biodinamica che a produrre nuova conoscenza. È un’operazione di maquillage scientifico: dati corretti, ma interpretazione piegata all’ideologia.

Strumenti sofisticati, interpretazioni esoteriche

In uno studio apparso su Chemical and Biological Technologies in Agriculture, gli autori hanno applicato tecniche avanzatissime – MRI (risonanza magnetica per immagini) per la struttura interna delle bacche e HR-MAS NMR per il metaboloma – a uve Fiano e Pallagrello trattate con il celebre Preparato 500. Dal punto di vista tecnico nulla da eccepire: “MRI and HR-MAS NMR provided detailed information on berry structure and metabolite profiles” (p. 3).

Il problema nasce subito dopo. Gli autori collegano direttamente i risultati“a significant decrease in sugars and an increase in total phenolics and antioxidant activity in biodynamically treated grapes” (p. 5) – all’applicazione del Preparato 500. Ma senza un adeguato controllo placebo questo salto logico è insostenibile: come distinguere l’effetto della “pozione biodinamica” da quello di fattori molto più concreti e plausibili come microclima, esposizione solare, variabilità del suolo o semplici disomogeneità nell’irrigazione?

Gli stessi autori ammettono che la variabilità ambientale è enorme: “soil heterogeneity and microclimatic differences strongly influenced metabolite composition” (p. 6). Eppure, attribuiscono al trattamento biodinamico differenze che potrebbero essere spiegate benissimo da questi fattori.

Ecco il nodo: la biodinamica viene trattata come variabile determinante quando, in realtà, manca la dimostrazione del nesso causale. Si confonde la correlazione con la causa, sostituendo la fatica della verifica sperimentale con il fascino della narrazione esoterica. In altre parole, strumenti scientifici tra i più potenti oggi disponibili vengono usati correttamente per produrre dati robusti, ma poi piegati a interpretazioni che appartengono più al mito che alla scienza. È come se un telescopio di ultima generazione fosse puntato verso il cielo non per studiare le galassie, ma per cercare gli influssi astrali di cui parlano gli oroscopi.

Quando i numeri non tornano

Tra i lavori più citati a sostegno della biodinamica c’è l’articolo di Zaller e Köpke pubblicato su Biology and Fertility of Soils nel 2004, che confronta letame compostato tradizionale e letame compostato con “preparati” biodinamici in un esperimento pluriennale. Sulla carta, il disegno sperimentale sembra solido: rotazioni colturali, repliche, parametri chimici e biologici del suolo.

Ma basta entrare nei dettagli per accorgersi delle crepe. Innanzitutto, gli autori parlano di quattro trattamenti, ma l’unico vero confronto rilevante – biodinamico vs tradizionale – è reso ambiguo dal fatto che manca un controllo cruciale: il letame senza alcuna applicazione (no FYM) è incluso, ma non permette di distinguere se le differenze dipendano dalle preparazioni biodinamiche o, banalmente, dalla sostanza organica. In altre parole, non è possibile stabilire se l’“effetto” sia biodinamico o semplicemente concimante.

In secondo luogo, molte delle differenze riportate sono minime, al limite della significatività statistica, e oscillano addirittura in direzioni opposte tra i diversi strati di suolo (es. la respirazione microbica più bassa con tutti i preparati a 0–10 cm, ma più alta col solo Achillea a 10–20 cm: Fig. 1). Questo non è un segnale di coerenza biologica, ma di rumore sperimentale.

E poi ci sono le rese: tabella 3 mostra chiaramente che le differenze tra preparati e non-preparati non sono mai significative. In pratica, dopo nove anni di sperimentazione, la produttività dei sistemi resta identica, indipendentemente dall’uso o meno dei preparati.

Il colpo finale arriva dall’interpretazione: gli autori ammettono che “how those very low-dose preparations can affect soil processes is still not clear” (p. 228), ma subito dopo ipotizzano meccanismi fumosi come “microbial efficiency” o “stress reduction” senza fornire prove solide. Non sorprende che l’articolo sia diventato un riferimento per i sostenitori della biodinamica: fornisce grafici, tabelle e un lessico tecnico, ma dietro la facciata la sostanza è debole.

In sintesi, questo lavoro non dimostra affatto l’efficacia dei preparati biodinamici: mostra soltanto che il letame fa bene al suolo, una banalità agronomica travestita da scoperta.

Mappatura, non validazione

Giusto per concludere questa breve revisione critica di qualche lavoro sulla biodinamica, prendo in considerazione una review pubblicata su Organic Agriculture che ha analizzato 68 studi sull’agricoltura biodinamica. Gli autori segnalano effetti positivi su suolo e biodiversità, soprattutto in aree temperate, sostenendo che “most studies reported improvements in soil quality parameters, biodiversity, and crop quality under biodynamic management” (p. 3).

Il problema è che si tratta di una rassegna descrittiva, non critica. Gli stessi autori ammettono che “we did not perform a formal quality assessment of the included studies” (p. 2). In altre parole, nessuna valutazione della robustezza metodologica, della significatività statistica o della replicabilità dei risultati. Non hanno fatto, insomma, quello che ho fatto io con le critiche riportate nei paragrafi precedenti.

Non solo: la review mette nello stesso calderone pratiche agricole consolidate (rotazioni, compost, minore uso di chimica) e l’uso dei preparati biodinamici, facendo apparire i benefici come frutto della biodinamica tout court. Un artificio retorico che sposta l’attenzione dall’agronomia alla magia.

Il risultato è esattamente quello che Enrico Bucci definì su Il Foglio una “eterna review”: un elenco di lavori, non una loro valutazione critica. Utile come catalogo, ma totalmente inutile come prova di validazione scientifica. Insomma, un inventario ordinato, non una prova di efficacia: la scienza qui rimane alla porta, mentre la retorica magica occupa la scena.

La fatica della demistificazione scientifica

Arrivati a questo punto, vale la pena sottolineare un aspetto che spesso sfugge a chi guarda la scienza dall’esterno. Smontare lavori che si travestono da scienza non è un passatempo da tastiera né un esercizio da poltrona. È un percorso lungo, faticoso e a tratti logorante. Perché?

Per prima cosa bisogna leggere gli articoli nella loro interezza, riga dopo riga, spesso decifrando un linguaggio tecnico volutamente denso. Poi serve una conoscenza approfondita delle metodologie: saper distinguere un NMR da una cromatografia, sapere cosa può misurare davvero un test enzimatico e cosa invece viene gonfiato nell’interpretazione. Infine, è indispensabile una robusta esperienza nella progettazione sperimentale: senza questa non ci si accorge dei bias nascosti, dei controlli mancanti, delle conclusioni che vanno ben oltre i dati.

E tutto ciò richiede tempo, pazienza e un certo spirito combattivo.  La scienza procede per tentativi ed errori. Un lavoro pubblicato non necessariamente è validoLa pubblicazione è solo il primo gradino. La vera prova arriva dopo, quando la comunità scientifica lo sottopone a un esame collettivo, minuzioso, implacabile: esperti che “fanno le pulci” a ogni cifra, a ogni tabella, a ogni esperimento. Se il lavoro è solido, resiste e diventa pietra miliare. Se è fragile, si sgretola in fretta e viene dimenticato.

Ecco perché la demistificazione è così importante e così dura: perché si combatte con armi scientifiche contro narrazioni che usano il fascino del mito. E i lavori sulla biodinamica, quando passano sotto questo setaccio, puntualmente crollano.

Conclusione: un fallimento annunciato

Il quadro che emerge è inequivocabile. Studi ben confezionati ma concettualmente vuoti, prove senza controlli, numeri sbagliati, review che confondono agronomia con magia. Tutto ciò che funziona nelle aziende biodinamiche non è esclusivo della biodinamica: è semplice agronomia, già consolidata nel biologico e perfezionata nell’integrato.

Il resto – corna interrate, cicli cosmici, preparati miracolosi – non resiste alla prova della scienza. La biodinamica cerca da oltre un secolo legittimazione, ma ogni volta che la ricerca prova a verificarla seriamente, la sua fragilità diventa evidente. Non è agricoltura del futuro, ma un mito che il tempo ha già smentito.

A questo punto, un lettore non addetto potrebbe chiedersi: “Ma se è così fragile, come mai questi studi vengono pubblicati? Possibile che i revisori non se ne accorgano? E come faccio io, dall’esterno, a non fidarmi di ciò che appare su riviste qualificate, persino con un buon Impact Factor?”

La risposta è meno misteriosa di quanto sembri. Come ho già scritto nel paragrafo precedente, la pubblicazione è solo il primo passo: significa che un articolo ha superato un filtro minimo di qualità, non che sia una verità scolpita nel marmo. La peer review non è un tribunale infallibile: è fatta da esseri umani, spesso con tempi stretti e competenze specifiche. Alcuni errori sfuggono, altre volte ci si concentra più sulla tecnica che sulla sostanza. Succede che un lavoro ben scritto e infarcito di strumentazioni sofisticate riesca a passare, anche se le conclusioni sono deboli.

La differenza la fa il tempo e la comunità scientifica. È il vaglio collettivo, fatto di discussioni, repliche, critiche, tentativi di replica sperimentale, che separa ciò che rimane da ciò che evapora. Ed è un processo lento e faticoso, che richiede esperienza, attenzione e anche una certa dose di ostinazione.

Ecco perché non basta fidarsi di un titolo altisonante o di una rivista con un buon IF. Bisogna guardare dentro i lavori, leggerli, pesarli, verificarli. Lo facciamo noi scienziati, ed è una parte del nostro mestiere che non fa notizia, ma è essenziale: distinguere i dati solidi dai castelli di carta.

E ogni volta che la biodinamica entra in questo setaccio, il risultato è lo stesso: crolla.

Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci

Ci risiamo! Più volte ho parlato di biodinamica, ma, come sempre accade, questa pratica sembra risorgere dalle ceneri come la fenice, un essere mitologico che ben rappresenta l’impianto fantastico da cui trae origine. Stavolta a riproporla in chiave “scientifica” è un articolo apparso su Terra & Vita l’11 agosto 2025 a firma di Carlo Triarico, presidente dell’Associazione per l’Agricoltura Biodinamica:
👉 Agricoltura biodinamica e ricerca scientifica, il dialogo continua

Come al solito, ci troviamo di fronte a un testo che cerca di accreditare la biodinamica usando il linguaggio della scienza e richiamando collaborazioni con enti di ricerca. Vale la pena analizzare punto per punto le affermazioni contenute nell’articolo, per capire cosa c’è di sostanza e cosa invece è pura retorica.

La premessa retorica

“La crisi ambientale impone nuove pratiche rigenerative, accompagnate da un solido impianto di validazione scientifica.”

Che la crisi ambientale e climatica sia una realtà innegabile è fuori discussione. Nessuno scienziato serio la nega. Ma proprio perché la crisi è reale, il richiamo a essa non può essere usato come cavallo di Troia per giustificare qualunque pratica, tanto meno quelle nate da premesse esoteriche. È un classico espediente retorico: evocare un problema grave e condiviso per darsi legittimità, senza però dimostrare che la soluzione proposta sia davvero efficace.

Il termine “pratiche rigenerative” è suggestivo ma vago. Rigenerare cosa? In che modo? Con quali meccanismi verificabili? Senza una definizione chiara, si resta nell’ambito dello slogan. La biodinamica viene così presentata come medicina miracolosa, ma senza che siano forniti protocolli scientifici in grado di dimostrare causalità tra pratiche e risultati.

Infine, parlare di “validazione scientifica” è improprio. La scienza non “valida” come fosse un ente certificatore che mette bollini di approvazione. La scienza funziona per ipotesi sottoposte a prove, dati che devono essere replicabili, esperimenti che altri ricercatori possono confermare o smentire. Se un modello agronomico ha basi solide, non c’è bisogno di rivestirlo di retorica: i dati parlano da soli.

La verità è che quando si tratta di biodinamica, si invoca la scienza come un orpello decorativo, ma si evita accuratamente di sottoporre al vaglio critico proprio i capisaldi del metodo — i preparati, le diluizioni omeopatiche, i cicli cosmici. Su questi aspetti, che costituiscono l’anima della biodinamica, non esiste alcuna evidenza.

In altre parole: usare la crisi climatica come giustificazione per promuovere pratiche prive di fondamento non è un’operazione scientifica, ma retorica.

La “visione sistemica”

“La biodinamica, con la sua visione sistemica e la cura della terra, ha molto da offrire in termini di sostenibilità.”

Visione sistemica” è un’espressione ad alto impatto emotivo, che sembra evocare profondità e modernità di pensiero. Ma è un concetto che, applicato così, resta puramente decorativo. In agronomia la gestione integrata dei sistemi agricoli è già una realtà da decenni: rotazioni colturali, pratiche conservative, uso oculato delle risorse idriche, incremento della sostanza organica del suolo. Tutti questi approcci rientrano già da tempo nell’agricoltura biologica, nella lotta integrata e nei sistemi sostenibili, senza bisogno di ricorrere a cosmologie esoteriche.

Attribuire alla biodinamica una presunta “visione sistemica” è dunque un’operazione di maquillage: si prende un concetto scientificamente serio, lo si ammanta di suggestioni e lo si appiccica a pratiche che con la scienza hanno poco a che fare. In realtà, la biodinamica non porta alcuna innovazione metodologica: si limita a riproporre tecniche già note in agricoltura ecocompatibile, aggiungendo però un corredo rituale che nulla aggiunge né alla produttività né alla sostenibilità.

È come se qualcuno prendesse l’omeopatia e la presentasse come “medicina olistica sistemica”: un modo elegante per mascherare l’assenza di meccanismi verificabili dietro un linguaggio affascinante. Allo stesso modo, dire che la biodinamica ha “molto da offrire” in termini di sostenibilità è fuorviante: ciò che funziona non è la biodinamica, ma le stesse pratiche agronomiche già validate che essa incorpora al suo interno.

In sintesi, la “visione sistemica” non è un portato della biodinamica: è un concetto scientifico e agronomico che le viene arbitrariamente attribuito per conferirle un’aura di credibilità.

Le collaborazioni scientifiche

“Abbiamo collaborato con CREA, Università di Firenze, Università di Salerno, CERMANU, SISB…”

E qui scatta il gioco delle citazioni, un artificio retorico ben collaudato: nominare enti di ricerca e università serve a costruire una patina di autorevolezza, come se la sola menzione bastasse a trasferire credibilità scientifica. Ma la realtà è più complessa.

Che università e centri di ricerca abbiano svolto studi sulla fertilità del suolo, sulla biodiversità o sull’impatto ambientale delle pratiche agricole è un dato di fatto. Questo, però, non equivale ad aver avallato i principi fondanti della biodinamica, che restano di natura esoterica. Bisogna distinguere nettamente:

  • quando si studiano pratiche agronomiche comuni, come la riduzione dei fertilizzanti di sintesi (cioè sistemi inorganici), l’incremento della sostanza organica o la gestione integrata del terreno, si sta facendo agronomia.
  • quando invece si invocano corna di vacca interrate, preparati dinamizzati in acqua agitata ritualmente, o influssi cosmici legati alla posizione della Luna, si entra nell’ambito del rituale, non della ricerca scientifica.

Mescolare i due livelli, come avviene sistematicamente nei comunicati del mondo biodinamico, è un’operazione retorica: si confonde il rigore della scienza con il linguaggio mistico, sperando che la rispettabilità della prima copra le fragilità della seconda.

In altre parole: se un’università conduce uno studio sulla biodiversità in un’azienda biodinamica, il dato che ottiene riguarda la biodiversità in quell’azienda, non la validazione delle teorie di Steiner. Dire il contrario equivale a dire che se un medico misura la pressione a un paziente che porta un amuleto al collo, allora lo studio conferma l’efficacia dell’amuleto.

Il problema, dunque, non è la collaborazione in sé, ma il suo uso strumentale: un modo per presentare come “scientificamente supportato” ciò che resta, nei suoi fondamenti, privo di basi scientifiche.

L’azienda modello e la certificazione Demeter

“Le aziende certificate Demeter come Lacalamita Rosa mostrano risultati significativi e attraggono nuovi produttori.”

Portare ad esempio aziende di successo è una strategia comunicativa potente: un nome evocativo, qualche dato positivo e il lettore medio è portato a pensare che il merito sia tutto della biodinamica. Ma il ragionamento è fuorviante.

Il successo commerciale o l’apprezzamento dei consumatori non dimostrano di per sé la validità scientifica di un metodo. Un’azienda può prosperare per molte ragioni: la qualità intrinseca del suolo, la competenza agronomica di chi la conduce, le condizioni climatiche favorevoli, oppure semplicemente un buon posizionamento di mercato. Attribuire automaticamente questi risultati alla biodinamica equivale a confondere i fattori: è il tipico errore di scambiare correlazione per causalità.

Quanto alla certificazione Demeter, non si tratta di un riconoscimento indipendente né neutrale. È un marchio privato, gestito dal movimento biodinamico stesso, che valuta la conformità delle aziende a un disciplinare interno. E questo disciplinare, lungi dall’essere scientifico, prescrive pratiche rituali che includono i famosi preparati e le procedure esoteriche steineriane. Parlare quindi di “standard oggettivi” è improprio: non si tratta di oggettività scientifica, ma di coerenza con un regolamento autoreferenziale.

Per chiarire con un paragone: dire che un’azienda è “validata scientificamente” perché certificata Demeter è come dire che un club di astrologi garantisce l’accuratezza dell’oroscopo dei suoi membri. Vale come appartenenza a una comunità che condivide gli stessi rituali, ma non come dimostrazione di efficacia.

In definitiva, l’esempio delle aziende modello e della certificazione Demeter serve a costruire un racconto accattivante, ma non sposta di un millimetro la questione centrale: i principi fondanti della biodinamica restano privi di fondamento scientifico.

Lo studio con NMR sull’uva da tavola

“Gli studi con spettroscopia H-NMR hanno mostrato parametri qualitativi superiori nell’azienda biodinamica.”

Qui si tocca un aspetto che, letto in fretta, sembra confermare in pieno la narrazione biodinamica: un’analisi sofisticata, condotta con uno strumento scientifico avanzato, avrebbe mostrato differenze qualitative a favore dell’azienda biodinamica. Ma la realtà, ancora una volta, è diversa.

Innanzitutto, va chiarito cosa significhi “parametri qualitativi superiori”. Una differenza nei profili metabolomici non equivale automaticamente a un miglioramento. In metabolomica, infatti, i dati descrivono variazioni nella concentrazione di certi composti, ma la loro interpretazione dipende dal contesto e da ulteriori correlazioni con parametri sensoriali, nutrizionali o tecnologici. Dire che un prodotto è “migliore” perché diverso non ha alcun senso scientifico.

In secondo luogo, anche ammesso che un’azienda biodinamica mostri parametri più favorevoli, ciò non dimostra affatto che la causa sia la biodinamica in sé. Gli studi comparativi, per essere robusti, devono isolare le variabili: stesse condizioni pedoclimatiche, stesso vitigno, stessa gestione agronomica, stesso livello di esperienza dell’agricoltore. Nella realtà, però, un’azienda non è un laboratorio sterile: il suolo, il microclima, l’età delle piante, persino la cura quotidiana nella gestione possono influenzare i risultati.

Attribuire quindi le differenze osservate ai preparati steineriani o all’influenza dei cicli cosmici è un salto logico arbitrario. Sarebbe come dire che, se una squadra di calcio vince una partita, il merito è della maglia portafortuna indossata dall’allenatore. Correlazione e causalità, ancora una volta, vengono confuse deliberatamente.

Infine, l’uso stesso di tecniche avanzate come la spettroscopia NMR rischia di funzionare da “effetto scenico”: uno strumento complesso viene chiamato in causa per impressionare il lettore, non per fornire prove decisive. Ma la scienza non si misura dalla sofisticazione dello strumento, bensì dalla solidità del disegno sperimentale e dalla replicabilità dei risultati.

In sintesi: se anche uno studio rileva differenze, non è corretto attribuirle tout court alla biodinamica. La vera prova mancherebbe proprio là dove servirebbe: dimostrare che i precetti esoterici abbiano un effetto misurabile e riproducibile. E questa prova, ad oggi, non esiste.

Agroecologia e dieta mediterranea

“La biodinamica si integra con i principi dell’agroecologia e della Dieta Mediterranea sostenibile.”

Questo passaggio è un esempio chiaro di appropriazione semantica: si accostano concetti scientificamente fondati (agroecologia e Dieta Mediterranea) a un paradigma privo di basi razionali come la biodinamica, nel tentativo di trasferire prestigio dall’uno all’altro.

L’agroecologia è un approccio interdisciplinare che combina scienze agrarie, ecologia, economia e sociologia per rendere sostenibili i sistemi agricoli. La Dieta Mediterranea, invece, non è affatto un modello antico e immutato: è una costruzione recente, nata negli Stati Uniti negli anni ’50-’60 grazie agli studi di Ancel Keys, che osservò la maggiore longevità di alcune popolazioni del bacino mediterraneo. Da quelle osservazioni derivò un modello alimentare “idealizzato”, promosso poi a livello internazionale. Nonostante le sue origini moderne e in parte commerciali, la Dieta Mediterranea si è guadagnata un solido supporto scientifico: numerosi studi hanno confermato la correlazione con benefici per la salute, e l’UNESCO l’ha riconosciuta come patrimonio culturale immateriale per il suo valore sociale e culturale.

La biodinamica, al contrario, nasce da premesse esoteriche di Rudolf Steiner e non ha alcuna validazione scientifica. Metterla sullo stesso piano dell’agroecologia e della Dieta Mediterranea è quindi fuorviante: mentre le prime si fondano su dati, osservazioni e modelli riproducibili, la biodinamica resta ancorata a rituali cosmici e pratiche prive di riscontro sperimentale.

Il meccanismo comunicativo è evidente: evocare concetti positivi e consolidati per “nobilitare” la biodinamica. Ma, in realtà, tutto ciò che appare compatibile con l’agroecologia o con il modello mediterraneo (rotazioni, compostaggio, riduzione degli input chimici) non è esclusivamente biodinamico: appartiene già all’agricoltura biologica e sostenibile. L’unico elemento davvero caratterizzante della biodinamica — i preparati e i rituali steineriani — non ha alcun fondamento scientifico.

In definitiva, questo accostamento non rafforza la biodinamica: ne evidenzia piuttosto la debolezza, perché dimostra il suo costante bisogno di appoggiarsi ad altro per sembrare credibile.

Standard e protocolli “oggettivi”

“La biodinamica è identificata da standard e protocolli oggettivi e soggetti a verifica.”

Questa affermazione suona rassicurante, ma è profondamente ambigua. Nel linguaggio della scienza, “standard oggettivi” significa procedure condivise, ripetibili, verificabili da chiunque e soprattutto indipendenti da appartenenze ideologiche. Nel caso della biodinamica, invece, gli “standard” non sono altro che le regole fissate dal marchio Demeter, ovvero dall’organizzazione stessa che promuove la biodinamica.

Questi protocolli prevedono sì pratiche agronomiche comuni e sensate (rotazioni, compostaggio, attenzione alla fertilità del suolo), ma includono anche prescrizioni rituali come i preparati dinamizzati o le corna interrate seguendo cicli lunari e planetari. Non c’è nulla di scientifico in questo: sono norme interne a una comunità, autoreferenziali, che si verificano in base alla loro stessa coerenza interna, non sulla base di prove oggettive.

È come dire che l’astrologia è “oggettiva” perché esistono regole precise per calcolare un oroscopo. Certo, il calcolo segue un protocollo, ma ciò non significa che il risultato abbia validità scientifica. Allo stesso modo, rispettare il disciplinare Demeter dimostra solo che un’azienda aderisce a un regolamento, non che i principi steineriani abbiano efficacia reale.

Il vero paradosso è che il richiamo alla “verifica” finisce per essere un gioco di specchi: chi controlla la conformità non valuta i risultati scientifici delle pratiche, ma solo la fedeltà a un rituale codificato. È un sistema chiuso, che si autolegittima senza mai confrontarsi con il metodo scientifico.

In sintesi: parlare di “protocolli oggettivi” in biodinamica è un abuso del linguaggio scientifico. Non si tratta di oggettività, ma di appartenenza. Non si tratta di verifiche, ma di rituali. E questa differenza non è un dettaglio semantico: è il punto che segna la distanza tra scienza e pseudoscienza.

Conclusione

Ancora una volta la biodinamica si presenta con abiti nuovi, evocando crisi ambientali, citando enti di ricerca, richiamando agroecologia e dieta mediterranea, esibendo certificazioni e dati metabolomici. Ma al di là della patina, la sostanza resta immutata: i capisaldi steineriani non hanno alcuna validazione scientifica.

Tutto ciò che funziona nelle aziende biodinamiche non è esclusivo della biodinamica: è semplice agronomia, già consolidata nel biologico e perfezionata oggi nell’agricoltura integrata. La differenza è che qui si parla di conoscenze scientifiche, non di rituali esoterici. Ciò che resta tipicamente biodinamico non ha alcuna evidenza e non può essere considerato scienza.

La conclusione è inevitabile: la biodinamica non rappresenta un modello innovativo di sostenibilità, ma un insieme di pratiche esoteriche rivestite di retorica scientifica. E confondere scienza e rituale non aiuta l’agricoltura a diventare più sostenibile: la espone, semmai, al rischio di perdere credibilità proprio quando la società ha più bisogno di rigore, trasparenza e soluzioni reali.

Come la fenice, la biodinamica sembra risorgere dalle proprie ceneri: ma, a differenza del mito, dalle sue ceneri non nasce mai scienza.

Le interviste impossibili: incontriamo Michael Faraday

Lasciata Parigi, dove ho avuto l’onore di dialogare con Antoine Lavoisier, faccio rotta verso l’Inghilterra. È il 1831 — almeno, così mi piace pensare — e la bruma londinese avvolge i sobborghi di Newington Butts. Qui, in una piccola casa modesta, mi attende Michael Faraday: chimico, fisico, autodidatta, uomo dalla curiosità inesauribile. Dai suoi esperimenti nascono concetti e scoperte che hanno plasmato la chimico-fisica moderna: l’elettromagnetismo, le leggi dell’elettrolisi, l’introduzione di termini come “anodo” e “catodo”, e quell’inimitabile ciclo di lezioni che raccolse in The Chemical History of a Candle. Un uomo che, pur privo di studi matematici formali, ha saputo leggere nel linguaggio segreto della natura e tradurlo in esperimenti chiari e affascinanti.

— Buongiorno, Professor Faraday. Sono onorato che lei abbia voluto incontrarmi.
— Buongiorno a lei, e benvenuto a Londra. Sono lieto di parlare con chi mostra curiosità per la scienza, perché la curiosità è la fiamma che accende ogni scoperta.

— Professor Faraday, il suo nome è legato a scoperte epocali in campi diversi. Partiamo dall’elettrochimica: come nacquero le sue famose leggi dell’elettrolisi?
— Tutto è cominciato facendo esperimenti, con tanta pazienza e un po’ di ostinazione. L’elettrolisi, per dirla semplice, è quando si fa passare corrente elettrica in un liquido — come una soluzione salina — e agli elettrodi avvengono reazioni chimiche: si formano gas, si depositano metalli, o si liberano altre sostanze. Mi resi conto che la quantità di sostanza prodotta non era mai a caso: più elettricità facevo passare, più materia ottenevo. Questo è il cuore della mia prima legge. Poi, cambiando sostanza — oro, rame, idrogeno, ossigeno… — vidi che, se facevo passare sempre la stessa “dose” di elettricità, ottenevo quantità diverse di materiale, ma sempre in proporzione a un valore caratteristico di quella sostanza, il cosiddetto “peso equivalente”. In fondo, quelle regole erano già lì, scritte nella natura: io ho solo avuto la pazienza di osservarle e metterle nero su bianco.

— Questo è quanto hanno affermato, tra le righe, anche il Professor Boyle e Monsieur Lavoisier che, immagino, lei conosca.
— Eccome se li conosco! Boyle, con il suo modo rigoroso di sperimentare, ha aperto la strada a tutti noi: era convinto che le leggi della natura fossero lì da scoprire, non da inventare. E Lavoisier… be’, lui ha saputo dare un ordine e un linguaggio alla chimica. Ha dimostrato che nulla si crea e nulla si distrugge, e che il compito dello scienziato è trovare il filo che lega ogni trasformazione. Io ho solo continuato quel lavoro, seguendo il filo della corrente elettrica.

— Quindi, lei ha seguito le orme di monsieur Lavoisier, dimostrando in modo indipendente che aveva ragione.
— Direi piuttosto che ho camminato su un sentiero che lui aveva già tracciato, ma guardando dettagli che, ai suoi tempi, erano nascosti. Lavoisier aveva ragione nel dire che la materia si conserva e che le reazioni seguono leggi precise. Io ho potuto vedere quelle stesse leggi in azione nei processi elettrici, e mostrarne il funzionamento quantitativo. In un certo senso, la mia elettrochimica è stata la prova sperimentale di un’idea che lui aveva reso universale.

— E come ha detto monsieur Lavoisier, la scienza è un gioco corale…
— …esattamente. Non c’è un singolo musicista che possa suonare tutta la sinfonia da solo. Ognuno aggiunge una nota, un tema, un’armonia. Boyle ha messo le fondamenta del metodo sperimentale, Lavoisier ha dato ordine e linguaggio alla chimica, e io ho avuto la fortuna di inserirvi l’elettricità come nuova voce. La scienza avanza così: un’idea ispira un’altra, un esperimento ne provoca cento nuovi. È un lavoro che attraversa generazioni, senza gelosie — o almeno, così dovrebbe essere.

— E in questo coro, lei ha introdotto un tema che ha cambiato per sempre la fisica: l’induzione elettromagnetica.
— Fu una delle mie scoperte più care. E nacque da una domanda molto semplice: se una corrente elettrica può generare un campo magnetico, come aveva mostrato Oersted, non sarà possibile anche il contrario? Mi misi al banco di lavoro con fili di rame, bobine, magneti e molta pazienza. Scoprii che muovendo un magnete vicino a un circuito, o variando il campo magnetico che lo attraversa, in quel circuito compare una corrente. Una corrente “indotta”. Non serviva contatto diretto: il cambiamento del campo era sufficiente.

— Un principio che oggi è alla base dei generatori e dei trasformatori elettrici…
— All’epoca non pensavo certo alle centrali elettriche: vedevo solo un nuovo modo in cui natura e movimento dialogano. Ma la bellezza della scienza è che ciò che nasce da curiosità pura, un giorno, può cambiare il mondo.

— Questa è l’idea della ricerca di base, un tipo di ricerca che, come avrà sicuramente saputo, oggi viene ritenuta inutile. Oggi, nella stesura dei progetti per ottenere finanziamenti, occorre anche descrivere i risultati attesi e le possibili applicazioni…
— Ah, capisco. Ma vede, la ricerca di base è come seminare in un terreno fertile: non si può sempre sapere in anticipo quale frutto crescerà, né quando. Se nel 1831 mi avessero chiesto quali applicazioni pratiche avrei tratto dall’induzione elettromagnetica, avrei potuto solo dire: “Ancora non lo so, ma è un fenomeno reale e va compreso”. Eppure, da quella curiosità oggi nascono la produzione e la distribuzione dell’elettricità. La scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.

— Bellissimo ciò che ha detto… la scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.
— E glielo posso raccontare con un piccolo episodio personale. Quando iniziai a parlare dei miei esperimenti sull’elettricità, alcuni colleghi mi chiesero: “Ma a cosa serve tutto questo? Cosa produrrà di utile?” Io risposi semplicemente: “Non lo so ancora… ma quando lo scoprirò, sarà più utile di qualsiasi risposta affrettata”. Ridono ancora, quando lo racconto, perché nessuno allora poteva immaginare che quei giochi con fili e magneti un giorno avrebbero illuminato case, fabbriche e città intere. La curiosità pura è stata il mio unico motore. Non ho mai pensato che l’utilità pratica dovesse precedere la comprensione; credo fermamente che le leggi della natura si rivelino meglio a chi le osserva con meraviglia e senza fretta.

— È davvero straordinario come la curiosità pura abbia portato a scoperte così rivoluzionarie… eppure, lei non si è fermato all’elettricità: ha anche esplorato la luce.
— Sì, e anche qui è stata la stessa curiosità a guidarmi. Nel 1845, mentre studiavo l’influenza dei campi magnetici sulla materia, mi venne in mente di verificare se la luce potesse essere influenzata da un campo magnetico. Preparai un esperimento semplice: un raggio di luce che passava attraverso una sostanza trasparente immersa in un campo magnetico. Con grande stupore, notai che il piano di polarizzazione della luce ruotava leggermente.

— Questo è ciò che oggi chiamiamo effetto Faraday
— È il primo esempio noto di interazione tra luce e magnetismo, e dimostrò che la luce e il magnetismo non sono fenomeni separati, ma legati da un principio comune. All’epoca non conoscevo l’equazione di Maxwell — che sarebbe arrivata solo qualche decennio dopo — ma intuivo che elettricità, magnetismo e luce fossero fili di uno stesso tessuto. Il mio compito era solo tirare uno di quei fili per vedere come vibrava l’intero intreccio.

— Professor Faraday, lei ha dimostrato di saper fare scoperte enormi senza una formazione matematica formale. Come ci è riuscito?
— Non ho mai considerato la matematica un ostacolo insormontabile, ma uno strumento che, se necessario, avrei potuto imparare. La mia forza era nel laboratorio, nell’osservazione meticolosa, nell’immaginare esperimenti semplici che potessero dare risposte chiare. Credevo — e credo ancora — che il pensiero sperimentale sia universale: se la natura ti mostra un fenomeno, puoi comprenderlo anche senza formule complesse, purché tu abbia pazienza, rigore e umiltà.

— A proposito di umiltà, lei ha spesso rifiutato titoli e onori…
— Sì, perché il vero riconoscimento per uno scienziato non è una medaglia, ma vedere che le sue scoperte entrano a far parte della vita di tutti. Ho sempre pensato che la scienza debba restare al servizio dell’uomo, non dell’ego dello scienziato.

— …che non è esattamente quello che accade oggi, quando molti di noi — me compreso — provano un certo piacere a stare sotto i riflettori. E glielo confesso: quando lo dico ai colleghi, vengo anche preso per pazzo.
— Forse perché oggi la visibilità non porta solo applausi, ma anche finanziamenti. E questi, lo so bene, possono arrivare da ogni direzione, compresa quella di chi vende illusioni ben confezionate: omeopatia, biodinamica e altre amenità. Ai miei tempi, la fama non apriva così facilmente le casse di mecenati o aziende; e comunque, il rischio di piegare la scienza a interessi di parte era sempre in agguato. Il punto è ricordare che il palcoscenico passa, mentre la verità scientifica resta — e che oggi, troppo spesso, la dignità e l’autorevolezza scientifica vengono barattate per un piatto di lenticchie.

— Professor Faraday, molti la ricordano anche per le sue celebri Christmas Lectures alla Royal Institution. Come nacque l’idea de La storia chimica di una candela?
— Ogni anno, a Natale, tenevo delle lezioni per i ragazzi. Volevo offrire loro un’esperienza che fosse insieme semplice e affascinante. Scelsi la candela perché è un oggetto comune, familiare a tutti, ma dietro la sua fiamma si nasconde un mondo di fenomeni fisici e chimici.

— Qual era il suo obiettivo nel parlare di una cosa così quotidiana?
— Dimostrare che la scienza non è confinata nei laboratori: è dappertutto. Una candela, accendendosi, mette in scena combustione, convezione, cambiamenti di stato, reazioni chimiche complesse. Volevo che i giovani capissero che anche un gesto banale può essere una porta verso grandi scoperte.

— Qual è il primo segreto che una candela rivela?
— Che la fiamma non è materia, ma energia in azione. La cera, riscaldata, diventa liquida, poi gassosa; il gas brucia liberando calore e luce. È un ciclo continuo di trasformazioni: solido, liquido, gas, e di nuovo energia.

— Lei parlava spesso di osservare prima di spiegare. Come lo applicò in queste lezioni?
Invitavo i ragazzi a guardare: il colore della fiamma, il fumo che si sprigiona quando si spegne la candela, la forma della goccia di cera che si scioglie. Solo dopo passavamo a spiegare il perché di ciò che avevano visto. La curiosità nasce dall’osservazione diretta.

— In fondo, è un po’ la stessa filosofia della sua ricerca…
Sia che studi l’elettromagnetismo, sia che guardi una candela, l’approccio è lo stesso: osservare con attenzione, porre domande, non dare nulla per scontato.

— Cosa pensa che La chimica di una candela possa insegnare ancora oggi?
— Che la scienza è nelle mani di chi sa guardare. Non importa se il laboratorio è una stanza piena di strumenti o il tavolo di cucina: ciò che conta è la capacità di meravigliarsi e di cercare risposte.

— Sa che queste sue parole potrebbero essere usate oggi, nella mia epoca, da complottisti di ogni risma? Gente che si riempie la bocca di “pensiero indipendente”, “Galilei era uno contro tutti” e così via cantando…
— Oh, conosco bene il rischio. Ma vede, c’è una differenza sostanziale: il vero pensiero indipendente nasce dallo studio rigoroso e dall’osservazione onesta della realtà; quello dei complottisti nasce spesso dal rifiuto pregiudiziale delle prove. Galilei non era “uno contro tutti” perché amava contraddire: era uno che portava dati, misure, esperimenti ripetibili. Se oggi qualcuno brandisce il suo nome per giustificare opinioni infondate, sta confondendo la curiosità con l’arroganza e il metodo scientifico con la chiacchiera da taverna. E guardi che lo stesso vale per una candela. Posso raccontare che la fiamma è alimentata da minuscole fate luminose che ballano nell’aria: suona poetico, e qualcuno potrebbe pure crederci. Ma basta un semplice esperimento per dimostrare che la luce e il calore vengono dalla combustione di vapori di cera. La scienza non è negare la fantasia — è verificarla.

— Professor Faraday, se dovesse riassumere in poche parole il senso del suo lavoro, cosa direbbe?
— Direi che ho passato la vita a inseguire scintille: alcune erano letterali, altre metaforiche. Ma ogni scintilla, se seguita con attenzione, può accendere una fiamma di conoscenza.

Mentre lascio la sua casa, il cielo di Londra è ancora avvolto nella bruma, ma nella mia mente resta accesa una piccola luce: quella di una candela che, sotto lo sguardo paziente di Michael Faraday, si trasforma da semplice oggetto quotidiano in una lezione eterna di curiosità, rigore e meraviglia.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra fili di rame e campi invisibili, scopriremo che la scienza può unire fenomeni che sembravano mondi separati, guidata dalla stessa curiosità che accende una fiamma e illumina una mente.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L.  Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Michael Faraday (1845) Experimental Researches in Electricity. Philosophical Transactions of the Royal Society

Michael Faraday (1866) Storia Chimica di una candela. Editori della Biblioteca Utile

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Le interviste impossibili: incontriamo Antoine Lavoisier

Dopo aver lasciato il Professor Boyle, mi reco a Parigi, in una primavera inoltrata di un anno qualsiasi della seconda metà del Settecento. Entro in un salone elegante, illuminato da candelabri e impreziosito da cristalli, dove incontro un uomo in giacca di velluto che sembra appena uscito da un dipinto di David. Nonostante la data sul calendario, lui è qui per noi: Antoine-Laurent de Lavoisier, padre della chimica moderna. Sorriso cortese, sguardo analitico. E, sì, la testa è ancora al suo posto.

— Buon pomeriggio, Monsieur Lavoisier, grazie per aver acconsentito a questa intervista impossibile. Sono appena stato dal Professor Boyle, che lei sicuramente conosce.
— Come potrei non conoscerlo? Il signor Boyle ha dato alla chimica fondamenta solide, anche se il suo flogisto… pardon, le sue idee sull’aria avrebbero avuto bisogno di una piccola revisione. Ma, senza il suo lavoro, il mio sarebbe stato molto più difficile.

— Monsieur Lavoisier, partiamo dalla domanda che tutti si fanno: è vero che ha “inventato” la chimica moderna?
— “Inventare” è un termine troppo presuntuoso, e la scienza non è mai opera di un uomo solo. Diciamo che ho messo un po’ d’ordine in un mestiere che, all’epoca, era un bazar di nomi pittoreschi, teorie fumose e descrizioni poetiche ma imprecise. Molti parlavano di “aria infuocata”, “terra fissa”, “spiriti”, senza una base quantitativa solida. Io ho cercato di sostituire questa confusione con misure accurate, esperimenti ripetibili e una nomenclatura chiara. Ho avuto la fortuna di vivere in un’epoca in cui il metodo sperimentale stava finalmente scalzando il dogma, e in cui la matematica poteva sposare il fornello: bilance accanto agli alambicchi, calcoli accanto alle osservazioni. È così che la chimica è uscita dalla bottega dell’alchimista per entrare nel laboratorio dello scienziato.

 E così è nata la famosa Legge di conservazione della massa.
— Esatto. Nulla si crea, nulla si distrugge, tutto si trasforma. È una verità semplice a dirsi, ma non scontata da dimostrare. All’epoca molti credevano ancora che durante una combustione o una reazione chimica qualcosa “sparisse” o “nascesse” dal nulla. Io ho mostrato, bilancia alla mano, che la somma delle masse dei reagenti è sempre uguale a quella dei prodotti, anche se il calore o i gas davano l’illusione del contrario. Era un principio tanto fondamentale quanto rivoluzionario, perché significava che la chimica, per essere scienza, doveva basarsi su misure precise e verificabili. E poi, si sa, una buona legge scientifica è come un buon aforisma: resta impressa nella memoria, ma deve poggiare su dati solidi per non diventare solo una frase ad effetto.

— Ci racconta della riforma della nomenclatura chimica?
— Oh, quella è stata la mia vera rivoluzione, e forse l’eredità più duratura del mio lavoro. Dare nomi logici e universali alle sostanze non è una questione di pignoleria, ma di sopravvivenza per la scienza: se non ci capiamo tra noi, non possiamo progredire. Prima di noi, ogni sostanza aveva un’infinità di nomi locali, legati alle tradizioni o alle fantasie di chi li usava: lo stesso composto poteva essere chiamato “vetriolo di Marte” in un laboratorio, “fior di ferro” in un altro e “sale verde” altrove. Per capire una reazione, bisognava prima tradurre il linguaggio dell’autore — e non sempre era possibile. Con Guyton de Morveau, Berthollet e Fourcroy abbiamo ideato un sistema basato sulla composizione chimica, in cui il nome descriveva la sostanza e non la sua storia folcloristica. È stato come passare da un dialetto confuso a una lingua comune: all’improvviso, la chimica parlava la stessa lingua da Parigi a Londra, da Berlino a Stoccolma.

— E l’ossigeno?
— Ah, il mio “bambino prediletto”! Ho dimostrato che era lui, e non qualche misteriosa sostanza immaginaria, il responsabile della combustione e della respirazione. Prima di me, molti chimici erano affezionati alla teoria del flogisto: un’entità invisibile che si sarebbe liberata durante la combustione. Era una spiegazione comoda, ma non resisteva alla prova della bilancia e dell’esperimento. Studiando i gas di Priestley e di Scheele, compresi che quella “aria particolarmente pura” non era un curiosità da collezione, ma un elemento fondamentale per sostenere la vita e il fuoco. Non tutti furono felici di sentirselo dire: cambiare paradigma è sempre doloroso, specie quando si devono abbandonare idee in cui si è investita la carriera. Ma la chimica non è un’arte di compromesso: segue le prove, non le abitudini. E l’ossigeno, con i suoi comportamenti, era una prova vivente… o, se preferisce, respirante.

— E cosa mi dice dell’azoto?
— Lo chiamai azote, “senza vita”, perché questo gas non sosteneva né la combustione né la respirazione: un’aria inerte, capace di spegnere il fuoco e soffocare gli animali. Era un nome descrittivo, figlio del mio approccio alla nomenclatura. In Inghilterra, però, preferirono chiamarlo nitrogen, “generatore di nitrati”, per via della sua presenza nei salnitri. Non mi offendo per la differenza: i nomi cambiano con le lingue e le tradizioni, ma l’importante è che tutti sappiano di cosa si sta parlando. Certo, a volte questa varietà linguistica genera confusione… ma non più di quanto non faccia la politica.

— A proposito di politica e vita pubblica, lei era anche un funzionario delle tasse. Non esattamente il lavoro più amato dal popolo…
— Vero, e non ha certo contribuito alla mia popolarità durante la Rivoluzione. Ma non ero un esattore medievale con il forcone alla porta: ero un membro della Ferme générale, un’istituzione privata che raccoglieva le imposte per conto dello Stato, e mi impegnavo soprattutto nella riforma del sistema fiscale. Sapevo bene che un’imposta mal congegnata soffoca l’economia, e che un’amministrazione corrotta soffoca la fiducia. Una parte di quelle entrate, peraltro, finiva a sostenere attività scientifiche: laboratori, strumenti, ricerche. La chimica costa, e senza risorse non si può fare. Certo, in tempi di turbolenza politica, essere associato alla riscossione delle tasse era come indossare un bersaglio sulla schiena… e il resto della mia storia dimostra quanto il bersaglio fosse ben visibile.

— Infatti, poi arrivò il 1794…
— Sì, il processo. In tre ore fui condannato a morte. Non era un’udienza, era un atto politico. Un mio collega pronunciò quella frase passata alla storia: “La Repubblica non ha bisogno di scienziati”. Peccato che invece ne avesse un disperato bisogno, allora come oggi. La ghigliottina non è mai stata un buon laboratorio, e nemmeno il sospetto ideologico, il pregiudizio o la paura del pensiero critico. Vedo che in certi Paesi, ancora oggi, si smantellano istituzioni scientifiche, si sostituiscono esperti con fedelissimi politici, si ignorano dati scomodi in nome di un’ideologia o di un calcolo elettorale. Cambiano i metodi — oggi non è più la lama di una ghigliottina, ma decreti, nomine pilotate, tagli di fondi — ma il principio è lo stesso: eliminare la scienza quando contraddice il potere. E così si condanna la società intera, perché senza conoscenza si resta in balìa dell’ignoranza e delle illusioni.

— Se potesse vedere la chimica di oggi, cosa direbbe?
— Che è meravigliosa e spaventosa al tempo stesso. Mai nella storia dell’umanità la conoscenza chimica ha avuto un potenziale così vasto: potete progettare farmaci su misura per salvare vite, creare materiali avanzatissimi, catturare l’energia del sole e del vento, ripulire acque e suoli inquinati. Allo stesso tempo, avete la capacità di alterare interi ecosistemi, accumulare sostanze tossiche che non scompaiono per secoli, e produrre armi in grado di annientare città in pochi secondi. La chimica è un linguaggio universale che la natura comprende, ma non fa sconti: ogni reazione ha conseguenze. Il problema non è la chimica in sé — che è neutrale — ma le scelte politiche, economiche e morali di chi la impiega. Una formula sulla carta è innocente; la sua applicazione, invece, può essere una benedizione o una condanna.

— E a chi inquina, cosa direbbe?
— Direi che la mia legge vale ancora: la massa non sparisce. Quello che immettete nell’ambiente, sotto forma di fumi, scorie o sostanze tossiche, non si dissolve per magia: resta, si trasforma, si accumula. I metalli pesanti finiscono nei sedimenti e nelle catene alimentari, la plastica si frantuma in particelle che respiriamo e ingeriamo, i gas serra restano intrappolati nell’atmosfera per decenni. Prima o poi, tutto vi torna indietro — nell’aria che respirate, nell’acqua che bevete, nel cibo che mangiate. In chimica, come nella vita, il bilancio deve tornare: potete rinviare il conto, ma non potete cancellarlo. La natura è un contabile inflessibile, e non concede condoni.

— Grazie Monsieur Lavoisier. È stato un onore averla potuta incontrare
L’onore è stato mio, monsieur. Ricordate: la scienza è un’opera collettiva, non il monumento di un solo uomo. Difendetela sempre perché, quando la scienza tace, la superstizione e l’arbitrio parlano più forte. E ora… il mio tempo è finito, ma le mie leggi restano.

Mi stringe la mano, elegante come quando è arrivato. E sparisce, lasciandomi la sensazione che la sua testa, oggi, servirebbe ancora.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra la fiamma tremolante di una candela, scopriremo che la luce può illuminare molto più della stanza in cui arde.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L. Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Antoine-Laurent Lavoisier (2020) Memorie scientifiche. Metodo e linguaggio della nuova chimica. A cura di Ferdinando Abbri. Edizioni Theoria

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Le interviste impossibili: incontriamo Robert Boyle

Come i miei quattro lettori sanno, sono un appassionato di chimica. Ne ho fatto la mia professione, unendo la passione per la ricerca – il mio giocattolo preferito, con cui smonto la realtà, ne indago i segreti e poi la rimonto – a quella per la didattica che, nel tempo, mi ha rivelato un lato inatteso: la voglia di rendere “digeribili” agli studenti concetti chimici anche molto complessi.

C’è poi un’altra passione: la storia della chimica. Sono convinto che solo conoscendo ciò che è accaduto in passato si possa capire come e perché una disciplina si sia sviluppata in una direzione piuttosto che in un’altra.

Da queste premesse nasce questa rubrica dal titolo: Le interviste impossibili. Si tratta una serie di incontri – ovviamente immaginari – con grandi scienziati del passato, principalmente chimici, con i quali intavolerò discussioni che potranno spaziare dalla scienza alla politica, dall’etica ad altre questioni che il dialogo potrà far emergere. Saranno conversazioni interamente frutto della mia immaginazione, ispirate alla filosofia scientifica e al pensiero della persona intervistata.

E per cominciare, chi meglio di Robert Boyle? Un uomo che, nel 1661, con Il chimico scettico, ha segnato la nascita della chimica moderna, abbandonando le nebbie dell’alchimia per abbracciare la luce della sperimentazione. Sarà lui il primo ospite di questa serie, e vi assicuro che, nonostante i suoi 400 anni portati con una certa eleganza, ha ancora parecchie cose da dire.

_______________________

Buongiorno, professor Boyle.
— Buongiorno a lei, signore. Mi perdoni se non mi alzo: questa pompa pneumatica è un po’ capricciosa e non vorrei perdere il vuoto proprio adesso.
— Vedo che la tratta con grande cura.
— Cura? Direi venerazione. È stata la mia chiave per scardinare vecchie idee. Con essa ho mostrato che l’aria non è un concetto filosofico, ma una sostanza reale, con peso, volume, pressione. Ai miei tempi, molti pensavano che la natura fosse governata da qualità misteriose, imponderabili. Io ho voluto misurare, pesare, verificare.

— E questo cambiò la chimica?
— Cambiò il modo di guardare alla materia. Prima si parlava di “aria”, “fuoco”, “acqua” e “terra” come entità quasi mistiche. Io ho voluto trattarle come sostanze concrete. Senza questa svolta, dubito che la chimica avrebbe potuto diventare lo strumento potente – e pericoloso – che è oggi.

— Pericoloso?
— Oh, sì. Ai miei tempi, il pericolo era limitato dal ritmo lento della ricerca: poche persone, pochi strumenti, pochi esperimenti. Oggi vedo una velocità inaudita: sintetizzate composti che non esistono in natura e li disperdete nell’ambiente prima ancora di comprenderne a fondo le conseguenze. Pensate alla plastica: una meraviglia della chimica moderna, ma anche un nuovo sistema chimico, onnipresente nei mari e nei corpi degli animali. Noi scienziati dobbiamo ricordare che ogni “creazione” lascia un’impronta.

— Quindi anche nel XVII secolo si poteva parlare di impatto ambientale?
— Certo, ma in forme diverse. I metallurgi avvelenavano i fiumi con le scorie, nelle città si bruciava carbone liberando fumi tossici. Noi non usavamo la parola “inquinamento”, ma ne sentivamo gli effetti: miniere abbandonate, aria irrespirabile nelle botteghe, malattie croniche tra i lavoratori. Solo che nessuno collegava questi effetti alle cause chimiche: mancava il concetto stesso di “responsabilità scientifica verso l’ambiente”.
— E come ci si è arrivati?
— È stato un percorso lento, nato dall’osservazione e dall’accumulo di prove. Con l’Ottocento e la rivoluzione industriale, l’aumento di fumi e scorie divenne innegabile; nel Novecento, con la chimica capace di produrre composti mai visti in natura, si cominciò a capire che ogni reazione ha conseguenze non solo in laboratorio, ma anche nei fiumi, nei campi e nei corpi. Gli esempi non mancano: le piogge acide dovute alle emissioni industriali, il DDT che si accumulava nelle catene alimentari, il buco nello strato di ozono causato dai clorofluorocarburi. Fu allora che l’umanità iniziò a capire che l’ambiente non era un contenitore infinito, ma un sistema delicato, capace di spezzarsi sotto il peso delle nostre stesse invenzioni. Oggi chiamate questo approccio “valutazione dell’impatto ambientale”: è la naturale estensione del metodo scientifico. Osservare, misurare e trarre conclusioni, ma applicato non solo all’esperimento, bensì alle sue conseguenze sul mondo reale. E, cosa ancora più importante, farlo prima di introdurre su larga scala una nuova sostanza o tecnologia. Tanto che in molti Paesi questo esame preventivo è diventato un obbligo di legge: un modo per ricordare che la prudenza non è un freno al progresso, ma la sua assicurazione.

— Come vede il rapporto tra scienza e politica oggi?
— Non troppo diverso da allora: la politica ama la scienza quando porta vantaggi immediati, ma la ignora – o la ostacola – quando chiede pazienza e prudenza. Ai miei tempi, un re o un mecenate finanziava un esperimento se prometteva ricchezza o prestigio; oggi, un governo o un’azienda lo finanziano se promette profitto o consenso. La differenza è che oggi gli effetti sono globali, non locali.

— E anche la scienza stessa è cambiata.
— Oh, sì. Mi avete parlato di questa massima: publish or perish, pubblica o scompari. Ai miei tempi pubblicare era un atto ponderato, spesso il lavoro di una vita. Ora vedo un’esplosione di articoli, ma molti sono come bolle di sapone: luccicanti per un attimo, poi svaniscono. Alcuni dicono poco o niente, altri celano errori gravi, e vi sono perfino casi di falsità intenzionali. Mi avete raccontato di un certo Jan Hendrik Schön, che riempì riviste prestigiose di risultati entusiasmanti sui transistor molecolari… peccato che fossero artefatti. Grafici identici per esperimenti diversi, dati “cancellati” per mancanza di spazio…
— E la comunità scientifica?
— Ha fatto ciò che doveva: ha verificato, smascherato e ritirato quegli studi. Ma il danno d’immagine resta: basta un imbroglione per far credere a molti che tutta la scienza sia marcia.

— E non è solo un problema di chi scrive articoli. Anche chi siede nei comitati scientifici ha responsabilità enormi.
— Certamente. Mettere in un comitato tecnico persone che rifiutano le basi stesse della disciplina che dovrebbero consigliare è come nominare un astrologo direttore di un osservatorio astronomico, o un alchimista a capo di un laboratorio chimico. Ai miei tempi, la Royal Society aveva un motto: Nullius in verba, “non fidarti della parola di nessuno”. Oggi dovreste aggiungere: “ma fidati dei dati”.
— E invece?
— Invece vedo che talvolta si preferisce dare spazio a voci che piacciono al pubblico, o che creano polemica, piuttosto che a quelle fondate sulla prova. È un cortocircuito pericoloso: si confonde il dibattito scientifico, che nasce dall’evidenza, con l’opinione personale, che nasce dal pregiudizio.

— Torniamo un attimo al suo Chimico scettico: il suo invito era a dubitare, a verificare.
— Sì. Lo scetticismo è la virtù cardinale dello scienziato. Senza di esso, si scivola nell’illusione. Oggi, a quanto vedo, convivono scoperte straordinarie e credenze assurde: si creano vaccini in pochi mesi e allo stesso tempo si vendono boccette di acqua “miracolosa” che pretendono di curare tutto.
— Omeopatia.
— Già. La chiamerei “chimica dell’assenza”: meno sostanza c’è, più miracoli si promettono. È un concetto che mi lascia perplesso: ho passato la vita a misurare e qui si celebra ciò che non si può misurare.

— Se potesse dare un consiglio agli scienziati di oggi?
— Non dimenticate che ogni molecola che “create” entrerà in qualche ciclo della natura. E ricordatevi che la scienza non è una collezione di verità scolpite nella pietra, ma un cantiere aperto, dove ogni scoperta deve essere messa alla prova, anche – e soprattutto – quando sembra troppo bella per essere vera.

— Ultima domanda, professore: se le offrissi un bicchiere di acqua “omeopatica” per la salute?
— (Sorride) Lo accetterei… ma solo se avessi sete.

_______________________

Saluto il professor Boyle e mi avvio verso il prossimo appuntamento impossibile. Il mio interlocutore, ghigliottinato nel 1794, aveva una convinzione incrollabile: nulla si crea, nulla si distrugge. Ma, come scopriremo presto, non tutto si conserva…

Note Bibliografiche

R. Boyle (ed. 2013) The skeptical chymist. Dover Publications

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L. Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

A. Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica. Edises

 

Nomine e cortocircuiti: quando l’antiscienza entra nei comitati scientifici

È di queste ore la notizia che il ministro della salute, Orazio Schillaci, ha nominato nel Gruppo Tecnico Consultivo Nazionale sulle Vaccinazioni (NITAG) due tecnici, Paolo Bellavite ed Eugenio Serravalle, dalle posizioni, in più occasioni espresse pubblicamente, in contrasto con quanto riportato nella letteratura scientifica più accreditata (quest’ultima può essere rappresentata dagli articoli riportati qui, qui, qui e qui).

Che cos’è il NITAG?

Dal sito del Ministero della Salute apprendiamo che: Il NITAG è un Organo indipendente col compito di supportare, dietro specifica richiesta e su problematiche specifiche, il Ministero della Salute nella formulazione di raccomandazioni “evidence-based” sulle questioni relative alle vaccinazioni e alle politiche vaccinali, raccogliendo, analizzando e valutando prove scientifiche.

In altre parole, si tratta di un comitato scientifico che, sulla base di prove scientifiche inoppugnabili, consente al Ministero della Salute e, quindi, al Governo di prendere decisioni importantissime in merito a problematiche relative alla salute pubblica.

Chi è Paolo Bellavite

Bellavite è un medico che fino a qualche anno fa ha ricoperto il ruolo di Professore Associato in Patologia Generale presso l’Università di Verona. Le sue posizioni in merito ai vaccini sono riportate sia in interviste che nei libri che ha scritto e pubblicato. In particolare, egli dice di non essere contrario ai vaccini in quanto tali, ma critica duramente quella che definisce una “ideologia vaccinista”. A suo avviso, la narrazione dominante che presenta i vaccini come soluzione unica e infallibile si configura come un dogma che soffoca il dibattito scientifico e il pensiero critico. “Non ha nulla a che fare con la scienza”, ha affermato in un’intervista, parlando di un clima in cui “l’odio vaccinale è la tomba della medicina”.

Autore del libro “Vaccini sì, obblighi no”, Bellavite contesta soprattutto l’obbligatorietà della vaccinazione, sostenendo che il consenso informato debba restare alla base di ogni trattamento sanitario. Il professore ha anche espresso dubbi sull’efficacia a lungo termine dei vaccini anti-Covid e sulla loro capacità di limitare la diffusione del virus, ricordando che “i vaccinati possono infettarsi e trasmettere il virus, a volte anche più dei non vaccinati”.

Dal punto di vista immunologico, Bellavite mette in guardia contro le possibili conseguenze di una stimolazione eccessiva del sistema immunitario attraverso dosi ripetute. E sull’aspetto etico sottolinea: “Siamo ancora nella fase sperimentale. Ha ragione chi ha paura”.

Naturalmente, egli è anche un forte sostenitore della pratica omeopatica. Infatti, Paolo Bellavite sostiene che l’omeopatia non sia una moda passeggera, ma l’espressione di un profondo cambiamento culturale e scientifico che mette in discussione i limiti dell’attuale paradigma medico meccanicistico e molecolare. Questo approccio tradizionale, pur avendo ottenuto importanti risultati, non ha saputo affrontare efficacemente la complessità biologica e clinica, spesso riducendo la medicina a una frammentazione iperspecialistica. L’omeopatia, al contrario, propone una visione sistemica del paziente, centrata sull’individualità, sulla totalità dei sintomi e sulla stimolazione dei processi endogeni di guarigione, concetti che si allineano con la scienza della complessità. Bellavite rivendica per l’omeopatia una dignità scientifica, sostenendo che essa possa essere studiata con metodi sperimentali avanzati e integrata razionalmente nella medicina moderna. Si oppone con forza a ciò che definisce una campagna denigratoria nei confronti dell’omeopatia da parte dei media e di alcuni esponenti del mondo accademico, accusandoli di diffondere affermazioni false senza consentire un contraddittorio serio e competente. Pur riconoscendo il valore di farmaci convenzionali e vaccini in determinate circostanze, Bellavite li considera soluzioni alternative da adottare solo dopo aver tentato approcci più naturali e fisiologici, come omeopatia, fitoterapia, agopuntura, corretta alimentazione e igiene. In questa visione, l’omeopatia non è solo una medicina possibile, ma una medicina vera e prioritaria, da contrapporre a un uso troppo disinvolto e sintomatico della farmacologia convenzionale.

Chi è Eugenio Serravalle

Serravalle è laureato in Medicina e Chirurgia e specializzato in Pediatria Preventiva, Puericultura e Patologia Neonatale. Egli ha più volte preso posizione contro la vaccinazione di massa dei bambini, soprattutto in relazione al Covid-19. Secondo lui, l’infezione da SARS-CoV-2 non rappresenta un’emergenza sanitaria tra i più piccoli e i potenziali rischi della vaccinazione superano i benefici. “Tutti gli studi scientifici affermano che non vi è alcuna emergenza Covid tra i bambini”, ha dichiarato in un’intervista.

Serravalle contesta anche l’efficacia dei vaccini nel prevenire il contagio, soprattutto con l’avvento delle varianti come Omicron. Secondo la sua analisi, in alcuni casi i vaccinati si infettano più dei non vaccinati e l’immunità acquisita naturalmente sarebbe più duratura. Per questo, a suo dire, non sussistono i presupposti per raggiungere l’immunità di gregge né per giustificare obblighi o pressioni vaccinali.

Oltre ad essere un medico, Eugenio Serravalle risulta diplomato in Omeopatia Classica presso la Scuola Omeopatica di Livorno e svolge attività didattica come professore presso l’Accademia di Omeopatia Classica Hahnemanniana di Firenze.

Come Bellavite, quindi, anche Serravalle è un forte sostenitore dell’omeopatia.

In un articolo intitolato “Il Dr. Eugenio Serravalle risponde a Maurizio Crozza sull’Omeopatia”, Serravalle replica alle battute ironiche del comico Crozza sostenendo con fermezza l’efficacia e la correttezza della pratica omeopatica. Scrive:

“Abbiamo una regolare laurea in medicina… e se abbiamo adottato la terapia omeopatica è perché, evidentemente, ne abbiamo sperimentato l’efficacia.”

“Non si può essere venditori di fumo quando si curano pazienti… e tra questi pazienti sono numerosi i bambini e gli animali che non sono influenzabili dall’effetto placebo.”

Con questa risposta, Serravalle rigetta la critica secondo cui l’omeopatia sarebbe solo “fumo” o priva di efficacia, affermando invece di aver osservato personalmente risultati tangibili, anche in soggetti difficilmente influenzabili da placebo.

Quando i conti non tornano

A leggere le dichiarazioni dei due nominati, si potrebbe pensare di essere davanti a voci “fuori dal coro” che invitano alla cautela. Ma basta andare oltre la superficie per capire che non si tratta di sano scetticismo scientifico: siamo, piuttosto, di fronte a posizioni che, alla luce delle evidenze scientifiche disponibili, risultano in contrasto con il consenso della comunità scientifica. Ed è qui che inizia il vero problema.

Il punto centrale è che un organismo tecnico chiamato a esprimere pareri qualificati in materia di salute pubblica deve basarsi su conoscenze aggiornate e scientificamente inoppugnabili. Non può diventare il ricettacolo di discussioni inutili fatte in nome di una presunta “pluralità di opinioni”. Il concetto di democrazia politica è completamente diverso  – e molto lontano – da quello di democrazia scientifica. In una democrazia politica è legittimo avere opinioni diverse su come affrontare un problema di gestione della res publica. In ambito tecnico-scientifico, invece, un’opinione non qualificata non ha lo stesso peso di quella di chi possiede competenze specifiche e fondate sull’evidenza.

Ecco perché, per esempio, ci fu la levata di scudi del mondo accademico agrario quando si paventò l’ingresso di esponenti della biodinamica in tavoli tecnici per l’assegnazione di fondi all’agricoltura.

A mio avviso, il Ministro ha preso decisioni discutibili, in nome di una pluralità di opinioni che, in ambito scientifico, non ha alcun senso. Sta ora tentando di mettere delle pezze a questa scelta, dimenticando che anche lui è un medico e ha responsabilità che vanno ben oltre la sua funzione politica.

Se mai un responsabile istituzionale si trovasse nella condizione di dover cedere a compromessi, la scelta più coerente con la difesa della scienza sarebbe quella di rassegnare le dimissioni. Servirebbe, come nel caso della biodinamica, una sollevazione compatta del mondo scientifico e medico. Nel frattempo, nel mio piccolo, continuo a far sentire la mia voce e auspico che tutti gli organismi professionali – dagli ordini alle società scientifiche – facciano sentire la loro, in difesa della medicina basata sulle prove e della salute pubblica.

Il cortocircuito dell’antiscienza

Le posizioni di Paolo Bellavite ed Eugenio Serravalle non sono semplicemente “opinioni alternative” in un dibattito tra pari. Non si tratta di ricercatori che presentano dati nuovi, pronti a essere vagliati e discussi dalla comunità scientifica: qui non c’è nessun dato nuovo. C’è, piuttosto, un riciclo di tesi contestate e smentite dalla letteratura scientifica, che riaffiorano come vecchie erbacce tra le crepe del discorso pubblico.

Con l’omeopatia il copione lo conosciamo bene: una pratica nata oltre due secoli fa, costruita su concetti come “similia similibus curentur” e “dinamizzazione”, mai dimostrati in modo riproducibile. Nei miei articoli – dalla presunta memoria dell’acqua (link) alle più recenti fantasie agronomiche (link) – ho mostrato come la letteratura scientifica di qualità non abbia mai trovato un effetto dell’omeopatia superiore al placebo. Chi la difende, spesso, non lo fa su basi sperimentali, ma su convinzioni personali, esperienze aneddotiche o richiami a un presunto “cambiamento di paradigma” che non trova riscontro in alcun dato.

Sul fronte dei vaccini, il meccanismo è simile: si selezionano singoli studi, si estrapolano dati fuori contesto, si enfatizzano le incertezze inevitabili di ogni processo scientifico per far passare l’idea che “non sappiamo abbastanza” o che “i rischi superano i benefici”. Nei miei pezzi – da antivaccinisti ed immunità di gregge a vaccini e corretta informazione scientifica – ho spiegato come l’evidenza accumulata su milioni di dosi mostri una riduzione netta di ospedalizzazioni e decessi.

Quando Bellavite parla di “fase sperimentale” per i vaccini anti-Covid, non sta facendo un’osservazione prudente: formula un’affermazione che non trova riscontro nei dati scientifici, perché quei vaccini hanno completato tutte le fasi di sperimentazione necessarie per l’autorizzazione. Quando Serravalle afferma che “i vaccinati si infettano più dei non vaccinati”, non menziona i dati che mostrano come, pur con una protezione dall’infezione che diminuisce nel tempo, la vaccinazione resti una barriera fondamentale contro le forme patologiche gravi e le loro complicanze.

La contraddizione diventa lampante quando entrambi propongono l’omeopatia come alternativa o complemento “prioritario” alla farmacologia. Il mandato del NITAG è basato sull’evidence-based medicine, e l’omeopatia non rientra in alcuna linea guida internazionale sul trattamento o la prevenzione di malattie infettive. È paragonabile, per incoerenza, a nominare un negazionista del cambiamento climatico in un comitato per la transizione ecologica: il risultato è solo quello di minare la credibilità dell’organo stesso.

Il problema, però, non è solo tecnico. È culturale. Dare spazio istituzionale a posizioni non supportate da dati scientifici significa legittimare un messaggio pericoloso: che le evidenze scientifiche siano opinioni e che la sanità pubblica possa essere guidata da convinzioni personali. È il cortocircuito dell’antiscienza: quando la politica apre la porta a teorie già confutate, la fiducia nelle istituzioni si sgretola e i cittadini restano più esposti a bufale e disinformazione. Come ho scritto altrove  – qui e qui – quando la pseudoscienza entra dalla porta principale, la salute pubblica rischia di uscire dalla finestra.

Quando l’impossibile è solo improbabile: la cosmochimica ci insegna a essere umili

Recentemente Nature Communications ha pubblicato un articolo che ha fatto il giro del web: la scoperta di una molecola ritenuta “impossibile” secondo la chimica classica. Si tratta del methanetetrol, con formula C(OH)₄, cioè un atomo di carbonio legato a quattro gruppi ossidrilici. Se avete familiarità con la chimica organica, vi sarà già scattato un campanello d’allarme.

Un carbonio, quattro ossidrili

In chimica organica, anche due gruppi -OH sullo stesso carbonio (dioli germinali) sono instabili: tendono a disidratarsi spontaneamente, formando un carbonile più stabile. Con quattro ossidrili, il carbonio è sottoposto a forte repulsione elettronica e alta reattività: la molecola è intrinsecamente instabile nelle condizioni terrestri.

Ma lo spazio è tutta un’altra storia

L’esperimento condotto da Joshua H. Marks e colleghi ha simulato condizioni interstellari:

  • temperatura di circa 10 K (~ –263 °C);
  • pressione ultra-bassa (10⁻¹⁰ atm);
  • esposizione a radiazione energetica, simile a quella dei raggi cosmici.

In queste condizioni la molecola non riceve abbastanza energia per reagire o disidratarsi. Resta quindi “congelata” in uno stato metastabile, come se fosse bloccata nel tempo.

Instabile ≠ impossibile

Il methanetetrol non è “impossibile”: è semplicemente troppo instabile per durare a lungo alle condizioni ambientali della Terra. Ma nel vuoto cosmico, dove le collisioni tra molecole sono rarissime e la temperatura è prossima allo zero assoluto, anche le molecole più reattive possono esistere per tempi lunghissimi.

Un esempio quotidiano: l’acqua sovraraffreddata

Un buon esempio di metastabilità è l’acqua sovraraffreddata: se si raffredda dell’acqua molto pura lentamente e senza disturbarla, può restare liquida anche sotto gli 0 °C. Basta però un urto o l’aggiunta di un cristallo di ghiaccio perché si congeli all’istante, liberando calore.

Il methanetetrol nello spazio si comporta allo stesso modo: esiste in uno stato “delicato”, che può durare milioni di anni solo finché non interviene qualcosa a modificarlo.

Un’eredità cosmica

È importante ricordare che le molecole presenti oggi sulla Terra — comprese quelle che hanno contribuito all’origine della vita — sono in parte eredi di queste molecole “cosmiche”. Nei primi miliardi di anni, comete, meteoriti e polveri interstellari hanno portato sulla Terra materiali formatisi in ambienti estremi, spesso metastabili.

Queste molecole, una volta inglobate nel giovane pianeta, si sono trasformate: alcune sono sopravvissute, altre si sono degradate, altre ancora hanno reagito dando origine a sistemi sempre più complessi. La chimica della vita, in questo senso, è figlia della chimica dello spazio, anche se si è evoluta in condizioni molto diverse.

Anche la Terra ha i suoi estremi

Non dobbiamo però pensare che condizioni “impossibili” esistano solo nello spazio. Anche sulla Terra troviamo ambienti estremi in cui si manifestano forme di chimica — e persino di biologia — del tutto inattese.

  • Nelle saline di Trapani, ad esempio, vivono microrganismi capaci di resistere a concentrazioni di sale che ucciderebbero qualsiasi cellula “normale”.
  • Nei pressi delle bocche vulcaniche sottomarine, dove temperature e pressioni sono altissime, esistono comunità microbiche che metabolizzano zolfo e metalli.
  • In ambienti acidi, alcalini, radioattivi o privi di ossigeno, prosperano organismi estremofili che mettono in crisi i nostri criteri su cosa è “compatibile con la vita”.

Anche qui la natura ci insegna che la stabilità è relativa: ciò che sembra impossibile in una condizione può essere perfettamente normale in un’altra.

Uno sguardo all’origine della complessità

L’interesse principale di questa scoperta non è nella molecola in sé, ma nei meccanismi di formazione. L’esperimento ha mostrato che partendo da semplici ghiacci di CO₂ e H₂O si possono generare:

I calcoli teorici confermano che, se c’è sufficiente CO₂ nello spazio, il methanetetrol potrebbe già esistere là fuori — congelato nei ghiacci cosmici, in attesa di una nuova reazione.

Conclusione

La chimica nello spazio non viola le regole: le applica in modo diverso. Il methanetetrol ci ricorda che non possiamo giudicare la plausibilità di una molecola solo dalle condizioni terrestri. E ci insegna una lezione ancora più importante:
la chimica, come la vita, nasce dove trova spazio per esistere — anche se quel luogo è a 10 Kelvin, nel vuoto cosmico o in una salina siciliana.

Share