La chimica del pulito

Reading Time: 3 minutes

Vi siete mai chiesti come mai per lavare qualcosa bisogna usare il sapone e, preferibilmente, acqua calda? È tutta questione di chimica fisica.

Più volte ho scritto in merito all’acqua ed alle sue proprietà. Per esempio, qui e qui potete leggere in merito alle proprietà dei legami a idrogeno, qui in merito al ruolo dei legami a idrogeno nell’innalzamento ebullioscopico, qui trovate il significato di pH e la sua dipendenza dalla temperatura.

La chimica dei saponi

Il funzionamento dei saponi è molto semplice e lo ho già descritto qui, quando ho parlato di acqua micellare. In sintesi, un sapone è fatto da molecole anfifiliche, ovvero che hanno caratteristiche sia idrofiliche che idrofobiche. In particolare, le molecole si arrangiano in modo tale da permettere che le teste idrofiliche, rimanendo a contatto con l’acqua, isolino dall’acqua le code idrofobiche che non hanno con essa una buona affinità (Figura 1).

Figura 1. Struttura di una micella. Le teste idrofiliche formano una “pellicola” che separa le code idrofobiche dal contatto con l’acqua (Fonte)

La natura delle micelle è tale da “indebolire” i legami a idrogeno dell’acqua con la conseguenza che si riduce la tensione superficiale del liquido stesso (Figura 2).

Figura 2. La tensione superficiale permette alle zanzare di “camminare” sull’acqua (Fonte)

La riduzione della tensione superficiale consente alle molecole di acqua di penetrare meglio all’interno dei pori dei tessuti degli abiti o della pelle (in generale di tutti i sistemi porosi) così da permettere alle micelle del sapone di interagire meglio con lo sporco.

Quando ciò accade, le micelle “inglobano” lo sporco nella parte idrofobica mentre le teste polari a contatto con l’acqua fanno in modo che lo sporco venga trascinato via dall’acqua stessa (Figura 3).

Figura 3. Funzionamento dei saponi. I punti rossi sono le teste idofiliche, i bastoncini gialli sono le code idrofobiche (Fonte)
Cosa c’entra la temperatura?

Ormai anche le pietre sanno che l’acqua è una molecola polare. La polarità dell’acqua è dovuta alla distribuzione degli elettroni all’interno della stessa molecola. Essa è tale che il centro delle cariche negative è preferenzialmente localizzato sull’ossigeno, mentre quello delle cariche positive sugli atomi di idrogeno (Figura 4).

Figura 4. Distribuzione della densità elettronica nella molecola di acqua (Fonte)

Alla polarità della molecola di acqua, in genere, si attribuisce la “responsabilità” dei legami a idrogeno summenzionati. La polarità dell’acqua è legata anche a quella che si chiama costante dielettrica. La costante dielettrica è una misura della capacità delle molecole di un mezzo (in questo caso l’acqua) di allineare il proprio dipolo elettrico secondo le linee di forza di un campo elettrico applicato (Figura 5).

Figura 5. Orientamento del dipolo acqua all’interno di un campo elettrico. Il centro delle cariche positive del dipolo si orienta verso il polo negativo mentre quello delle cariche negative si orienta verso il polo positivo (Fonte)

Più elevata è la costante dielettrica, più facilmente le molecole si allineano al campo elettrico applicato.

Da un punto di vista sperimentale, la costante dielettrica dell’acqua riduce di circa 80 volte la forza con cui interagiscono gli ioni presenti in un composto chimico. È per questo motivo che i sali tendono a sciogliersi bene in acqua.

Il valore della costante dielettrica è anche una misura della tensione superficiale del sistema liquido per cui esso è misurato. Più elevato è il valore di questa costante, maggiore è la tensione superficiale del liquido.

La Figura 6 mostra come varia il valore della costante dielettrica dell’acqua al variare della temperatura. In parole povere, l’aumento della temperatura comporta una diminuzione della costante dielettrica, ovvero una diminuzione della polarità dell’acqua ed una riduzione della sua tensione superficiale.

Figura 6. Variazione della costante dielettrica relativa dell’acqua con la temperatura

Come già spiegato nel paragrafo precedente, la riduzione della tensione superficiale permette all’acqua di “interagire” meglio con la superficie dei mezzi porosi (per esempio la pelle o un tessuto di un abito).

Conclusioni

L’uso combinato dei saponi e dell’alta temperatura permette una drastica riduzione della tensione superficiale dell’acqua aumentandone la capacità pulente. L’aumento della temperatura consente anche di sterilizzare gli “oggetti” che vengono lavati. La sterilizzazione, naturalmente, ha luogo solo se i microorganismi che contaminano gli oggetti non sono termofili, ovvero in grado di resistere alle classiche temperature usate negli elettrodomestici di casa (gli organismi termofili sono in grado di resistere anche a temperature di 80-90 °C).

Simpatico, vero, l’effetto della temperatura sulle proprietà dell’acqua?

 

Per saperne di più

Fonte dell’immagine di copertina

La chimica del sapore. Il dolce

Reading Time: 2 minutes

Guardate la Figura 1. Interessante vero? Si tratta di alcuni dolcificanti di sintesi. Le loro strutture sono alquanto differenti le une dalle altre. Come è possibile che tutte quelle molecole stimolino la sensazione del “dolce”?

Figura 1. Strutture molecolari di alcuni dolcificanti di sintesi (Fonte)

In base al principio secondo cui l’attività biochimica di una molecola dipende dalla sua struttura molecolare, ci si aspetterebbe che il sapore dolce possa essere dovuto alla similitudine strutturale delle molecole che costituiscono i dolcificanti. Ed invece non è così.  Molecole dalla natura chimica molto differente mostrano tutte la medesima capacità dolcificante (in merito all’intensità del sapore dolce ho già scritto qui).

Ricordiamo che tutto quanto studiamo nei libri dei settori scientifici, in realtà, è controintuitivo. È vero che esiste la relazione biunivoca struttura-attività (ad una data struttura corrisponde quella attività biochimica ed una certa attività biochimica è dovuta ad una specifica struttura molecolare), tuttavia non è solo la forma della molecola che deve essere presa in considerazione per spiegare l’attività biochimica; occorre prestare attenzione anche ad altri fattori.

Una delle prime teorie ad essere state sviluppate per spiegare perché molecole dalle caratteristiche così differenti siano in grado di funzionare tutte come dolcificanti, è quella che prende il nome di “modello AH-B” (Figura 2).

Figura 2. Schema del modello AH-B

I recettori presenti sulla nostra lingua sono caratterizzati dalla presenza di due gruppi funzionali di cui uno è un donatore di idrogeno (-AH in Figura 2) e l’altro è un accettore di idrogeno (-B in Figura 2).  Il dolcificante è una molecola che contiene almeno due gruppi funzionali che hanno le stesse proprietà donatrici/accettrici di idrogeno dei gruppi presenti sulla superficie dei recettori.

Quando la molecola “dolcificante” si avvicina al recettore del sapore dolce presente sulla lingua, si formano due legami a idrogeno come quelli mostrati in Figura 2. È proprio alla presenza di questi due legami a idrogeno che è attribuibile il sapore “dolce”.

La Figura 3 mostra quali sono i gruppi funzionali di diverse molecole dolcificanti in grado di formare i legami a idrogeno summenzionati.

Figura 3. Schema dei gruppi funzionali in grado di formare i legami a idrogeno nel modello AH-B (Fonte)

In realtà le cose sono un po’ più complesse di quanto descritto.  Tuttavia, i meccanismi esatti del perché sentiamo il “dolce” o altre tipologie di sapori, non sono ancora ben chiari. Per avere più informazioni e delucidazioni approfondite, consiglio la lettura dei lavori ai link nel paragrafo “Per saperne di più”.

Per saperne di più
  1. Shallenberger et al., 1967, Nature, 216: 480
  2. Kier, 1972, J. Pharm. Sci., 9: 1394
  3. Shallenberger, 1997, Pure & Applied Chemistry, 69: 659
  4. Smith et al., 2001, Scientific American, 32
  5. Morini and Bassoli, 2007, AgroFood, 6
  6. Zhang et al., 2010, PNAS, 107: 4752
  7. Bo Liu et al., 2011, The Journal of Neuroscience, 31: 11070

Fonte dell’immagine di copertinahttp://www.misya.info/ingrediente/zucchero

Tutta questione di Molibdeno

Reading Time: 2 minutes

Vi siete mai chiesti perché ci sono alcune popolazioni che non sono in grado di sopportare l’alcol e si ubriacano velocemente? È tutta questione d biochimica ed, in particolare, del Molibdeno.

Il molibdeno è un metallo che ha una azione tossica. Pensate che solo 50 mg di tale metallo, assunti tutti assieme, sono in grado di uccidere un ratto. Nell’uomo pare che questo metallo agisca sulle funzioni epatiche portando ad iperbilirubinemia. Il Molibdeno è anche convolto nella sintesi dell’acido urico. Un eccesso di Molibdeno sembra legato all’accumulo di cristalli di acido urico nelle articolazioni con insorgenza di una patologia molto dolorosa: la gotta.

Nonostante la sua tossicità, il molibdeno è un metallo essenziale per il nostro organismo. Noi ne assumiamo circa 0.3 mg al giorno nella nostra dieta per un ammontare di circa 8 g nella nostra intera vita. Ebbene questo metallo è un cofattore di uno degli enzimi che ci consentono di metabolizzare l’alcol che ingeriamo.

L’alcol etilico viene prima trasformato in acetaldeide da un enzima che contiene zinco (alcol deidrogenasi); l’acetaldeide viene poi ossidata prima ad acido acetico da un enzima che contiene molibdeno (aldeide ossidasi) e poi ad anidride carbonica secondo lo schema riportato qui di seguito:

CH3CH2OH → CH3CHO → CH3COOH → CO2

L’anidride carbonica viene espulsa dal nostro organismo mediante la respirazione. Le reazioni descritte servono per ricavare l’energia necessaria per la nostra sopravvivenza dalla ossidazione dell’alcol etilico. Tuttavia, ci sono alcune popolazioni come quelle orientali, per esempio I giapponesi, che hanno quantità più basse di aldeide ossidasi. Per questo motivo non sono in grado di degradare velocemente come noi l’alcol e tendono ad ubriacarsi più velocemente di noi.

Interessante, vero?

Alla prossima pillola di scienza…e…cin cin

Per saperne di più
https://saluteuropa.org/nutrizione-integrativa-2/il-molibdeno-metallo-importante-per-luomo/

Fonte dell’immagine di chiusurahttp://www.sapere.it/sapere/strumenti/domande-risposte/di-tutto-un-po/perche-si-dice-cin-cin-quando-si-brinda.html

Fonte dell’immagine di copertina: https://blog.edoapp.it/alcol-e-calorie-nascoste/

Aspirina: una storia breve

Reading Time: 4 minutes

1763. Il reverendo Stone della Chiesa d’Inghilterra informa la Royal Society che un infuso da lui preparato con la corteccia del salice bianco (Figura 1) e somministrato ad una cinquantina dei suoi parrocchiani affetti da stato febbrile, ha funzionato molto bene nell’attenuare la febbre.

Figura 1. Salice bianco (nome botanico Salix alba) dalla cui corteccia, nel 1763, fu preparato un infuso contro la febbre
Tutto nasce durante una passeggiata

Il reverendo non sa perché l’infuso abbia funzionato, ma pare che l’idea per tale rimedio gli fosse venuta  nel 1758 durante una passeggiata in un bosco. Per motivi non noti, fu indotto ad assaggiare la corteccia del succitato albero e notò una corrispondenza di sapori con quella dell’albero della febbre (si tratta del Cinchona) usata fin dall’antichità tra le popolazioni pre-colombiane per la cura di stati febbrili. Tale corrispondenza lo indusse a pensare che anche la corteccia del Salix alba potesse avere gli stessi effetti curativi, come effettivamente potè verificare.

Il principio attivo

Ciò che il reverendo Stone non poteva sapere era che il principio attivo nella corteccia dell’albero della febbre era differente da quello presente nella corteccia del salice bianco. Infatti, mentre nella prima era presente il  chinino (Figura 2A), nella seconda era presente l’acido salicilico (Figura 2B).

Figura 2. A. Struttura del chinino presente nella corteccia dell’albero della febbre i cui effetti curativi erano noti fin da tempi antichi tra le popolazioni precolombiane. B. Struttura dell’acido salicilico presente nella corteccia del salice bianco o Salix alba i cui effetti curativi furono scoperti dal reverendo Stone.
Gli effetti collaterali

L’acido salicilico presenta gravi effetti collaterali dovuti al fatto che è un acido organico abbastanza forte (Figura 3). In particolare, esso è un potente irritante in grado di causare emorragie ed ulcere sia in bocca che nello stomaco.

Figura 3. Equilibrio di dissociazione dell’acido salicilico. La costante acida ha il valore riportato in figura
Ed eccoci all’aspirina

Nel 1893, Felix Hoffmann, un chimico della Bayer, sintetizzò un derivato dell’acido salicilico mediante una reazione di acilazione al gruppo ossidrilico. Ottenne l’acido acetil salicilico (Figura 4) i cui effetti collaterali risultarono molto più tenui rispetto a quelli dell’acido salicilico, pur conservando le medesime proprietà terapeutiche. Era nata l’aspirina©.

Figura 4. Struttura molecolare dell’acido acetil salicilico

Il nome Aspirina© sembra sia stato ricavato usando la radice del nome dell’acido spirico, il principio attivo presente nella Spiraea ulmaria e chimicamente simile all’acido salicilico, a cui venne anteposta la “a” di acetile.

I vantaggi dell’Aspirina©

Gli esperimenti sull’attività farmacologica dell’Aspirina© condotti dal Dr. Heinrich Dreser della Bayer, ne evidenziarono non solo le caratteristiche antipiretiche, ma rivelarono anche le sue  proprietà antireumatiche e la capacità di migliorare l’attività cardiaca attraverso la fluidificazione del sangue. La presenza del gruppo acetile, inoltre, ne aumentava la torrelabilità gastrica rispetto all’acido salicilico.

Oggi l’Aspirina© è un farmaco molto comune utilizzato in tutto il mondo in diverse formulazioni farmacologiche. Tra queste l’Alka Seltzer®, la forma solubile di Aspirina©, è quella più famosa. L’Alka Seltzer® contiene bicarbonato di sodio, acido citrico ed acido acetil salicilico. Il bicarbonato di sodio ha il compito di deprotonare l’acido acetil salicilico per la formazione dell’acetilsalicilato di sodio (Figura 5). Quest’ultimo è più facilmente solubile dell’acido acetil salicilico. La presenza dell’acido citrico (oltre che quella di altri aromi come quelli di arancia e limone) serve a mascherare il cattivo sapore dell’acetilsalicilato di sodio.

Figura 5. Reazione di formazione dell’acetilsalicilato di sodio

Un’altra formulazione farmacologica è l’aspirinetta. Si tratta di pillole che contengono circa 1/5 (ovvero all’incirca 100 mg) della dose di acido acetilsalicilico contenuta nelle tradizionali confezioni di Aspirina© (ovvero 500 mg). Assunta giornalmente, questa dose di acido acetisalicilico consente di prevenire i trombi e, di conseguenza, problematiche cardiache.

Gli svantaggi dell’Aspirina

Nonostante tutti i suoi effetti positivi, l’idrolisi del gruppo acetile nello stomaco porta alla formazione dell’irritante acido salicilico con possibilità di formazione di ulcere. Gli individui sensibili devono evitare di assumere Aspirina©. Inoltre la dose giornaliera consigliata per gli adulti non deve eccedere i 4 g (sotto controllo medico). Oltre la predetta quantità gli effetti indesiderati possono portare anche alla morte. Nel caso di bambini al di sotto dei 12 anni, l’assunzione di acido acetilsalicilico ha portato a rarissimi casi di sindrome di Reye, per cui è sempre consigliabile non usare Aspirina© al di sotto dell’età anzidetta.

Il funzionamento come antipiretico

Quando il nostro organismo subisce qualche lesione o viene invaso da microorganismi patogeni, si attiva una risposta che porta all’aumento nel circolo sanguigno della quantità di molecole che prendono il nome di prostaglandine, il cui precursore è l’acido prostanoico la cui struttura è in Figura 6.  È la presenza delle prostaglandine che porta allo stato febbrile.

Figura 6. Struttura dell’acido prostanoico, precursore delle prostaglandine

Sia l’acido salicilico che il suo derivato, acido acetilsalicilico, sono in grado di inibire l’attività degli enzimi coinvolti nella sintesi delle prostaglandine. La conseguenza è, quindi, la diminuzione della temperatura corporea.

Conclusioni

La storia dell’Aspirina© ci insegna che un prodotto naturale come l’acido salicilico, sebbene possa avere effetti benefici, ha tante controindicazioni peraltro anche abbastanza gravi. Al contrario un prodotto di sintesi come il suo derivato acetilato, ha molte meno controindicazioni e può essere usato con maggiore sicurezza. Naturalmente, pur essendo oggi l’Aspirina© un prodotto da banco, cioè il preparato contenente 500 mg di acido acetilsalicilico è vendibile senza presentazione di ricetta medica, è sempre consigliabile non abusarne ed assumerne sempre sotto controllo medico in modo tale da poter monitorare eventuali intolleranze che possono sfociare in effetti indesiderati piuttosto pericolosi.

 

 

Fonte dell’immagine di copertinahttp://www.aspirina.it/

I dolcificanti parte IV. Lo zucchero ad alta solubilità

Reading Time: 4 minutes

Stamattina mi sono alzato, ho eseguito tutte le operazioni mattutine per consentirmi di svegliarmi (di sabato sono senza successo), sono andato dal barbiere a farmi radere quei quattro peli che mi son rimasti e poi sono andato al bar vicino casa per prendere un cappuccino.

Direte voi: “ma perché questo ci racconta sti fatti? Cosa interessa a noi di quello che fa la mattina e di quanti peli abbia?”

Un attimo e vi racconto.

Arrivo semisveglio al bar e, dopo aver chiesto la mia bevanda preferita a base di caffè e latte montato, l’occhio mi cade sul contenitore delle bustine di zucchero. Alcune di queste sono verdi. La prima cosa che penso, mettendo in funzione il neurone attivo nel fine settimana, è: “toh, guarda. Ci sono le bustine di zucchero steviolitico”.

Grande è la mia sorpresa quando prendo una di quelle bustine verdi e leggo che si tratta di zucchero ad alta solubilità.

Qui i miei sensi di chimico (come quelli di ragno di Peter Parker) si allertano. Cos’è sto zucchero ad alta solubilità?

Dovete sapere che sotto l’aspetto chimico, il concetto di solubilità si riferisce alla quantità massima di soluto che è possibile sciogliere in una prefissata quantità di solvente prima che il soluto cominci a precipitare.

Esistono zuccheri che hanno solubilità differenti. Per esempio, è possibile sciogliere in un litro di acqua circa 2 kg di saccarosio, circa 1 kg di glucosio, circa 3 kg di fruttosio e circa 7 g di lattosio. Insomma, a seconda di quella che è la natura chimica dello zucchero preso in considerazione è possibile sciogliere quantità differenti di prodotto nella stessa quantità di acqua.

Da chimico ho pensato: “zucchero ad alta solubilità…va bene…si tratta di fruttosio”. Poi però ho pensato: “un attimo…ma perché chiamarlo zucchero se nel linguaggio comune questo termine corrisponde al saccarosio? Perché il fruttosio non viene indicato come tale, dal momento che in questo modo possono venderlo ad un prezzo maggiorato?”.

A questo punto dopo aver fatto quattro chiacchiere col gestore del bar, gli chiedo se posso portare via una bustina di questo “zucchero ad alta solubilità”. Sono curioso. Voglio capire di cosa si tratta. Vado in laboratorio dove ho un po’ di strumenti che posso usare il sabato mattina senza colpo ferire.

La prima cosa che faccio è prendere una bustina di zucchero che usiamo per il caffè in laboratorio (Figura 1) e, dopo essere andato in giro per cercare un po’ di vetrini d’orologio, non faccio altro che pesare il contenuto delle bustine contenenti lo zucchero “normale” (l’aggettivo non vuol dire nulla chimicamente, ma mi serve solo per indicare lo zucchero che ho prelevato dal cassetto sotto la macchina da caffè in laboratorio) e quello ad alta solubilità.

Figura 1. La bustina verde è lo zucchero “ad alta solubilità. Nel cerchio la scritta che mi ha incuriosito. La bustina bianco/blu è una “normale” bustina di zucchero che usiamo per il caffè in laboratorio.

Ognuna delle bustine contiene circa 4 g di prodotto (Figura 2).

Figura 2. A sinistra il peso dello zucchero “normale”. A destra quello “ad alta solubilità”. Non fatevi trarre in inganno. Su una bilancia meno sofisticata di quella da laboratorio, i pesi sono identici (e comunque nell’aprire la bustina dello zucchero “ad alta solubilità”, una piccola quantità di campione mi è caduta).

L’ispezione visiva (in gergo laboratoriale noi diciamo “occhiometrica”) mi permette di vedere che lo zucchero “ad alta solubilità” è più finemente suddiviso rispetto a quello “normale” (Figura 3).

Figura 3. A sinistra l’aspetto fisico dello zucchero “ad alta solubilità”. A destra quello dello zucchero “normale”

A questo punto comincio a pensare che il mio barista avesse ragione nel dire che si tratta di zucchero “normale” che però appare un po’ più impalpabile. Ma io sono un chimico e non mi fido delle parole. Già che sono in laboratorio posso usare lo spettrometro ad infrarossi (spettroscopia FT-IR) per registrare l’impronta digitale molecolare dei due prodotti.

Figura 4. Spettri FT-IR dello zucchero “ad alta solubilità” (in nero) e dello zucchero “normale” (in rosso). Le due impronte sono identiche.

La Figura 4 mostra i risultati dell’analisi. Le due impronte molecolari sono assolutamente identiche: si tratta di normale saccarosio. Ed allora perché stampare sulla bustina “alta solubilità”, dal momento che il saccarosio, indipendentemente dal contenitore in cui è racchiuso, ha sempre la stessa solubilità?

Qui entra il gioco l’uso scorretto dei termini chimici nel mondo del marketing. Ma andiamo con ordine.

La velocità con cui un soluto si scioglie in un solvente dipende dall’area superficiale del soluto. Più elevata è l’area superficiale, più velocemente avviene la solubilizzazione come conseguenza di un contatto più intimo tra soluto e solvente.

Il valore dell’area superficiale dipende dalla dimensione dei granuli del soluto. Più piccola è la dimensione di questi granuli, più alta è l’area superficiale e più velocemente avviene la solubilizzazione. In altre parole, il linguaggio del marketing si è appropriato del termine “solubilità”, che ho definito poco più su, per farlo diventare “velocità di solubilizzazione”.

Quindi secondo i “geni” del marketing,  “alta solubilità” non vuol dire che nella stessa quantità di solvente posso sciogliere una quantità più elevata di soluto, ma significa che lo zucchero si scioglie più rapidamente.

Il sabato mattina, quando ancora non riuscite a capire se siete vivi o se deambulate come zombies solo per inerzia, è importante usare lo zucchero “ad alta solubilità”: fare tre giri di cucchiaino nel vostro caffè invece che quattro vi aiuta a risparmiare energia.

That’s all folks (e grazie al gestore del Cicì Coffee and Drink per le quattro chiacchiere che facciamo la mattina e per avermi regalato una bustina di questo zucchero “ad alta solubilità”)

 

 

Fonte dell’immagine dell’uomo ragno: https://www.zoomflume.com/events/meet-spiderman-2017/

Fonte dell’immagine di copertina: https://blog.edoapp.it/saccarosio-cose-e-a-cosa-serve/

Effetto Paperino

Reading Time: 2 minutes

Oggi mi sono imbattuto in un filmato molto divertente in cui due persone, dopo aver bevuto una birra all’elio, hanno cominciato a parlare con la voce di Paperino.

Ecco il filmato:

Divertente, vero?

Come mai quando respiriamo elio la nostra voce assume toni acuti?

Dovete sapere che l’emissione dei suoni è legata ad un meccanismo mediato dall’azione di corde vocali, faringe e bocca. Le prime, situate nella laringe (Figura 1), si avvicinano tra loro, si allontanano o vengono  tese (insomma, vibrano) grazie all’azione di alcuni muscoli. Sono proprio le vibrazioni delle corde vocali a generare il suono che si propaga attraverso l’aria che respiriamo.

Figura 1. Anatomia della gola (Fonte)

La frequenza del suono emesso da una sorgente che vibra è inversamente proporzionale alla radice quadrata della densità del mezzo in cui il suono si propaga. In altre parole, più denso è il mezzo, più bassa è la frequenza del suono. Più bassa è la densità del mezzo, maggiore è la frequenza del suono. Nel primo caso sentiamo suoni gravi, nel secondo sentiamo suoni acuti. Guardate il video qui sotto per conoscere meglio le caratteristiche dei suoni.

L’aria atmosferica, costituita da circa il 79% di azoto molecolare, il 20% di ossigeno molecolare e dall’1% di altri gas come anidride carbonica, argon etc., è mediamente otto volte più densa dell’elio. Questo vuol dire che il suono emesso dalle vibrazioni delle corde vocali attraversate dall’aria atmosferica ha una frequenza circa tre volte più bassa rispetto a quella del suono che si propaga attraverso l’elio (il “tre volte” viene fuori dal rapporto della densità dell’aria rispetto a quello dell’elio. La radice quadrata di 8 è 2.9, ovvero circa 3). La conseguenza di quanto appena scritto è che il suono che si propaga attraverso l’aria atmosferica è più grave di quello che si propaga attraverso l’elio. L’effetto finale quando respiriamo l’elio da un palloncino o beviamo birra addizionata di questo gas, come nel primo filmato di questa nota, è la caratteristica voce di Paperino.

Per saperne di più

Anatomia della gola

La propagazione del suono 1 e 2

Fonte dell’immagine di copertinahttp://cinetramando.blogspot.it/2011/12/paperino-donald-duck-walt-disney.html

Luce e colore

Reading Time: 3 minutes

Quando la luce colpisce un oggetto essa può essere assorbita, può attraversarlo o può essere riflessa. Le intensità della luce assorbita e di quella riflessa dipendono dalla lunghezza d’onda della luce incidente. In particolare, un qualsiasi oggetto che viene colpito dalla luce ordinaria ed assorbe tutte le radiazioni dello spettro luminoso visibile senza restituirne alcuna ai nostri occhi, appare nero; se riflette tutte le radiazioni dello spettro luminoso, il colore risultante dalla combinazione di tutte le radiazioni riflesse è il bianco; se l’oggetto assorbe solo un certo numero di radiazioni luminose tranne alcune, esso appare del colore generato dalla combinazione delle diverse radiazioni riflesse; se ad essere riflessa è una sola radiazione, l’oggetto appare del colore descritto dalla lunghezza d’onda della singola radiazione riflessa.

Cosa vuol dire “assorbimento della luce” a livello molecolare?

Quando la luce incide su un corpo, possono avvenire delle transizioni elettroniche. In altre parole, gli elettroni coinvolti nella formazione dei vari legami passano da un orbitale[1] ad un altro ad energia più elevata. Più vicini sono gli orbitali tra cui avviene la transizione elettronica e meno energia occorre perché essa avvenga. Nel caso di sistemi di natura organica, la distanza tra gli orbitali contigui tra cui avvengono le transizioni elettroniche si riduce all’aumentare del numero di doppi legami coniugati[2] presenti nelle molecole. Per questo motivo, molecole con un gran numero di legami coniugati sono in grado di assorbire gran parte della radiazione elettromagnetica e di conferire al macro-sistema in cui essi si trovano (per esempio i tessuti di una foglia oppure quelli di una carota) un colore corrispondente alla luce che viene riflessa. Per illustrare meglio questo concetto si faccia riferimento alla Figura 1. In essa si riporta, sull’asse orizzontale, lo spettro della radiazione elettromagnetica (la luce) tra circa 350 e circa 700 nm, ovvero nell’intervallo del visibile; sull’asse verticale si riporta la percentuale di assorbimento della radiazione luminosa; la curva arancione si riferisce all’assorbimento della luce da parte dei carotenoidi di cui un rappresentante, il β-carotene, è riportato in alto a sinistra. Si noti come i picchi di assorbimento siano compresi nell’intervallo 350-550 nm; la conseguenza è che la luce giallo-arancio (lunghezza d’onda, λ, > 550 nm) è quella che viene riflessa. Per questo motivo i tessuti vegetali che contengono i carotenoidi (per esempio le carote) appaiono arancioni.

Figura 1. Spettri di assorbimento dei carotenoidi e della clorofilla

La Figura 1 mostra anche i picchi di assorbimento della clorofilla-b la cui struttura è in alto a destra. Ci sono diversi massimi di assorbimento nell’intervallo tra 400 e 500 nm e tra 600 e circa 700 nm. Non c’è alcun assorbimento intorno ai 570 nm, ovvero la lunghezza d’onda della luce di colore verde. Il risultato è che i tessuti vegetali che contengono la clorofilla-b appaiono di colore verde. Quando la clorofilla si degrada, spariscono i massimi di assorbimento descritti e la colorazione delle foglie vira al giallo-arancio-rosso.

 Ancora una volta la chimica mostra tutto il suo fascino. Fenomeni che possono sembrare magici hanno un significato riconducibile alle caratteristiche più intrinseche della materia. E la materia ci appare in tutta la sua poesia.

Suggerimenti

Al seguente link una bellissima poesia tradotta da Popinga, al secolo Marco Fulvio Barozzi:  http://keespopinga.blogspot.it/2015/10/un-atomo-nelluniverso.html

Note

[1] Un orbitale è una zona dello spazio attorno al nucleo di un atomo in cui esiste la più elevata probabilità di poter trovare un elettrone in movimento.

[2] Senza prendere in considerazione la teoria dei legami chimici, per semplicità si può dire che i doppi legami coniugati sono doppi legami alternati tra diversi atomi di carbonio come nel seguente caso: -C=C-C=C-C=C-C=C-

Fonte dell’immagine di copertina: https://www.inkcartridges.com/blog/graphic-design/how-color-psychology-influences-your-print-design/

Omeopatia in radio

Reading Time: 1 minute

Nel 2009 sono entrato nel mondo dei social network e da allora ho conosciuto tante persone, molte odiose, tante antipatiche, ma moltissime interessantissime oltre che simpaticissime. E’ questo il caso di Lele Pescia, Ivo Ortelli e La Iena Ridens che mi hanno ospitato nella loro trasmissione “Neandhertal Pride” a parlare di omeopatia.

Chi mi segue sa che mi sono interessato di questa pseudoscienza che fa tanti proseliti nel mondo. Se siete curiosi, qui trovate il link a quanto ho già scritto.

In realtà, siamo partiti dall’omeopatia per affrontare problematiche anche di carattere più generale.

Se avete perso la diretta e se siete interessati ad ascoltare la mia voce, cliccate qui sotto e vi si apriranno le porte del mio intervento di ieri in  Neandhertal Pride

La chimica dei giochi pirotecnici

Reading Time: 2 minutes

Vi ricordate di quando vi ho descritto il fuoco greco? No!? Beh, era a questo link. Si trattava di una miscela di composti chimici in grado di bruciare anche nell’acqua. Devo dire che la chimica della combustione è molto affascinante, soprattutto se questa innesca una serie di reazioni spettacolari come quelle che si osservano alla mezzanotte di ogni fine di anno con i famosi botti di capodanno.

Cerchiamo di capire cosa accade a livello chimico fisico quando giochi pirotecnici come quelli nel filmato qui sotto (che si riferisce ai fuochi della festa di Santa Rosalia a Palermo nel 2016) ci meravigliano per il loro effetto scenico.

I saggi alla fiamma

Dovete sapere che gli studenti di chimica al primo anno (almeno ai miei tempi. Oggi non so più come sono i programmi delle ex facoltà di Chimica) studiano i saggi alla fiamma. In soldoni, si tratta di indagini che ci consentono di identificare gli elementi chimici nelle miscele attraverso il riconoscimento di certi colori caratteristici.

Andiamo con ordine.

Quando il metallo contenuto in un sale disciolto in una soluzione acida viene posto ad alta temperatura sulla fiamma di un becco Bunsen (cosa sia e come si usa, lo potete vedere nel simpatico filmato qui sotto), subisce una transizione elettronica, ovvero  i suoi elettroni passano da un livello energetico fondamentale ad uno eccitato. Quando gli elettroni ritornano nello stato fondamentale, emettono dei fotoni a delle lunghezze d’onda caratteristiche  che noi riconosciamo come colori.

Ogni elemento chimico è in grado di colorare la fiamma del becco Bunsen in modo caratteristico. In Figura 1 si vede come il rame sia in grado di produrre una fiamma verde, il sodio giallo-arancio molto intenso, lo stronzio rosso vivo et che etc.

Figura 1. Colori caratteristici di alcuni elementi della tavola periodica (Fonte)
I giochi pirotecnici

Cosa c’entrano i saggi alla fiamma con i giochi pirotecnici? Beh, prendiamo in considerazione la polvere da sparo. Si tratta di una miscela contenente: carbone (C), nitrato di potassio (KNO3)  e zolfo (S). Per effetto dell’innesco della combustione,  i composti anzidetti reagiscono in un processo esotermico portando alla formazione di carbonato di potassio (K2CO3), solfato di potassio (K2SO4), solfuro di potassio (K2S), carbonato di ammonio ((NH4)2CO3), oltre a un insieme di gas tra cui anidride carbonica (CO2), azoto molecolare (N2), idrogeno molecolare (H2), acqua (H2O), acido solfidrico (H2S) e metano (CH4),

Se la polvere da sparo viene compressa in un volume piccolo, per esempio un tubo, la reazione di combustione non produce solo calore. Infatti, la rapida espansione dei gas anzidetti produce anche un forte rumore che noi siamo abituati a chiamare “botto”.  Se la polvere da sparo viene miscelata con i sali di metalli quali il titanio, il calcio, il litio, l’antimonio, il sodio, il rame, il bario etc. all’esplosione, dovuta alla rapida espansione dei gas, si associa anche una  colorazione dovuta al fatto che, grazie alle alte temperature raggiunte durante la reazione, i metalli anzidetti emettono luce che noi percepiamo con i tipici colori illustrati nel paragrafo sui saggi alla fiamma.

Simpatica la chimica delle esplosioni, vero?

Fonte dell’immagine di copertinahttp://seekonkspeedway.com/event/labor-day-fireworks-thrill-show/

La chimica del cappuccino

Reading Time: 5 minutes

Nelle mie lezioni di chimica del suolo c’è una parte del programma che riguarda la chimica dei colloidi. Ogni anno accademico, quando descrivo i colloidi del suolo, alleggerisco la lezione facendo esempi di sistemi colloidali nella vita di tutti i giorni discutendo, tra le altre cose, della schiuma del cappuccino.

Ma andiamo con ordine.

Cos’è un sistema colloidale?

Un sistema colloidale si definisce tale solo in base alle dimensioni delle particelle di soluto che lo costituiscono. Qui sotto una tabella in cui si riportano le dimensioni delle particelle di soluto che ci consentono di distinguere tra soluzioni vere, dispersioni colloidali e sospensioni solide

Sistemi chimici                Dimensioni delle particelle di soluto

Soluzioni vere                               < 2 x 10-9 m (ovvero < 2 nm)

Dispersioni colloidali                tra 2 x 10-9 e 2 x 10-6 m (cioè tra 2                                                                                nm e 2 μm)

Sospensioni solide                     > 2 x 10-6 m (ovvero > 2 μm)

Un sistema colloidale può essere del tipo liquido-solido (come, per esempio, nel caso della soluzione suolo in cui i minerali argillosi, delle dimensioni indicate in tabella, sono disperse nell’acqua dei suoli), liquido-liquido (come, per esempio, nel caso delle microgoccioline di olio disperse in acqua o della maionese), gas-liquido (come, per esempio, nel caso della panna montata,  dei gelati o del cappuccino, di cui si dirà fra poco) e gas-gas (come, per esempio, nel caso della dispersione di microgocce di acqua in aria così da costituire la nebbia).

Per convenzione si ritiene che una dispersione colloidale sia stabile quando il tempo di flocculazione è > 2 h, ovvero se ci vogliono più di due ore prima che cominci la flocculazione. Quest’ultima consiste nel processo di aggregazione delle diverse particelle colloidali che, dopo il raggiungimento di certe dimensioni limite, risentono più della forza di gravità che delle forze di dispersione. Nel caso di particelle colloidali cariche elettricamente, le forze di dispersione sono le repulsioni elettrostatiche e le dispersioni vengono indicate come elettrocratiche. Nel caso di soluti neutri, le forze di dispersione dipendono dalle interazioni soluto-solvente e le dispersioni vengono indicate come solventocratiche.

La schiuma del cappuccino

Alla luce delle poche cose scritte, si evince che la schiuma del cappuccino è una dispersione colloidale di un gas in un liquido. Il  liquido è il latte usato per il cappuccino, mentre il gas è costituito dall’aria e dal vapor d’acqua usati per montare il latte. Le goccioline di aria possono formare una dispersione colloidale nel latte grazie alla presenza in esso di surfattanti1, ovvero di molecole in grado di abbassare la tensione superficiale2 del liquido in cui esse sono presenti.  La caratteristica chimica più importante dei surfattanti è l’anfifilicità, ovvero la presenza nella struttura sia di gruppi idrofili che di gruppi idrofobi. Nel latte queste molecole sono le proteine (di cui le caseine rappresentano l’80% del totale proteico) ed i fosfolipidi (che mediamente sono lo 0.8% della massa grassa).

Quando il latte viene insufflato col vapore acqueo mediante l’utilizzo di una tipica macchina da bar (Figura 1), si forma una schiuma in cui goccioline di gas delle dimensioni comprese tra 2 nm e 2 μm sono disperse nel mezzo liquido.

Figura 1. Macchina da caffè per bar. In fondo a destra c’è il cannello usato per insufflare aria e vapore acqueo nel latte per la preparazione del cappuccino (Fonte)

La stabilità di questa schiuma dipende dalla concentrazione relativa di surfattanti. Più essa è elevata, più la schiuma è stabile, ovvero le goccioline di gas non si uniscono a formare gocce più grandi che si allontanano dalla bevanda3. È per questo motivo che più è bassa la concentrazione di grassi come i trigliceridi che non sono surfattanti e rappresentano circa il 90% della massa grassa del latte, e più persistente è la schiuma o “cappuccio” del caffé. Tuttavia, l’uso del latte scremato o parzialmente scremato produce un cappuccino non molto gustoso; è meglio usare un latte intero per avere una bevanda migliore in termini di sapore, sebbene con una schiuma meno persistente.

È importante la temperatura del latte?

Chi ha familiarità con la chimica, come i miei studenti, avrà sicuramente sentito dire che la solubilità di un gas in un liquido dipende sia dalla pressione esercitata dal gas sulla superficie del liquido che dalla temperatura.

Più alta è la pressione del gas sulla superficie del liquido, maggiore è la quantità di gas disciolta (Figura 2).

Figura 2. Più alta è la pressione del gas sulla superficie del liquido, maggiore è la quantità di gas disciolta in soluzione (Fonte)

All’aumentare della temperatura la quantità di gas disciolto in un liquido diminuisce (Figura 3).

Figura 3. Dipendenza della solubilità di un gas dalla temperatura (Fonte)

Alla luce di quanto appena scritto, appare chiaro che per avere una schiuma consistente per il cappuccino occorre sciogliere quanto più gas possibile. Questo si può realizzare se il latte viene preso direttamente dal frigorifero e se il bricco entro cui si prepara la schiuma è freddo.

Quanto appena scritto è la lezione di chimica del cappuccino che faccio ad ogni barista nuovo che si mette dietro al bancone nel bar di fronte al mio dipartimento. Lo so, sembro arrogante, ma ci tengo a bere un buon cappuccino la mattina. Il latte e caffè me lo faccio da solo a casa e non ho bisogno del bar per questo. Buon cappuccino a tutti

Note
  1. Per quei chimici che hanno il vezzo del purismo della lingua italiana: il termine “surfattante”, anche se non piace, esiste nel dizionario di italiano ed è sinonimo di “tensioattivo”. Esso è entrato nell’uso comune e non è più da considerarsi errore o cattiva traduzione dell’inglese surfactant che è l’acronimo di surface active agent. (Surfattante nel dizionario Treccani)
  2. La locuzione “tensione superficiale” si riferisce alle forze di coesione che, all’interfaccia liquido-gas, tengono unite le molecole del liquido alla superficie del liquido stesso. In termini quantitativi, la tensione superficiale è la forza necessaria a tener uniti i lembi di un ipotetico taglio fatto sulla superficie del liquido. All’aumentare della temperatura, le forze di coesione che tengono unite le molecole alla superficie del liquido diminuiscono di intensità e la tensione superficiale diminuisce.
  3. Le microparticelle di soluto tendono ad unirsi ed a formare aggregati a dimensione progressivamente maggiore per diminuire l’area superficiale a contatto col mezzo liquido in cui esse sono insolubili. Per questo motivo, nel tempo, tutte le dispersioni colloidali tendono a subire una separazione di fase: le emulsioni olio-acqua tendono a formare una fase acquosa sul fondo ed una fase organica sulla superficie; la maionese tende a formare uno strato di olio superficiale per effetto della separazione di quest’ultimo dalla fase acquosa; le sostanze umiche (acidi umici, fulvici ed umina) tendono ad aggregarsi ed a flocculare;  etc etc.
Per saperne di più

I colloidi in breve 1

I colloidi in breve 2

Una lezione sui colloidi

Breve lezione sui tensioattivi

Un’altra lezione sui tensioattivi

La composizione dei grassi nel latte

Le proteine del latte

Il latte migliore per i cappuccini

Fonte dell’immagine di copertina: By Scoti5 – Originally from he.wikipedia; description page is/was here., Attribution, https://commons.wikimedia.org/w/index.php?curid=2710311