Mentos e Coca Cola… una fontana di scienza!

Se almeno una volta nella vita hai visto il famoso esperimento in cui delle caramelle Mentos vengono fatte cadere in una bottiglia di Coca Cola (o, più spesso, Diet Coke), conosci già il risultato: una fontana impazzita di schiuma che può superare i tre metri d’altezza (v. il filmato qui sotto).

Ma cosa succede davvero? È solo una semplice reazione fisica? C’entra la chimica? Perché proprio le Mentos? E perché la Diet Coke funziona meglio della Coca normale?

Negli ultimi anni, diversi ricercatori si sono cimentati nello studio scientifico di questo fenomeno, spesso usato come dimostrazione educativa nelle scuole e nei laboratori divulgativi. E ciò che è emerso è una storia sorprendentemente ricca di fisica, chimica, e perfino di gastronomia molecolare.

La nucleazione: come nasce un cambiamento

La parola “nucleazione” descrive il momento in cui, all’interno di un sistema fisico, comincia a svilupparsi una nuova fase. È un concetto fondamentale per comprendere fenomeni come la formazione di gocce in una nube, la cristallizzazione di un solido, o – nel nostro caso – la comparsa di bolle in un liquido soprassaturo di gas.

Secondo la teoria classica della nucleazione, perché si formi una nuova fase (come una bolla di gas in un liquido), è necessario superare una barriera energetica. Questa barriera nasce dal fatto che generare una bolla comporta un costo in termini di energia superficiale (ovvero, bisogna spendere energia per “deformare” i legami a idrogeno che, nel caso dell’acqua, tengono unite le diverse molecole), anche se si guadagna energia liberando il gas.

Il sistema deve dunque “pagare un prezzo iniziale” per creare una bolla sufficientemente grande: questa è la cosiddetta “bolla critica”. Una volta che si supera quella dimensione critica, la formazione della nuova fase (cioè, la crescita della bolla) diventa spontanea e inarrestabile.

Tuttavia, nel mondo reale, è raro che le bolle si formino spontaneamente all’interno del liquido: nella maggior parte dei casi, servono delle “scorciatoie energetiche”. È qui che entra in gioco la nucleazione eterogenea.

Nucleazione eterogenea: quando le superfici danno una spinta

Nel mondo reale, è raro che una nuova fase si formi spontaneamente all’interno del liquido (nucleazione omogenea), perché la probabilità che si verifichi una fluttuazione sufficientemente grande da superare la barriera energetica è molto bassa. Nella maggior parte dei casi, il sistema trova delle “scorciatoie energetiche” grazie alla presenza di superfici, impurità o irregolarità: è quello che si chiama nucleazione eterogenea.

Le superfici ruvide, porose o idrofobe possono abbassare la barriera energetica necessaria per innescare la formazione di una bolla. Per esempio, un piccolo graffio sul vetro, un granello di polvere o una microscopica cavità possono ospitare delle minuscole sacche d’aria che fungono da “embrioni” di bolla. In questi punti, la CO2 disciolta trova un ambiente favorevole per iniziare la transizione verso la fase gassosa, superando più facilmente la soglia critica.

Anche la geometria ha un ruolo: cavità coniche o fessure strette possono concentrare le forze e rendere ancora più facile la nucleazione. In pratica, il sistema approfitta di qualsiasi imperfezione per risparmiare energia nel passaggio di fase.

Il caso delle Mentos: nucleatori perfetti

L’esperimento della fontana di Diet Coke e Mentos è un esempio spettacolare (e rumoroso) di nucleazione eterogenea. Quando le Mentos vengono lasciate cadere nella bottiglia, la loro superficie – irregolare, porosa e ricoperta da uno strato zuccherino solubile – offre migliaia di siti di nucleazione. Ogni microscopica cavità è in grado di ospitare una piccola sacca di gas o di innescare la formazione di una bolla (Figura 1). In più, le Mentos cadono rapidamente fino al fondo della bottiglia, generando nucleazione non solo in superficie, ma in profondità, dove la pressione idrostatica è maggiore. Questo favorisce un rilascio ancora più esplosivo del gas disciolto.

Il risultato? Una vera e propria “valanga di bolle” che si spingono a vicenda verso l’alto, trascinando con sé la soda e formando il famoso geyser, che può raggiungere anche 5 o 6 metri d’altezza.

Figura 1. Nucleazione eterogenea di una bolla su una superficie solida. Le molecole d’acqua a contatto con una superficie solida interagiscono con essa, formando legami che disturbano la rete di legami a idrogeno tra le molecole d’acqua stesse. Questo indebolimento locale della coesione interna rende la zona prossima alla superficie più favorevole all’accumulo di gas disciolto, come la CO2. Il gas si concentra in microcavità o irregolarità della superficie, gonfiando piccole sacche d’acqua. Quando queste sacche superano una dimensione critica, la tensione interna diventa sufficiente a vincere le forze di adesione, e la bolla si stacca dalla superficie, iniziando a crescere liberamente nel liquido. Questo meccanismo, noto come nucleazione eterogenea, è alla base di molti fenomeni naturali e tecnici, incluso l’effetto geyser osservato nel celebre esperimento con Diet Coke e Mentos.

Non è una reazione chimica, ma…

Uno dei miti più diffusi, e da sfatare, è che il famoso effetto geyser della Diet Coke con le Mentos sia il risultato di una reazione chimica tra gli ingredienti delle due sostanze. In realtà, non avviene alcuna trasformazione chimica tra i componenti: non si formano nuovi composti, non ci sono scambi di elettroni né rottura o formazione di legami chimici. Il fenomeno è invece di natura puramente fisica, legato al rilascio improvviso e violento del gas disciolto (CO2) dalla soluzione liquida.

La Coca Cola (e in particolare la Diet Coke) è una soluzione sovrassatura di anidride carbonica, mantenuta tale grazie alla pressione all’interno della bottiglia sigillata. Quando la bottiglia viene aperta, la pressione cala, e il sistema non è più in equilibrio: il gas tende a uscire lentamente. Ma se si introducono le Mentos – che, come abbiamo visto, forniscono una miriade di siti di nucleazione – la CO2 trova una “scappatoia rapida” per tornare allo stato gassoso, formando in pochi istanti una quantità enorme di bolle.

Pur non trattandosi di una reazione chimica nel senso stretto, il rilascio della CO2 provoca alcune conseguenze misurabili dal punto di vista chimico. Una di queste è il cambiamento di pH: la Coca Cola è fortemente acida (pH ≈ 3) perché contiene acido fosforico ma anche CO2 disciolta, che in acqua dà luogo alla formazione di acido carbonico (H2CO3). Quando il gas fuoriesce rapidamente, l’equilibrio viene spostato, l’acido carbonico si dissocia meno, e il pH del liquido aumenta leggermente, diventando meno acido.

Questa variazione, anche se modesta, è stata misurata sperimentalmente in laboratorio, ed è coerente con l’interpretazione fisico-chimica del fenomeno.

In sintesi, si tratta di una transizione di fase accelerata (da gas disciolto a gas libero), facilitata da superfici ruvide: un classico esempio di fisica applicata alla vita quotidiana, più che di chimica reattiva.

Diet Coke meglio della Coca normale?

Sì, e il motivo non è solo la diversa composizione calorica, ma anche l’effetto fisico degli edulcoranti artificiali contenuti nella Diet Coke, in particolare aspartame e benzoato di potassio. Queste sostanze, pur non reagendo chimicamente con le Mentos, abbassano la tensione superficiale della soluzione, facilitando la formazione di bolle e rendendo il rilascio del gas CO2 più efficiente e spettacolare.

La tensione superficiale è una proprietà del liquido che tende a “resistere” alla formazione di nuove superfici – come quelle di una bolla d’aria. Se questa tensione si riduce, il sistema è più “disponibile” a formare molte piccole bolle, anziché poche grandi. E più bolle significa più superficie totale, quindi più spazio attraverso cui il gas può uscire rapidamente.

Anche altri additivi – acido citrico, aromi naturali (come citral e linalolo, Figura 2) e perfino zuccheri – influenzano il comportamento delle bolle. In particolare, molti di questi composti inibiscono la coalescenza, cioè, impediscono che le bolle si fondano tra loro per formare bolle più grandi. Questo porta a una schiuma fatta di bolle piccole, stabili e molto numerose, che massimizzano il rilascio di CO2 e quindi l’altezza della fontana.

Figura 2. Strutture chimiche di alcuni composti aromatici naturali presenti nelle bevande analcoliche. Il citral è una miscela di due isomeri geometrici: trans-citrale (geraniale) e cis-citrale (nerale), entrambi aldeidi con catena coniugata e intensa nota di limone. Il linalolo è un alcol terpenico aciclico, con due doppi legami e un gruppo ossidrilico (–OH), noto per il suo profumo floreale. Questi composti non partecipano a reazioni chimiche durante l’esperimento Diet Coke–Mentos, ma agiscono sul comportamento fisico del sistema, favorendo la formazione di schiuma fine e persistente e contribuendo all’altezza del geyser grazie alla inibizione della coalescenza delle bolle.

E che dire dei dolcificanti classici, come il saccarosio (lo zucchero da cucina)? A differenza dell’aspartame, il saccarosio non abbassa la tensione superficiale, anzi la aumenta leggermente. Tuttavia, anch’esso contribuisce a stabilizzare le bolle, soprattutto se combinato con altri soluti come acidi organici o sali. Questo spiega perché le bevande zuccherate (come la Coca Cola “classica”) producano comunque geyser abbastanza alti, ma meno impressionanti rispetto alle versioni “diet”.

Esperimenti controllati hanno mostrato che la Diet Coke produce le fontane più alte, seguita dalle bevande zuccherate e, in fondo, dall’acqua frizzante (che contiene solo CO2 e acqua): segno evidente che la presenza e la natura dei soluti giocano un ruolo chiave, anche in assenza di reazioni chimiche.

E se uso altre cose al posto delle Mentos?

La fontana di Coca Cola può essere innescata anche da altri materiali: gessetti, sabbia, sale grosso, zucchero, caramelle dure o persino stimolazioni meccaniche come gli ultrasuoni. Qualsiasi sostanza o perturbazione capace di introdurre nel liquido dei siti di nucleazione può innescare il rilascio del gas. Tuttavia, tra tutte le opzioni testate, le Mentos restano il materiale più efficace, producendo fontane più alte, più rapide e più spettacolari.

Questo successo si deve a una combinazione di caratteristiche fisiche uniche:

  1. Superficie molto rugosa e porosa
    Le Mentos hanno una superficie irregolare, visibile chiaramente al microscopio elettronico (SEM), con migliaia di microcavità che fungono da siti di nucleazione eterogenea. Più rugosità significa più bolle che si formano contemporaneamente, e quindi maggiore pressione generata in tempi brevissimi.
  2. Densità e forma ottimali
    Le caramelle sono sufficientemente dense e lisce all’esterno da cadere velocemente sul fondo della bottiglia, senza fluttuare. Questo è cruciale: la nucleazione avviene lungo tutta la colonna di liquido, non solo in superficie, e la pressione idrostatica più alta in basso aiuta la formazione più vigorosa di bolle. In confronto, materiali più leggeri (come il sale fino o la sabbia) galleggiano o si disperdono più lentamente, riducendo l’effetto.
  3. Rivestimento zuccherino solubile
    Il rivestimento esterno delle Mentos, a base di zuccheri e gomma arabica, si dissolve rapidamente, liberando nuovi siti di nucleazione man mano che la caramella si bagna. Inoltre, alcuni componenti del rivestimento (come emulsionanti e tensioattivi) favoriscono la schiuma e inibiscono la coalescenza delle bolle, contribuendo alla formazione di un getto più sottile e stabile

Un esperimento che insegna molto (e sporca parecchio)

Dietro quella che a prima vista sembra una semplice (e divertentissima) esplosione di schiuma, si nasconde una miniera di concetti scientifici: termodinamica, cinetica, tensione superficiale, solubilità dei gas, equilibrio chimico, pressione, nucleazione omogenea ed eterogenea. Un’intera unità didattica condensata in pochi secondi di spettacolo.

Ed è proprio questo il suo punto di forza: l’esperimento della fontana di Diet Coke e Mentos è perfetto per essere proposto nelle scuole, sia del primo grado (scuola media) che del secondo grado (licei, istituti tecnici e professionali), senza bisogno di strumenti di laboratorio complessi o costosi. Bastano:

  • qualche bottiglia di Coca Cola o altra bibita gassata,
  • delle Mentos (o altri oggetti solidi rugosi da confrontare: gessetti, zucchero, sabbia…),
  • una penna, un quaderno e un buon occhio per osservare e registrare cosa succede,
  • e, immancabili, canovacci, secchi, stracci e un po’ di detersivo per sistemare l’aula (o il cortile) dopo il disastro creativo!

Non solo: questo tipo di attività permette di lavorare in modalità laboratoriale attiva, stimolando l’osservazione, la formulazione di ipotesi, la progettazione sperimentale, la misura, l’analisi dei dati, la comunicazione scientifica. In altre parole: il metodo scientifico in azione, alla portata di tutti.

Insomma, la fontana di Diet Coke e Mentos non è solo un video virale da YouTube: è un fenomeno scientificamente ricchissimo, capace di affascinare e coinvolgere studenti e insegnanti. Provatelo (con le dovute precauzioni)… e preparatevi a fare il pieno di chimica!

Riferimenti

Baur & al. (2006) The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions. J. Chem. Educ. 83(4), 577. https://doi.org/10.1021/ed083p577.

Coffey (2008) Diet Coke and Mentos: What is really behind this physical reaction? Am. J. Phys. 76, 551. http://dx.doi.org/10.1119/1.2888546.

Eichler & al. (2007) Mentos and the Scientific Method: A Sweet Combination. J. Chem. Educ. 84(7), 1120. https://doi.org/10.1021/ed084p1120.

Kuntzleman & al. (2017) New Demonstrations and New Insights on the Mechanism of the Candy-Cola Soda Geyser. J. Chem. Educ. 94, 569−576. https://doi.org/10.1021/acs.jchemed.6b00862.

Maris (2006) Introduction to the physics of nucleation. C. R. Physique 7, 946–958. https://doi.org/10.1016/j.crhy.2006.10.019.

Sims & Kuntzleman (2016) Kinetic Explorations of the Candy−Cola Soda Geyser. J. Chem. Educ. 93, 1809−1813. https://pubs.acs.org/doi/10.1021/acs.jchemed.6b00263.

…e per i docenti della scuola secondaria di primo e secondo grado, ecco una scheda laboratorio pronta all’uso, per trasformare questa esplosione di schiuma in un’attività scientifica coinvolgente.

Scheda laboratorio – Un geyser di CO2 tra scienza e divertimento

🧪 Esperimento: La fontana di Diet Coke e Mentos

🎯 Obiettivi didattici

  • Osservare e descrivere fenomeni di nucleazione eterogenea
  • Comprendere il concetto di tensione superficiale e solubilità dei gas
  • Riconoscere la differenza tra fenomeni fisici e chimici
  • Introdurre il metodo scientifico: osservazione, ipotesi, verifica, confronto dati
  • Stimolare il pensiero critico e il lavoro di gruppo

🧰 Materiali

Quantità Materiale
1–2 Bottiglie da 1.5 o 2 L di Coca Cola/Diet Coke
1 confezione Mentos (preferibilmente menta)
facoltativi Zucchero, sabbia, gessetti, sale grosso, caramelle dure
1 Contenitore/sottovaso/catino (per contenere la fontana)
✔️ Carta, penne o tablet per prendere appunti
✔️ Canovacci, stracci, secchio, detersivo

📌 Procedura base (semplificata)

  1. Posizionare la bottiglia su un piano all’aperto o in un contenitore.
  2. Preparare il sistema di rilascio rapido delle Mentos (ad esempio con un cartoncino a scivolo o un tubo).
  3. Far cadere rapidamente 1–3 Mentos nella bottiglia aperta.
  4. Osservare il fenomeno: altezza, durata, forma della fontana, eventuale schiuma residua.
  5. Ripetere con altri materiali (gesso, sabbia, sale…) e confrontare l’effetto.
  6. Annotare le osservazioni. Stimolare ipotesi: perché cambiano i risultati?

📚 Spunti teorici (modulabili per il grado scolastico)

  • Fisica: pressione interna, energia potenziale, accelerazione del liquido
  • Chimica fisica: tensione superficiale, solubilità dei gas, acido carbonico e variazione di pH
  • Chimica generale: differenza tra cambiamento fisico e chimico
  • Scienza dei materiali: effetto della rugosità e della forma dei solidi sulla nucleazione
  • Metodo scientifico: osservazione, variabili, confronto controllato

🧠 Domande guida per la discussione

  • Cosa accade quando inseriamo le Mentos nella bibita?
  • Che differenza c’è tra Coca Cola normale e Diet Coke?
  • Perché altri materiali (es. sale o sabbia) funzionano diversamente?
  • È una reazione chimica o un fenomeno fisico?
  • Come potremmo misurare e confrontare le fontane? (es. altezza, tempo, schiuma)

📏 Varianti possibili

  • Cambiare la temperatura della bibita (fredda vs ambiente)
  • Provare con acqua frizzante o altre bevande gassate
  • Usare un righello o griglia per stimare l’altezza
  • Fare video al rallentatore e analizzare la dinamica
  • Includere una prova con ultrasuoni (se si dispone di un pulitore a ultrasuoni)

🚸 Note di sicurezza

  • L’esperimento è sicuro, ma va fatto in ambienti controllati o all’aperto
  • Tenere gli occhi lontani dal getto (meglio osservare di lato)
  • Prevedere pulizia immediata di superfici scivolose o appiccicose

La chimica del barbecue. Cosa si nasconde dietro una grigliata perfetta?

Cosa rende irresistibile il profumo che si sprigiona da un barbecue?

Perché una bistecca alla brace ha un sapore così complesso e unico rispetto a una cotta in padella? E come mai la semplice fiamma, a contatto con carne, verdure o formaggi, riesce a creare un’esplosione di aromi che conquista tutti?

La risposta non sta solo nell’abilità del cuoco o nella qualità degli ingredienti: è scritta nella chimica, una storia affascinante fatta di temperature, reazioni e molecole aromatiche. Una danza invisibile che trasforma pezzi di carne e verdura in piatti dal profumo inconfondibile.

Capire cosa succede sulla griglia non serve solo a saziare la curiosità scientifica: significa anche imparare a domare meglio il fuoco, scegliere i tempi giusti, sfruttare le reazioni naturali per ottenere una grigliata perfetta.

E poi, diciamolo: sapere che dietro ogni morso c’è la celebre reazione di Maillard, o che il fumo trasporta molecole come guaiacolo e siringolo, offre un ottimo argomento per fare colpo sugli amici mentre si aspetta che la brace sia pronta.

La reazione di Maillard: la magia chimica dietro la crosticina

Quando il cibo supera circa 140–165 °C, sulla superficie degli alimenti avviene una serie di reazioni chimiche note come reazione di Maillard. È un processo complesso che coinvolge principalmente:

  • i gruppi carbonilici (–C=O) degli zuccheri riducenti presenti negli alimenti,
  • e i gruppi amminici (–NH₂) degli amminoacidi o delle catene laterali delle proteine.

Questi gruppi reagiscono formando inizialmente glicosilamine instabili, che poi si trasformano in composti chiamati Amadori (o composti di Amadori). Da qui, la reazione prosegue dando luogo a decine di trasformazioni successive che generano:

  • pigmenti bruni (melanoidine)
  • composti aromatici come furani, pirazine, tiofeni
  • molecole che arricchiscono l’aroma con note di tostato, caramellato, “nocciolato”.

La struttura di tutte le molecole menzionate sono riportate in Figura 1.

Figura 1. Strutture chimiche tipiche dei prodotti della reazione di Maillard, responsabili di aroma e colore durante la cottura.

È proprio questo intricato intreccio chimico che regala alla carne grigliata il suo sapore inconfondibile e la crosticina croccante.

Dal punto di vista pratico, la Maillard richiede:

  • una temperatura sufficientemente alta (troppo bassa: la reazione non parte; troppo alta: carbonizzazione e gusto amaro),
  • una superficie relativamente asciutta, perché l’acqua in eccesso dissipa il calore e rallenta il processo.

Il ruolo del fumo: aromi che vengono dal fuoco

Quando il grasso, i succhi della carne o i condimenti colano sulle braci incandescenti, non si limitano a bruciare: subiscono una vera e propria pirolisi (decomposizione termica in assenza o carenza di ossigeno) che libera una miriade di composti volatili. Tra questi troviamo:

  • aldeidi e chetoni, che contribuiscono a note dolciastre o leggermente fruttate;
  • fenoli (come guaiacolo e siringolo), responsabili delle tipiche note affumicate, simili a quelle che si percepiscono in alcuni whisky torbati;
  • acidi organici, che aggiungono un tocco di acidità e complessità;
  • e purtroppo anche idrocarburi policiclici aromatici (IPA), potenzialmente dannosi se la combustione è incontrollata o eccessiva.

Le strutture tipiche dei composti elencati sono riportate in Figura 2.

Il tipo di legno scelto per alimentare il barbecue o l’affumicatura ha un ruolo fondamentale nella qualità e nel profilo aromatico del fumo.

  • Il rovere tende a produrre fumi più robusti, ricchi di tannini e aromi complessi;
  • il ciliegio dona sentori più dolci e delicati;
  • il melo regala un affumicato leggero, quasi fruttato.

La combustione del legno stesso sprigiona anche lignina e cellulosa che, degradandosi, originano i composti aromatici più caratteristici. È per questo che chi ama il barbecue studia con attenzione quale legno usare, dosando la quantità di fumo per evitare che prevalga un sapore amaro o eccessivamente bruciato.

In sintesi: quando si sente dire che “la brace dà sapore”, dietro c’è una vera orchestra chimica che lavora nel fumo e nei vapori caldi, trasformando il cibo e arricchendolo di complessità.

Figura 2. Composti volatili e potenzialmente tossici che si formano durante la pirolisi dei grassi e del legno nel barbecue.

Brace sì, fiamma no: l’arte di domare il fumo

Chi si avvicina al barbecue scopre presto un segreto fondamentale: la grigliata perfetta non si fa sulla fiamma viva, ma sopra una brace uniforme.
Le fiamme dirette, infatti, bruciano troppo rapidamente la superficie del cibo, creando zone carbonizzate e amare e aumentando la formazione di composti potenzialmente nocivi (come gli idrocarburi policiclici aromatici, Figura 2).

Le braci, invece, rilasciano un calore più stabile e diffuso che permette alle reazioni come la Maillard di avvenire con calma, creando la crosticina dorata senza bruciare.

Anche il fumo va controllato:

  • Evitare che grassi o marinature troppo oleose cadano in quantità eccessive sulla brace, perché produrrebbero fiammate improvvise e fumo acre.
  • Usare legni stagionati, senza vernici o resine, per generare un fumo aromatico più “pulito”.
  • Regolare l’ingresso dell’aria (nei barbecue con coperchio) per mantenere una combustione lenta e controllata.

Così, la magia chimica lavora al meglio: il calore trasforma lentamente le proteine e gli zuccheri, il fumo arricchisce di note affumicate e il risultato sarà una carne saporita e profumata, senza retrogusti amari o bruciati.

Marinature, verdure e formaggi: come i condimenti cambiano la chimica del barbecue

Non c’è barbecue senza spezie, erbe, marinature… e neanche senza qualche verdura o formaggio sulla griglia.
Tutti questi “ingredienti extra” non servono solo a insaporire, ma modificano davvero la chimica della cottura.

Le marinature a base di olio, vino, birra o succo di limone non solo aggiungono aromi, ma:

  • rendono la carne più tenera grazie a una parziale denaturazione delle proteine (specialmente per effetto di acidi e alcol);
  • favoriscono la formazione di crosticine più aromatiche, perché gli zuccheri e le proteine extra della marinata diventano nuovi “combustibili” per la reazione di Maillard;
  • creano una sottile pellicola protettiva che limita la perdita di succhi durante la cottura.

Le spezie e le erbe portano in dote oli essenziali e molecole aromatiche che, con il calore, si volatilizzano o si trasformano, generando sentori nuovi: pensiamo al timolo del timo, al carvacrolo dell’origano, oppure alla capsaicina del peperoncino che resiste anche alla cottura.

Verdure e formaggi, a loro volta, reagiscono in modi diversi:

  • le verdure ricche di zuccheri, come peperoni e cipolle, sviluppano aromi dolci e note caramellate;
  • i formaggi, grazie alla loro parte proteica e grassa, diventano veri “catalizzatori” di Maillard, aggiungendo complessità e note tostate.

In pratica, ogni ingrediente che aggiungiamo porta nuovi substrati chimici da trasformare sul fuoco, moltiplicando profumi e sapori.
Ecco perché ogni barbecue diventa unico: dipende dal legno scelto, dalle spezie, dai succhi della carne, dal tipo di brace… un mix irripetibile di scelte e reazioni chimiche.

Il controllo del calore: scienza e arte della brace

Il barbecue non è solo istinto: è vera e propria termodinamica applicata.
Il calore che cuoce la carne arriva in tre modi diversi:

  • per irraggiamento, cioè l’energia che parte dalle braci incandescenti e investe direttamente il cibo;
  • per conduzione, quando la parte a contatto con la griglia trasmette calore agli strati più interni;
  • per convezione, grazie al movimento dell’aria calda che avvolge e cuoce lentamente anche le zone non direttamente esposte.

Gestire questi tre flussi è fondamentale per evitare che la carne diventi stopposa fuori e cruda dentro.

  • La cottura diretta, sopra la brace viva, genera subito temperature elevate: è ideale per pezzi piccoli e sottili (come bistecche o spiedini) e per formare la crosticina grazie alla reazione di Maillard.
  • La cottura indiretta, invece, tiene la carne lontana dalla fonte diretta di calore e sfrutta il calore più dolce della convezione: perfetta per grossi tagli o per cuocere lentamente senza bruciare la superficie.

La bravura del grigliatore sta proprio nell’alternare queste due tecniche: una rosolatura iniziale a fuoco diretto per fissare i succhi e formare la crosta, seguita da una fase più lunga a fuoco indiretto per portare l’interno alla temperatura desiderata.

Infine, non bisogna dimenticare che diversi alimenti reagiscono in modo diverso al calore:

  • le carni più grasse resistono meglio alle alte temperature perché il grasso protegge e ammorbidisce le fibre;
  • i tagli magri o le verdure, invece, rischiano di asciugarsi e richiedono temperature più dolci o cotture più brevi.

In breve, dietro una grigliata perfetta c’è sempre un grigliatore che, anche senza saperlo, diventa un piccolo ingegnere del calore.

Perché la carne diventa tenera (e perché deve riposare)

Durante la cottura, nella carne avviene una trasformazione invisibile ma fondamentale: le proteine, soprattutto quelle del collagene presente nei tessuti connettivi, iniziano a denaturarsi sopra i 60°C.
Quando la temperatura interna sale intorno ai 70-80°C, il collagene si trasforma lentamente in gelatina, una sostanza che lega l’acqua e rende la carne più succosa e tenera.

Ecco perché i tagli ricchi di tessuto connettivo, come costine, punta di petto o spalla, danno il meglio con la tecnica “low & slow”: cotture a bassa temperatura (90-120°C sulla griglia) per diverse ore. Questo tempo serve proprio a permettere alle fibre dure di “sciogliersi” e diventare morbide.

Ma il processo non si ferma quando togliamo la carne dal barbecue: per qualche minuto, il calore continua a diffondersi verso il centro, e i succhi che durante la cottura si sono spinti verso l’esterno rientrano lentamente nelle fibre.
È il motivo per cui gli chef consigliano sempre di lasciare riposare la carne qualche minuto, coperta leggermente con un foglio di alluminio:

  • se la tagliassimo subito, i succhi colerebbero sul tagliere, lasciando la carne asciutta;
  • invece, aspettando, otterremo una fetta più umida, uniforme e saporita.

Anche qui, la chimica è la nostra alleata: conoscere queste trasformazioni ci insegna che il riposo non è solo “una pausa”, ma l’ultimo passo di cottura, essenziale per valorizzare ore di preparazione.

Il lato nascosto del barbecue: quando la chimica diventa un rischio

Non tutto ciò che nasce sulla brace è buono: la combustione incompleta del legno, del carbone o del grasso colato sulla brace produce molecole come gli idrocarburi policiclici aromatici (IPA) e le ammine eterocicliche. Questi composti, se assunti in grandi quantità o per lunghi periodi, sono potenzialmente cancerogeni.

Un aspetto poco noto è che gli IPA sono ancora più pericolosi se inalati: respirare il fumo che sale dalla griglia espone direttamente i tessuti dei polmoni, dove queste molecole possono trasformarsi in forme ancora più reattive, capaci di legarsi al DNA. È lo stesso meccanismo per cui il fumo di sigaretta aumenta il rischio di diversi tipi di carcinoma polmonare.

Cosa possiamo fare per ridurre il rischio senza rinunciare al piacere del barbecue?

  • Evitare fiammate e contatto diretto della carne con la fiamma.
  • Cuocere a brace, non a fiamma viva.
  • Marinare la carne prima di cuocerla: le marinature a base di vino, birra, olio, spezie ed erbe aromatiche contengono antiossidanti che riducono la formazione di ammine eterocicliche.
  • Rimuovere le parti carbonizzate prima di mangiare.
  • Usare legni adatti e ben stagionati, evitando resine o additivi chimici.

In sintesi: conoscere i meccanismi chimici non serve solo a far bella figura con gli amici, ma anche a grigliare in modo più sano e consapevole.

I consigli dello scienziato del BBQ (non del grigliatore esperto)

Non sono un maestro della griglia. Sono un chimico che, incuriosito dai profumi e dalle reazioni che si sprigionano da una grigliata, ha deciso di studiare cosa accade davvero tra brace, carne e molecole.

Ecco alcuni spunti – scientificamente fondati – per una grigliata più gustosa e (un po’) più sana:

  • Brace, non fiamma viva: il calore della brace è più stabile e uniforme. Evita fiammate che carbonizzano la carne e favoriscono la formazione di sostanze indesiderate.
  • Marinature intelligenti: acidi (limone, vino, aceto) e antiossidanti (spezie, erbe, birra) non solo danno sapore, ma riducono la formazione di composti potenzialmente dannosi.
  • Cottura indiretta per i pezzi grandi: permette al calore di penetrare meglio, ammorbidendo i tessuti connettivi senza bruciare l’esterno.
  • Riposo dopo la griglia: aspettare qualche minuto prima di tagliare la carne permette ai succhi di ridistribuirsi e la rende più tenera e succosa.
  • Niente legna verniciata o resinosa: usa legni naturali e stagionati per un fumo aromatico e sicuro.
  • Togli il grasso in eccesso: meno gocciolamenti sulla brace = meno fumo acre e meno IPA nell’aria.

Non servono strumenti da laboratorio o complicati termometri molecolari: basta un po’ di consapevolezza e curiosità per trasformare la grigliata in un piccolo esperimento scientifico… con ottimi risultati nel piatto.

Conclusione: scienza e passione sulla griglia

Capire un po’ di chimica non toglie nulla alla poesia del barbecue: anzi, la arricchisce. Permette di scegliere meglio il tipo di legno, il taglio di carne, la temperatura e i tempi giusti. Così, la prossima volta che preparerete la brace, potrete raccontare agli amici che dietro quella crosticina dorata si nasconde una sinfonia di reazioni, dalla Maillard ai composti aromatici del fumo, che i chimici studiano da decenni.
E magari, tra una costina e una birra, ci sarà anche spazio per un po’ di divulgazione scientifica fatta con leggerezza e… buon gusto.

P.S. Se alla fine qualcosa dovesse andare storto sulla griglia… ricordatevi: è sempre colpa della termodinamica, non del chimico che vi ha raccontato la storia 😎🥩🤓

📚 Letture consigliate

Harold McGee – On Food and Cooking: The Science and Lore of the Kitchen

Nathan Myhrvold & al. – Modernist Cuisine: The Art and Science of Cooking

Jeff Potter – Cooking for Geeks: Real Science, Great Hacks, and Good Food

Microplastiche, lavastoviglie e fake news: come orientarsi tra dati e paure

Già in un mio precedente articolo avevo affrontato il tema delle microplastiche, cercando di distinguere tra rischi reali, ipotesi ancora in fase di studio e allarmismi infondati. Se volete rinfrescarvi la memoria o approfondire meglio il quadro generale, potete leggerlo qui:
👉 Microplastiche: i rischi che conosciamo, le sorprese che non ti aspetti

In questa sede voglio, invece, portare alla vostra attenzione il pericolo della divulgazione basata sull’allarmismo.

33 milioni di micro- e nanoplastiche? Cosa c’è davvero dietro le notizie virali

Negli ultimi giorni si è diffusa online una notizia allarmante: le lavastoviglie sarebbero una fonte importante di microplastiche, con milioni di particelle rilasciate ad ogni ciclo di lavaggio. Su siti come HDBlog (vedi screenshot qui sotto) si parla addirittura di 33 milioni di nanoplastiche generate da un solo ciclo di lavaggio, dipingendo un quadro piuttosto drammatico per l’ambiente domestico e urbano.

Immagine presa dal sito HDBlog

Tuttavia, analizzando con attenzione lo studio scientifico originale su cui si basa questa notizia, emergono diversi aspetti importanti e ben diversi da quelli riportati in modo semplicistico e sensazionalistico da molti siti di “pseudo divulgazione”.

Innanzitutto, lo studio mostra che sì, le lavastoviglie rilasciano micro- e nanoplastiche, ma la quantità è estremamente bassa: meno di 6 milligrammi di plastica all’anno per persona, cioè meno del peso di un chicco di riso. Paragonare questo dato numerico alla dichiarazione di milioni di particelle è fuorviante, perché il numero di particelle non dice nulla sulla massa o sull’impatto reale, che rimane trascurabile su base individuale.

Inoltre, la tipologia di plastica e la dimensione delle particelle variano in base al tipo di articolo lavato (polietilene, polipropilene, nylon, ecc.), e i materiali più “vecchi” o usurati rilasciano più frammenti. Lo studio suggerisce quindi che sia importante approfondire come l’invecchiamento della plastica influisca sulla generazione di microplastiche, cosa che non viene mai menzionata nei titoli allarmistici.

Dal punto di vista ambientale, sebbene i sistemi di trattamento delle acque reflue trattengano circa il 95% delle microplastiche, la quantità complessiva globale rilasciata nell’ambiente sta crescendo con l’aumento dell’uso della plastica. Tuttavia, le lavastoviglie domestiche rappresentano solo una piccola fonte rispetto ad altre.

Un articolo più attendibile e chiaro sull’argomento, che riporta fedelmente i risultati della ricerca, è quello di Phys.org, sito scientifico noto per l’accuratezza e la qualità della divulgazione. Vi consiglio di leggere anche lì per avere un quadro completo e serio della situazione.

Come riconoscere le fake news ambientali?

Molto spesso mi chiedono: “Se non sono esperto, come faccio a capire se una notizia è attendibile”? La risposta non è semplice, ma c’è una regola d’oro: non fermatevi mai alla prima fonte che conferma ciò che già pensate o che alimenta le vostre paure o convinzioni. Spesso chi cerca notizie sensazionalistiche cade nel cosiddetto cherry picking, ovvero sceglie solo quei dati o informazioni che supportano la propria idea, ignorando tutto il resto. Questo atteggiamento è comune a chi si sente “rivoluzionario” o “antisistema”, ma in realtà non ha le competenze scientifiche per comprendere a fondo la questione.

Per evitare di cadere in queste trappole, è fondamentale confrontare le informazioni con fonti diverse e affidabili, preferendo siti di divulgazione scientifica consolidata, che spiegano dati, metodi e limiti delle ricerche. Ma come riconoscere un sito davvero affidabile? Ecco alcuni indicatori:

  • Chiarezza e trasparenza delle fonti: i siti seri riportano sempre riferimenti precisi agli studi scientifici originali o a istituti riconosciuti, spesso con link diretti alle pubblicazioni o informazioni sugli autori.

  • Presentazione equilibrata dei dati: non si limitano a enfatizzare solo risultati sensazionalistici, ma spiegano anche i limiti delle ricerche e le diverse interpretazioni possibili.

  • Assenza di titoli esagerati o clickbait: i titoli sono informativi, senza allarmismi o esagerazioni mirate solo a catturare l’attenzione.

  • Autori qualificati e trasparenza: i contenuti sono scritti o revisionati da esperti o giornalisti scientifici con esperienza e il sito fornisce informazioni su chi li produce.

  • Aggiornamenti regolari e dialogo con i lettori: i siti affidabili aggiornano le informazioni con nuovi studi, correggono eventuali errori e talvolta rispondono alle domande o ai commenti.

  • Scopo divulgativo ed educativo: l’obiettivo è informare e spiegare con rigore, non vendere prodotti o promuovere agende ideologiche.

Le testate generaliste o i siti di pseudo divulgazione spesso puntano più al click facile e all’effetto emotivo che a un’informazione rigorosa e bilanciata. Il risultato è un circolo vizioso di paure ingiustificate, confusione e disinformazione, che non aiuta né il pubblico né la causa ambientale che vogliamo davvero sostenere.

Conclusioni

La lotta all’inquinamento da plastica passa innanzitutto dal controllo e dalla prevenzione all’origine, riducendo l’uso di plastica, migliorando il riciclo e introducendo filtri efficaci nelle apparecchiature domestiche come lavatrici e lavastoviglie. Non facciamoci ingannare da titoli e numeri sensazionalistici: l’informazione corretta è il primo passo per agire con consapevolezza.

Una buccia vi sfamerà

Dalla fame di guerra al valore nascosto negli scarti: viaggio scientifico e umano nella buccia di patata.

Mi sto avvicinando ai sessant’anni. È più il tempo che ho vissuto che quello che ancora mi resta e, con la vecchiaia, certe volte vengo sommerso dai ricordi di quando ero piccolo. Entrambi i miei genitori hanno vissuto la guerra. Mia madre come bambina. Nata nel 1938, aveva circa un anno quando Hitler invase la Polonia e circa due quando l’Italia entrò in guerra. Ora non c’è più. È scomparsa nel 2016 per le conseguenze di un tumore ai polmoni. Ma mi ricordo che di tanto in tanto le venivano dei flash grazie ai quali ricordava di quando i suoi fratelli (lei era l’ultima di quattro; ben 22 anni la separavano dal fratello più grande) la prendevano in braccio cercando di non terrorizzarla per accompagnarla nei rifugi anti aerei. Un po’ come nel film “La vita è bella” che ha valso a Roberto Benigni il premio Oscar.

Mio padre, invece, di sedici anni più anziano di mia madre, ha passato l’intera guerra come POW (prisoner of war) in Africa. Si era trasferito in Etiopia per lavorare assieme agli zii quando aveva circa 16 anni e si trovava ad Adis Abeba come impiegato civile quando gli inglesi sconfissero gli italiani. Fu imprigionato per cinque anni in vari campi di prigionia sparsi per il continente africano e ha sempre raccontato degli stenti che ha dovuto sopportare per poter sopravvivere: dagli incontri di pugilato contro pugili professionisti per poter racimolare qualche alimento per tenersi in vita, alle fosse scavate nella sabbia nelle quali si seppelliva per sopravvivere al caldo dei deserti africani. Anche mio padre non c’è più. È scomparso nel 1998 ed anche lui per le conseguenze di tumori ai polmoni.

Non sto scrivendo questa storia per intenerire, ma solo per creare il contesto di quanto mi accingo a raccontare.

Sia dai racconti dei miei genitori, sia da quelli che faceva mia nonna, la madre di mio padre – l’unica nonna che ho conosciuto, ho sempre saputo che la guerra è una brutta bestia. Lo sanno benissimo tutti quelli che ancora oggi sono sotto i bombardamenti: il cibo scarseggia, la fame, quella vera, non quella da “buco allo stomaco” di noi viziati che le guerre non le abbiamo mai vissute e viviamo, sostanzialmente, nell’opulenza, si fa sentire. E quando la fame si fa sentire si mangia qualunque cosa, altro che “questo non mi piace” o “ho una lieve intolleranza al glutine”. Quando la fame avanza, ci mangeremmo qualsiasi cosa. Ed è quello che accadeva durante la guerra: anche quelli che per noi oggi sono scarti, venivano usati per alimentarsi. E sapete quali scarti venivano usati, tra gli altri? Le bucce di patata.

Quando me lo raccontavano non riuscivo a immaginarlo. Le bucce? Quelle che si buttano via senza pensarci? Eppure, col tempo, e forse anche grazie al mio lavoro, ho imparato che il racconto di mia nonna e dei miei genitori era molto più che una memoria di sopravvivenza: era un piccolo spaccato di biochimica popolare.

Le bucce non sono rifiuti

Dal punto di vista nutrizionale, le bucce di patata non sono uno scarto. Al contrario: rappresentano una parte preziosa del tubero. Contengono una quantità significativa di fibre alimentari, vitamine e sali minerali, spesso superiore a quella della polpa stessa. In particolare, la vitamina C, le vitamine del gruppo B e il potassio si concentrano proprio vicino alla superficie esterna. Inoltre, la buccia ospita una varietà di polifenoli, composti antiossidanti come l’acido clorogenico, che oggi studiamo per il loro ruolo nella protezione cellulare.

Dal punto di vista energetico, le bucce non sono ricche quanto la polpa amidacea, ma in tempi di carestia potevano comunque offrire un contributo calorico importante. Se bollite o fritte, conservavano buona parte dei micronutrienti ed erano capaci di saziare. Non è un caso, infatti, che in molte parti d’Europa, dalla Germania alla Russia, le bucce siano state cucinate, essiccate o addirittura ridotte in farina nei periodi più difficili.

Un equilibrio delicato

C’è però un lato oscuro: le bucce di patata contengono anche glicoalcaloidi naturali, come la solanina e la chaconina, che le piante producono come difesa contro funghi e insetti. In piccole dosi non rappresentano un pericolo, ma in alte concentrazioni possono causare disturbi gastrointestinali e neurologici. Le bucce verdi, germogliate o esposte alla luce sono le più ricche di solanina, e vanno evitate. Ma le bucce sane, ben cotte, erano, e sono ancora, sicure, specie se trattate con il buon senso tramandato più che con la chimica.

Una lezione dal passato

Oggi, in un mondo che produce più rifiuti alimentari di quanto possa giustificare, quella vecchia storia di bucce mangiate per fame mi torna alla mente con una sfumatura diversa. Non solo come testimonianza di resilienza, ma come invito a riconsiderare il valore del cibo in ogni sua parte. In laboratorio, so bene quanto lavoro ci sia dietro l’estrazione di un antiossidante da una buccia. Ma forse il sapere contadino, quello di mia nonna o dei miei genitori, aveva già intuito tutto: che in una buccia c’è più nutrimento di quanto sembri, e che a volte, per sopravvivere bisogna imparare a guardare il cibo con occhi diversi.

E così, mentre il ricordo di quelle storie si fa ogni giorno più tenue, mi piace pensare che un pezzetto di chimica, di biologia e di dignità sia rimasto impigliato in quella buccia sottile. E che valga ancora la pena raccontarlo.

Riferimenti

Potato Skin: Nutrition Facts and Calories for 100 Grams

A comparative study on proximate and mineral composition of coloured potato peel and flesh

Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing

The Best & Edible Fruit and Vegetable Skins You Need to Try

Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato‐derived products

 

Dal ppm al femtogrammo: i pesticidi c’erano anche prima ma non li vedevamo

Ogni tanto circolano articoli dai toni allarmistici che mostrano quanto spesso oggi si trovino tracce di pesticidi negli alimenti, nell’acqua, nel suolo. “Una volta queste cose non c’erano”, si legge. Ma è davvero così? La risposta è semplice: no, non è che una volta non ci fossero, è che non eravamo in grado di vederle.

La differenza sta negli occhi, non nelle cose

In chimica analitica, quando si parla di rilevare una sostanza, non si usa mai dire con leggerezza “non c’è”. Si dice invece “non determinabile” (N.D.): vuol dire che non è rilevabile con gli strumenti disponibili, non che la sostanza non sia presente. È come cercare di vedere le stelle con un binocolo da teatro: non le vedi, ma non vuol dire che non ci siano.

E proprio come un telescopio moderno rivela galassie invisibili a Galileo, gli strumenti di oggi vedono tracce infinitesimali di sostanze che gli strumenti di ieri non riuscivano minimamente a percepire.

Un po’ di storia: quanto si vedeva ieri?

  • Anni ’50-’60: i primi gascromatografi (GC) usavano rivelatori come il TCD (rilevava a partire da 1-10 ppm, cioè parti per milione) o il più sensibile FID (circa 0.1 ppm). I pesticidi? Difficili da vedere, se non in quantità elevate.
  • Anni ’70-’80: entra in scena l’Electron Capture Detector (ECD), molto sensibile per sostanze come i pesticidi: arriva a livelli di 0.1 picogrammi, cioè un miliardesimo di milligrammo! Anche il GC-MS (gascromatografia accoppiata a spettrometria di massa) comincia a essere usato per rilevare composti in tracce.
  • Anni ’90-2000: con strumenti più raffinati come il GC-MS/MS, si scende ancora: si arriva a livelli di femtogrammi (mille miliardesimi di grammo). La sensibilità è altissima e il rumore di fondo si riduce grazie a nuove tecnologie (Figura 1).

Dal 2010 in poi: l’uso di spettrometri ad alta risoluzione (HRMS), colonne capillari e nuovi algoritmi di elaborazione dei dati ci porta a una capacità di rilevazione fino a 0.001 picogrammi.

Figure 1. il grafico mostra l'evoluzione dei limiti di rilevazione (LOD) in picogrammi, su scala logaritmica, per alcune delle tecniche analitiche più usate nella chimica analitica dal 1960 a oggi. Negli anni ’60 si vedevano solo concentrazioni nell’ordine dei ppm, oggi possiamo rilevare sostanze anche a femtogrammi, cioè mille miliardesimi di grammo.

Figura 1. il grafico mostra l’evoluzione dei limiti di rilevazione (LOD) in picogrammi, su scala logaritmica, per alcune delle tecniche analitiche più usate nella chimica analitica dal 1960 a oggi. Negli anni ’60 si vedevano solo concentrazioni nell’ordine dei ppm, oggi possiamo rilevare sostanze anche a femtogrammi, cioè mille miliardesimi di grammo.

Quindi oggi i pesticidi sono più usati?

No, non è questo il punto. È che oggi possiamo vedere concentrazioni che una volta erano semplicemente invisibili. È come se avessimo acceso una torcia in una stanza buia. Le cose nella stanza c’erano anche prima. Solo, non potevamo vederle (Figura 2).

Figura 2. Come vediamo gli analiti oggi. Il miglioramento della sensibilità strumentale ci consente di vedere cose che cinque, dieci, venti e più anni fa non eravamo in grado di rilevare.

Un esempio pratico

Un pesticida presente in un campione d’acqua nel 1970 in quantità pari a 5 picogrammi per litro non sarebbe stato rilevato da nessuno strumento allora disponibile. Oggi sì. Ma non significa che quel pesticida non ci fosse allora.

Conclusione

Quando leggiamo “oggi si trovano più pesticidi”, chiediamoci prima se si tratta di un aumento reale o semplicemente di un salto nella capacità di osservazione. La chimica analitica, nel frattempo, ha fatto un balzo gigantesco: non siamo più immersi nei veleni, siamo immersi nei dati. E questo è un enorme passo avanti.

Riferimenti

“Bella e Potente” (L. Cerruti)

Basic Gas Chromatography (H.M. McNair, J.M. Miller)

Gohlke, R.S. (1959)Analytical Chemistry, 31, 535–541.

Karayannis, M.I.; Efstathiou, C.E. (2012). Talanta, 102, 7-15

Perché studiare chimica e fisica? L’innalzamento ebullioscopico

Avete presente la classica robetta sul mettere il sale prima o dopo che l’acqua ha cominciato a bollire? Questa cosa mi ha sempre lasciato perplesso perché ho sempre pensato che chiunque abbia frequentato con profitto le scuole superiori conosca le proprietà colligative e sa cosa significa innalzamento ebullioscopico. Traduco per i meno esperti: l’innalzamento ebullioscopico è l’innalzamento della temperatura di ebollizione di un solvente quando in esso vengano aggiunti dei soluti. Nel caso specifico, il solvente è l’acqua mentre il soluto è il cloruro di sodio (NaCl), popolarmente conosciuto come sale da cucina.

La solubilità in acqua del cloruro di sodio a 100 °C è di circa 400 g L-1.

L’innalzamento ebullioscopico si calcola usando la formuletta:

ΔT=keb · m · i                                                                                         (1)

dove ΔT è la variazione della temperatura di ebollizione tra il solvente che contiene il soluto e quella del solvente puro; keb è una costante che si chiama costante ebullioscopica. Essa è tabulata per ogni solvente. Per l’acqua, la keb assume il valore di 0.512 °C kg mol-1. Infine, m è la cosiddetta molalità, ovvero la concentrazione di soluto espressa in mol kg-1, dove il peso si riferisce al solvente usato, mentre i è il cosiddetto coefficiente di Vant’Hoff.

Adesso possiamo applicare la formuletta (1) per calcolare quale quantità di cloruro di sodio permette di alzare la temperatura di ebollizione dell’acqua di quantità note. Quelle che che ho preso in considerazione sono le seguenti:

ΔT = 0.01; 0.025; 0.05; 0.075; 0.1; 0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2; 2.25; 2.5; 2.75; 3; 3.25; 3.5

Dal grafico riportato nella figura qui sotto, ne viene che per aumentare di un solo grado centigrado la temperatura di ebollizione di un litro di acqua occorrono circa 114 g di NaCl. In realtà, noi non aggiungiamo mai oltre 100 g di sale nell’acqua che mettiamo a bollire per la pasta. Tutt’al più ne usiamo un decimo, ovvero circa una decina di grammi. Dallo stesso grafico si evince come l’aggiunta di una decina di grammi di NaCl ad un litro di acqua innalza il punto di ebollizione nell’intervallo 0.075 – 0.1 °C. In altre parole, la temperatura di ebollizione passa da 100 °C all’intervallo di temperature compreso tra 100.08 e 100.1 °C.

Ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

Edit: nel calcolo dell’innalzamento ebullioscopico non ho tenuto conto del coefficiente di Vant’Hoff che, per il cloruro di sodio, è pari a 2. Questo vuol dire che, introducendo questo fattore di correzione, l’aumento di temperatura dell’acqua a cui si aggiungono grosso modo una decina di grammi di NaCl è intorno a 0.1-0.2 °C. Insomma, da 100 °C si passa a 100.1-100.2 °C. Rimane sempre valida la domanda: ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

 

Fonte dell’immagine di copertina

I segreti della grandine

Ogni anno sentiamo parlare di enormi “palle” di ghiaccio che cadono dal cielo e fanno danni enormi non sono solo alle cose (auto, case, etc.), ma anche alle attività produttive come l’agricoltura.

Oggi non mi voglio interessare dei danni che può fare la grandine, ma solo concentrarmi  sui meccanismi della sua formazione per capire a cosa essa sia dovuta e perché i chicchi di grandine possono avere dimensioni variabili fino ad arrivare a quelle di una palla come evidenziato nella foto di copertina.

La geografia dell’atmosfera

La parte di spazio che si estende dalla superficie terrestre fino a circa 16 km di altezza prende il nome di troposfera. È qui che avvengono i fenomeni climatici. L’aria della troposfera è composta non solo da ossigeno e azoto, ma anche da acqua, ossidi di azoto e zolfo, anidride carbonica, monossido di carbonio, gas nobili, sostanze organiche volatili che derivano sia dall’attività antropica che da quella naturale (per esempio, le molecole odorose che vengono rilasciate dalle piante), virus, batteri, funghi, spore e molto altro ancora. Naturalmente tutti questi sistemi sono posizionati a quote differenti in funzione delle loro dimensioni, cosicché, per esempio, virus, batteri, funghi e spore sono più vicini al suolo.

L’esperienza comune ci insegna che quando andiamo su in montagna la temperatura si abbassa. E chi è abituato a viaggiare in aereo sa che più in alto si sale più la temperatura tende a scendere: quanti di quelli che viaggiano in aereo non hanno mai letto sui monitor all’interno delle cabine che la temperatura esterna è di -32 °C oppure addirittura di -50 °C?

Vi siete mai chiesti perché?

Ne avevo già parlato l’anno scorso. Una spiegazione approfondita sulle variazioni di temperatura al variare della quota è al link seguente:

Fa freddo lassù?

In breve, possiamo dire che più vicini siamo al suolo, più risentiamo della radiazione elettromagnetica (indicata come infrarosso) proveniente dalla Terra.

Rimando al mio articolo dell’anno scorso per capire perché ci sono oscillazioni termiche man mano che si passa dalla troposfera alla stratosfera, da questa alla mesosfera e da quest’ultima alla termosfera.

E’ proprio la troposfera che dobbiamo tener d’occhio per spiegare la formazione della grandine.

Come si forma la grandine

Tutto ha inizio nei cumulonembi. Si tratta di nuvole a forte sviluppo verticale che si formano per effetto di processi convettivi attraverso cui enormi quantità di aria, contenente acqua, vengono movimentate sia verso l’alto che verso il basso, raggiungendo altezze che possono arrivare fino a 12-16 km. In queste enormi nubi le temperature sono molto variabili potendo passare da valori pari a 0 °C a valori compresi tra -50 e -60 °C.

Tutti noi sappiamo che quando l’acqua è a 0 °C si trova nello stato solido. Tuttavia, non tutti sanno che esiste una condizione che si chiama sopraffusione nella quale l’acqua è in una condizione metastabile, ovvero, in assenza di perturbazioni, essa permane nella fase liquida. Divertitevi a vedere cosa accade per effetto della sopraffusione:

L’acqua sopraffusa è presente prevalentemente nelle zone basse dei cumulonembi, mentre nelle zone più alte si formano dei piccolissimi granelli di ghiaccio, detti embrioni – il mio vecchio professore di chimica analitica li avrebbe chiamati “gemme” – che, per effetto delle correnti convettive, tendono a portarsi nelle zone basse delle nuvole. Quando i minuscoli granelli di ghiaccio incontrano l’acqua sopraffusa, la catturano. In questo modo le dimensioni delle gemme aumentano. Le correnti convettive riportano questi granelli accresciuti di nuovo verso l’alto e poi ancora verso il basso dove si accrescono ulteriormente. Quando le dimensioni delle particelle di ghiaccio diventano tali da non poter essere più trasportate dalle correnti convettive, queste ricadono verso terra sotto forma di grandine. Una descrizione più particolareggiata e corretta della formazione della grandine la potete trovare cliccando sull’immagine qui sotto.

Le dimensioni della grandine

Come ho scritto più su, la grandine si presenta di dimensioni molto differenti: si va da piccolissimi chicchi (pochi millimetri) fino a pezzi di ghiaccio delle dimensioni di palle da tennis o da baseball. Come mai c’è questa diversificazione?

Beh…tutto dipende dalla velocità con cui essa si forma, dalla direzione delle correnti convettive, dalla concentrazione di acqua sopraffusa e dalla temperatura alla base ed in quota del cumulonembo.

Nel filmato qui sotto potete osservare un “bombardamento” di grandine occorso a Rozzano circa una settimana fa (la notizia è qui)

Fonte dell’immagine di copertina

Un esperimento sulla validità delle mascherine

Chi mi segue sa che ho già pubblicato un paio di articoli sulla validità delle mascherine che stiamo utilizzando per proteggerci dalla diffusione del Sars-Cov2.

Il primo di essi era una lettera aperta ad Enrico Montesano che, tempo fa, affermò in pubblico che le mascherine ci fanno respirare la nostra anidride carbonica e, quindi, sono pericolose. La mia lettera aperta è qui sotto:

Lettera aperta ad Enrico Montesano

Scrissi, poi, un secondo articolo per ribadire ancora una volta che le mascherine non sono in grado di trattenere l’anidride carbonica. Questo articolo fu scritto per rispondere a quelli che affermavano che la barriera posta davanti alla bocca non era in grado di far passare i miliardi di molecole di CO2 che espiriamo in ogni istante della nostra vita. Se siete curiosi, qui sotto c’è il link all’articolo:

Ancora su anidride carbonica e mascherine

Tuttavia, come sapete, le prove sperimentali regnano sovrane nel mondo scientifico. Qualche settimana fa, Daniel Puente ha pubblicato un interessantissimo video in cui ha provato che il livello di saturazione di ossigeno nel sangue non cambia quando si usa la mascherina (sia chirurgica che FFP2) in diverse condizioni fisiche: camminata normale e veloce. Qui sotto il filmato di una decina di minuti che vi consiglio di vedere.

https://www.youtube.com/watch?v=2xiiTNNXwfg

Fonte dell’immagine di copertina

Sugli insetti e sui parabrezza

Avete mai sentito parlare del widescreen phenomenon? No? Eppure, tra gli ecologisti della domenica va per la maggiore. Si tratta della constatazione che il numero di insetti stia diminuendo perché i parabrezza delle auto non sono più così sporchi di insetti spiaccicati come quando eravamo piccoli.

Sono le classiche elucubrazioni di gente che di scienza non capisce niente e capisce ancor meno di come si realizza un disegno sperimentale per trovare una risposta alla domanda “la popolazione di insetti su scala globale sta veramente diminuendo?” oppure “esiste una relazione tra l’uso di agrofarmaci e numerosità della popolazione di insetti?”, e potrei continuare, naturalmente. È la stessa tipologia di approccio pseudoscientifico che viene usato dai fantastici fautori di quella robaccia che si chiama omeopatia e che si riassume con “su di me funziona” (ne ho già scritto qui).

La cosa bella è che queste elucubrazioni vengono diffuse da siti molto seguiti (per esempio qui e qui) che contribuiscono alla cosiddetta disinformazione o cattiva divulgazione scientifica.

Vediamo perché la relazione tra parabrezza, numero di insetti spiaccicati e popolosità degli stessi sia una bufala.

Innanzitutto, dobbiamo cominciare col dire che uno studio su scala globale relativo alla perdita di biodiversità (non solo, ma limitiamoci alla biodiversità) va disegnato in modo tale da ottenere risultati non solo replicabili, ma anche riproducibili[1]. Alla luce di quanto scritto, è possibile pensare che il numero di volte in cui puliamo il parabrezza delle nostre automobili sia un dato attendibile? La risposta è no. Il motivo è abbastanza semplice: percorriamo sempre la stessa strada? Sempre alla stessa velocità? Sempre nelle stesse condizioni climatiche? Sempre con la stessa auto?

Esistono strade di tantissime forme, dimensioni e condizioni, tutti fattori che vengono sempre ignorati quando il windscreen phenomen è usato come indice per misurare la popolazione degli insetti. Non dimentichiamoci, inoltre, che le strade generano i cosiddetti bordi nel paesaggio. Come sanno tutti quelli che si interessano di indagini analitiche di ogni tipo, gli effetti dei bordi sono sempre difficili da misurare e generalizzare.

E come facciamo il campionamento? Guidiamo verso i bordi della carreggiata? Allora ci dobbiamo aspettare di campionare una popolazione di insetti di corporatura più massiccia di quelli che potremmo rilevare sul parabrezza se guidassimo esattamente al centro della strada. E a che ora pensiamo di fare il campionamento? Persino io che non sono un entomologo so che la tipologia di insetti che vivono negli ambienti intorno alle strade differisce a seconda del periodo della giornata in cui ci muoviamo. E cosa andiamo a misurare? Il numero di resti presenti sul parabrezza? La loro densità? La forza che usiamo per staccare i poveri resti degli insetti spiaccicati?

Ma non basta. Se io guido sempre nella stessa microzona del pianeta, mi posso permettere di estrapolare le mie pseudo-osservazioni ad altre zone del pianeta? Ovviamente no, perché le mie pseudo-osservazioni sono valide solo per la strada che percorro abitualmente, non per le altre. Chi mi assicura che gli insetti non si siano evoluti in modo tale da andare a popolare le zone limitrofe a quelle che io frequento abitualmente con la mia auto, solo perché hanno imparato che la zona che frequento è quella più pericolosa del sistema in cui essi vivono?

Eh, sì. Tutte quelle elencate, ed anche di più, sono le domande a cui dobbiamo rispondere per rendere un dato attendibile. Sfido tutti gli pseudo-ambientalisti che usano il windscreen phenomenon a rispondere in modo coerente a tutte le domande sopra elencate.

Letture aggiuntive e note

The windscreen phenomenon: anecdata is not scientific evidence

More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Declining abundance of beetles, moths and caddisflies in the Netherlands

Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years

[1] Replicabilità e riproducibilità non hanno lo stesso significato. La prima si riferisce alla capacità del medesimo ricercatore (o gruppo di ricerca) di ottenere i medesimi risultati nello stesso laboratorio in tempi differenti. La seconda si riferisce alla capacità di ricercatori differenti in laboratori differenti e fisicamente lontani tra loro, di ottenere i medesimi risultati di una data ricerca scientifica.

Fonte dell’immagine di copertina

Share