Chimica delle superfici e delle interfasi: l’effetto Marangoni e le lacrime del vino

Guardate la foto di Figura 1. Il bicchiere sembra vuoto. In realtà avevo appena finito di bere un buonissimo vino e in controluce si osservano quelle che gli esperti chiamano le “lacrime del vino“. Di cosa si tratta?

Figura 1. Immagine delle lacrime del vino in controluce

Il titolo di questa nota richiama il nome di un fisico italiano, il Dr. Marangoni, che nel 1865 per primo razionalizzò la formazione di queste lacrime. A onor del vero, il Dr. Marangoni studiò la dinamica del trasferimento di massa lungo una superficie.  All’interno del modello da lui sviluppato si inquadra la formazione delle suddette lacrime.

Ma andiamo con ordine.

Prendiamo in considerazione una miscela di due liquidi che, per semplicità, indichiamo con A e B. Dalla chimica sappiamo che ogni liquido è in equilibrio con il suo vapore attraverso la relazione:

Nell’immagine ho considerato le due componenti della miscela separatamente. I pedici (l) e (g) indicano la fase liquida e gassosa, rispettivamente.

Gli equilibri descritti sono tanto più spostati verso la fase gassosa quanto più piccolo è lo spessore della fase liquida. Una spiegazione semplicistica di ciò è che più piccolo è lo spessore, minore è la forza con cui le molecole  sono tenute legate alla superficie del liquido. Come conseguenza, le molecole sulla superficie di uno strato di liquido sottile riescono a “passare” più facilmente alla fase gassosa rispetto a quelle che sono sulla superficie di uno strato di liquido più spesso.

Cosa succede quando mescoliamo i due liquidi?

Quando i due liquidi vengono mescolati, l’equilibrio tra le fasi si può descrivere così:

In altre parole, ciò che è presente nella fase liquida lo è anche in quella gassosa. Ciò che cambia nella composizione della fase liquida rispetto a quella gassosa è il rapporto relativo tra le componenti.

Supponiamo, tanto per esempio, che la componente A abbia un punto di ebollizione più elevato rispetto a quello della componente B. Questo vuol dire che a parità di temperatura, le molecole di B si allontanano dalla superficie liquida più facilmente delle molecole di A. La conseguenza è che mentre la fase liquida contiene una maggiore quantità del composto A (che è più alto bollente), la fase gassosa contiene una maggiore quantità del composto B (che è più basso bollente).

Variazioni delle proprietà fisiche

La miscela fatta da A e B ha proprietà fisiche che sono intermedie tra quelle delle singole componenti. Ma cosa accade quando la stessa miscela si trova in due situazioni fisiche differenti, ovvero in un caso la fase liquida ha uno spessore più grande che nell’altro?

Quando diminuiamo lo spessore della fase liquida, la fase gassosa si arricchisce della componente più basso bollente e la densità del liquido (cioè il peso per unità di volume) tende verso quella della componente più alto bollente. Volendo semplificare con un linguaggio pseudo matematico, possiamo scrivere:

d(A+B) →dA

dove la lettera d indica la densità; il pedice (A+B) si riferisce alla miscela, mentre la freccia (→) si legge “tende”.

La tensione superficiale e la capillatirà

Avete presente l’acqua? Sì…proprio quella che si scrive H2O. Ebbene, quando questa molecola è assieme alle sue sorelle gemelle, accade che si generino delle proprietà che ogni singola molecola presa da sola non ha. In effetti quando diciamo che l’acqua bolle a 100 °C o diventa solida a 0 °C non stiamo parlando di proprietà di una singola molecola. Temperatura di ebollizione, temperatura di fusione, densità etc. sono tutte proprietà che fanno riferimento ad insiemi di molecole che interagiscono tra loro. Le molecole di acqua, in particolare, interagiscono tra loro mediante una rete di legami a idrogeno. Per semplicità rimando ad una mia nota per comprendere il ruolo che i legami a idrogeno hanno nel determinare alcune caratteristiche dell’acqua.

Il ruolo dei legami a idrogeno nel comportamento dell’acqua

Qui sotto, invece, un altro articolo in cui si evidenzia come i legami a idrogeno influenzino la dinamica dei protoni e degli ossidrilioni.

Meccanismo di Grotthuss

I legami a idrogeno sono anche responsabili di quella che viene indicata come tensione superficiale dell’acqua.

Prendiamo una bacinella e riempiamola di acqua. Immaginiamo ora di diventare piccoli fino ad arrivare alle dimensioni delle molecole di acqua. Quello che potremmo immaginarci di vedere all’interno della bacinella è un insieme di molecole che interagiscono tra loro in modo differente a seconda della loro posizione nel contenitore (Figura 2).

Figura 2. Molecole di acqua in una bacinella. Le forze attrattive tra le molecole dipendono dalla posizione nel contenitore

In particolare, le molecole di acqua che sono nel bel mezzo della bacinella sono circondate da analoghe molecole che le attraggono con forze (dovute ai legami a idrogeno intermolecolari) identiche in tutte le direzioni.

Le molecole di acqua che sono accanto alle pareti del recipiente sono attratte con forze di un certo tipo dalle pareti e con forze differenti dalle molecole di acqua ad esse vicine. Cerchiamo di capire perché. Ho già scritto che le forze che consentono alle molecole di acqua di interagire tra loro sono dovute ai legami a idrogeno intermolecolari. Per completezza aggiungo che queste forze vengono indicate come “forze di coesione” perché consentono alle molecole di acqua di essere “coese” tra loro. Le forze con le quali le pareti del recipiente agiscono sulle molecole di acqua con cui entrano in contatto si indicano come “forze di adesione”. Esse possono essere dovute sia alla formazione di dipoli indotti che a legami a idrogeno veri e propri. Questi ultimi, tuttavia, hanno energia differente rispetto a quelli che si formano tra identiche molecole di acqua a causa della differente natura chimica delle pareti del contentinore.

Infine, le molecole di acqua che si trovano in superficie risentono, da un lato, della presenza dei legami a idrogeno con analoghe molecole più interne nel liquido, dall’altro della presenza dell’aria atmosferica con cui esse non possono interagire allo stesso modo. Per questo motivo, l’energia termica necessaria per far “staccare” le molecole dalla superficie è meno intensa di quella necessaria per far allontanare le molecole più interne che sono “ancorate” meglio ad un numero maggiore di molecole di acqua.

Adesso restringiamo la bacinella di prima alle dimensioni di un capillare e cerchiamo di capire cosa accade (Figura 3).

Figura 3. Esempio di risalita capillare

In pratica diminuisce lo spazio a disposizione delle molecole di acqua che cominciano ad interagire sempre più fortemente con le pareti del recipiente. Le molecole a contatto con le pareti iniziano, quindi, ad “arrampicarsi” e si “trascinano” dietro tutte quelle che non sono direttamente interagenti con le pareti stesse. A causa delle forze di coesione più intense nella zona di spazio centrale (quella più lontana dalle pareti, per intenderci) si genera un menisco. Da un punto di vista fisico si osserva un fenomeno che  senza le spiegazioni appena date aparirebbe magico, ovvero quella che è conosciuta comunemente come risalita capillare. Essa spiega la presenza di elevate concentrazioni di sali sulla superficie di suoli indicati come suoli salini, il movimento della linfa nelle piante e l’imbibizione di materiali porosi come la carta Scottex® che usiamo in cucina per asciugare le superfici su cui abbiamo fatto cadere l’acqua.

Le lacrime del vino

Siamo arrivati al momento cruciale: la spiegazione chimico-fisica delle lacrime del vino.

Il vino è una miscela complessa in cui le due componenti più importanti sono acqua e alcol etilico (indicato volgarmente con il solo termine di “alcol”). Non me ne vogliano gli enologi, ma il vino altro non è che una soluzione acquosa di alcol etilico. La poesia che i sommelier e gli enologi vedono nel vino è dovuta ad una piccolissima quantità di altre componenti che sono responsabili del sapore e del profumo di tale bevanda.

Tra le due componenti più abbondanti del vino, l’acqua è la più alto bollente (la temperatura di ebollizione a 1 atm è 100 °C), mentre l’etanolo ha una temperatura di ebollizione più bassa (a 1 atm, l’etanolo bolle a circa 78 °C). Aggiungiamo anche che la densità dell’etanolo a temperatura ambiente è circa 0.78 g/cm3 e quella dell’acqua è circa 1.0 g/cm3. La densità media dei vini è circa 0.99 g/cm3.

Mettiamo ora idealmente del vino in un calice e ruotiamo il calice (Figura 4).

Figura 4. Calici di vino che vengono fatti ruotare (Fonte)

Per effetto della rotazione, si genera un sottilissimo strato di liquido sulle pareti del calice. Alla luce di tutto quanto descritto nei paragrafi precedenti, ne viene che l’alcol etilico si allonatana facilmente da questo strato sottile. A causa di ciò, si intensificano le forze di adesione che spingono il liquido verso l’alto. Più il liquido si sposta verso l’alto, più si assottiglia lo strato e più facilmente l’alcol evapora. Come conseguenza aumenta progressivamente anche la densità del liquido nello strato sottile, ovvero aumenta il peso per unità di volume. Questo perché, alla luce delle spiegazioni date prima, la densità del liquido tende a quella dell’acqua. Quando, per effetto dell’aumento di densità, la forza di gravità diventa predominante sulle forze di adesione, l’anello di liquido che sale verso l’alto si rompe ed incominciano a formarsi gocce ed archetti, ovvero le lacrime del vino. Qualitativamente parlando, più elevato è il contenuto alcolico del vino e più elevato è il numero di gocce ed archetti.

Le lacrime del vino si formano sempre?

No. Non sempre le lacrime si formano. Come abbiamo visto, è necessario che per effetto della rotazione e conseguente evaporazione dell’alcol etilico, si intensifichino le forze di adesione che spingono lo strato sottile di liquido verso l’alto. Come ho già scritto, le forze di adesione sono dovute a interazioni dipolari e/o legami a idrogeno. Questo significa che se non ci sono “agganci” a cui le molecole di acqua si possono ancorare, non si possono formare le lacrime del vino. In altre parole, le lacrime dipendono da quanto bene abbiamo lavato i nostri calici. Se il lavaggio ha completamente “sgrassato“ le pareti del recipiente, gocce ed archetti non si formano.

Fonte dell’immagine di copertina

Pillole di scienze: nel centro di un incendio

In questi giorni è un susseguirsi di notizie in merito agli incendi che stanno mettendo in ginocchio l’Australia. Con questa breve pillola non intendo dire la mia su una situazione oggettivamente complessa che richiede approfondimenti molto dettagliati di cui, al momento, non mi sento in grado di discutere.

In questa sede voglio condividere una notizia molto interessante che viene dal National Institute of Standards and Technology (NIST). I ricercatori di questo istituto hanno “inventato” una palla ignifuga nella quale hanno inserito una telecamera. Scopo? Quello di monitorare la dinamica di un incendio boschivo dall’interno in modo da raccogliere informazioni che possono essere utilizzate per comprendere come si sviluppano e propagano gli incendi al fine di poter mettere in atto le migliori pratiche possibili per contrastarli.

Nel video qui sotto potete osservare un incendio come foste in mezzo ad esso. In alto a sinistra ci sono delle frecce con le quali potete muovere virtualmente la telecamera ed osservare cosa si vede man mano che il fuoco vi avvolge.

Impressionante, vero?

Se volete leggere un po’ più di dettagli basta cliccare sulla foto qui sotto


Fonte dell’immagine di copertina 

Il chlorpyrifos: a cosa serve e come funziona

Avete sicuramente sentito nominare negli ultimi giorni il chlorpyrifos e del fatto che il suo utilizzo sia vietato in alcuni paesi della Comunità Europea, ma soprattutto che la EU sta tentando di vietarne l’uso in tutti i paesi membri (qui e qui). Nel caso in cui l’uso di questo agrofarmaco venisse vietato, si avrebbe un’arma in meno  per la lotta a quegli insetti che fanno parecchi danni alle aziende agricole. Pensate che la cimice asiatica (Figura 1) ha provocato in Italia danni per circa 350 milioni di euro solo per il 2019 (qui).

Figura 1. Immagine della cimice asiatica (fonte)

Il chlorpyrifos è un insetticida molto utile per il contrasto alla cimice asiatica, così come per la lotta al punteruolo rosso (Figura 2) che ha decimato la popolazione di palme in tutta Italia negli ultimi anni.

Figura 2. Immagine del punteruolo rosso (fonte)

Al di là delle decisioni che verranno prese entro la fine di Gennaio 2020, qui voglio spiegare alcune caratteristiche di questo agrofarmaco.

Cosa è il chlorpyrifos

Il nome IUPAC è O,O-diethyl-O-3,5,6-trichloro-2-pyridyl-phosphorothioate e la sua struttura è riportata in Figura 3.

Figura 3. Struttura ball-and-stick del chlorpyrifos. Le palline verdi sono atomi di cloro; quelle rosse atomi di ossigeno; le palline grigie sono gli atomi di carbonio; quelle bianche sono atomi di idrogeno; la pallina blu è l’atomo di azoto, la pallina gialla è l’atomo di zolfò, la pallina arancione è l’atomo di fosforo (fonte)

Si tratta di un composto organico la cui azione è quella di inibire l’attività della acetilcolinesterasi.

Bene, direte voi, adesso è tutto chiaro. Vero?

In effetti usare un nome complicato senza spiegarlo è come non spiegare nulla.

L’acetilcolinesterasi è un enzima, ovvero una proteina che ha delle specifiche funzioni all’interno del nostro organismo, che gioca un ruolo importantissimo nella trasmissione degli impulsi nervosi. Esso si trova nelle sinapsi tra le cellule nervose e quelle muscolari e interviene nelle contrazioni muscolari. In particolare, l’acetilcolinesterasi entra in azione dopo che un segnale nervoso è passato, demolendo l’acetilcolina nelle sue due componenti, l’acido acetico e la colina (Figura 4). Questa reazione ferma la trasmissione del segnale.
I due frammenti non vanno perduti, ma vengono riciclati per sintetizzare nuovi neurotrasmettitori per altre contrazioni muscolari. Il tempo necessario per la degradazione della molecola di acetilcolina è di circa 50 microsecondi.

Figura 4. Degradazione della acetilcolina. Nu è l’acronimo di “nucleofilo”, ovvero un sistema ricco di elettroni che reagisce con un elettrofilo, cioè un sistema povero di elettroni. Il nucleofilo è presente nel sito attivo della acetilcolinesterasi (fonte)

Come si vede dalla Figura 4, un gruppo funzionale ricco di elettroni (nucleofilo, Nu) presente nel sito attivo della acetilcolinesterasi (si tratta del gruppo -OH della catena laterale dell’amminoacido serina) attacca il gruppo carbonilico (-C=O) povero di elettroni presente nella acetilcolina determinando la frammentazione della molecola in una colina deprotonata e un sistema in cui il gruppo acetile (CH3CO-) rimane legato all’enzima. Quest’ultimo subisce una reazione di idrolisi con rigenerazione dell’enzima e formazione di acetato e colina.

Quando il chlorpyrifos si inserisce nel sito attivo della acetilcolinesterasi, il gruppo nucleofilo anzidetto va ad attaccare il fosforo presente nell’insetticida (Figura 5). Si formano, quindi, due frammenti (A e B in Figura 5) di cui uno, quello indicato con la lettera A, è l’enzima il cui sito attivo è “bloccato” dalla presenza del residuo contenente il fosforo. Il legame tra la serina e il residuo col fosforo non può essere idrolizzato, ovvero la serina non si può più “liberare” e l’acetilcolinesterasi non può più essere utilizzata per la reazione descritta in Figura 4. Questo significa che non si possono avere più contrazioni muscolari.

Figura 5. Reazione di inibizione dell’acetilcolinesterasi

Un insetto, come la cimice asiatica o il punteruolo rosso, colpito dal chlorpyrifos muore a causa del meccanismo appena descritto.

I limiti del chlorpyrifos

I meccanismi descritti provocano danni anche all’uomo. La concentrazione limite oltre la quale l’insetticida sotto indagine risulta tossico mediante assunzione orale per gli animali è nell’intervallo 32-1000 mg/kg. In altre parole, per risentire degli effetti del chlorpyrifos, un individuo di 70 kg deve assumere una dose orale di insetticida nell’intervallo compreso tra 2 e 70 grammi. Per avere effetto tossico mediante contatto epidermico, un individuo di 70 kg deve venire a contatto con circa 140 g di insetticida (riferimenti). La Comunità Europea sta cercando di proibire l’uso del chlorpyrifos sulla base del principio di precauzione legato al fatto che non è chiara la genotossicità dell’insetticida (qui). Tuttavia, stando a quanto riportato nel rapporto EFSA, gli esperimenti che sembrerebbero indicare genotossicità sono stati condotti con quantità di chlorpyrifos molto al di sopra dei limiti citati. Come al solito è necessario evidenziare che è la dose che fa il veleno. Un uso attento ed oculato di insetticida non provoca alcun danno. Occorre anche evidenziare che l’uso spregiudicato del principio di precauzione “spunta” le armi che gli agricoltori hanno a disposizione per combattere insetti nocivi alla nostra produzione alimentare

 

Fonte dell’immagine di copertina (qui)

I gas nobili che non sono nobili

Avete presente i gas nobili? Sono quelli dell’ultimo gruppo della tavola periodica (riquadro in rosso di Figura 1).

Figura 1. Tavola periodica. Il riquadro in rosso evidenzia il gruppo dei gas nobili (Fonte)

Fin da quando cominciamo a frequentare le scuole superiori (lo so…oggi non si chiamano più così…ma lasciatemi il vezzo di chiamarle ancora nel modo noto quando le frequentavo) ci viene insegnato che i gas nobili prendono questo nome perché sono altezzosi, hanno la puzza sotto al naso…ovvero incarnano lo stereotipo dei nobili dal punto di vista dei popolani: non frequentano nessuno. Chimicamente vuol dire semplicemente che sono non reattivi. A differenza di tutti gli altri elementi della tavola periodica, Elio, Neon, Argo, Cripto, Xeno e Radon non si combinano con nessun altro elemento.

Ma ne siamo veramente sicuri?

No. In effetti non è così. Diciamo pure che, quando ho cominciato i miei studi di Chimica (nell’ormai lontano 1986), un composto dello Xeno era già stato sintetizzato. Nel 1962, infatti, Neil Bartlett riuscì ad ottenere l’esafluoroplatinato di Xeno (XePtF6). La Figura 2 mostra il lavoro di Bartlett pubblicato sui Proceedings of the Chemical Society.

Figura 2. Immagine del lavoro di Neil Bartlett in cui parla della sintesi dell’esafluoroplatinato di Xeno (Fonte)

Quindi, possiamo dire che a partire dal 1962 non si può più dire che i gas nobili siano inerti. Ce ne è almeno uno, lo Xeno, che forma dei composti.

Ma è l’unico?

No, non è l’unico. Facciamo un salto temporale: 1962-2019. Sono passati 57 anni. Ci sono voluti tutti questi anni per ottenere un nuovo composto da un gas nobile. Stavolta si tratta dell’Argo. E’ stato utilizzato in condizioni molto diverse da quelle in cui siamo adatti a vivere per ottenere una lega col Nickel (ArNi). Non ci credete? Ebbene, cliccate sulla figura qui sotto.

Figura 3. Struttura dell’ArNi (Fonte)

Alla fine i gas nobili sono come Superman. Hanno i superpoteri solo quando sono sulla Terra. Se si cambiano le condizioni (come per esempio Superman in presenza della kryptonite), perdono la loro  nobiltà e si comportano come dei “volgari” metalli.

Fonte dell’immagine di copertina

 

Arte e scienza del cappuccino

Margherita Aina, giornalista per People for Planet, mi ha chiesto un’intervista durante la quale mi sono divertito moltissimo. Abbiamo parlato di cappuccino e di come si faccia la schiuma di questo delizioso alimento col quale molti di noi fanno la prima colazione (ne avevo già parlato qui).

________________________________

Se siete amanti del cappuccino al bar converrete che un buon cappuccio è fatto da due cose: un buon caffè e una buona schiuma. Soffermiamoci su quest’ultima: a volte è più cremosa, altre così schiumosa che si possono vedere grandi bolle al suo interno, altre volte dopo pochi secondi si scioglie.

Vi siete mai chiesti da cosa dipende? È l’abilità del barista? È la qualità del latte? È la “macchina” che lo produce? Abbiamo provato a chiederlo al professor Pellegrino Conte, docente ordinario di Chimica Agraria presso l’Università degli studi di Palermo e che ha dedicato un articolo molto specifico alla chimica del cappuccino, un tema che usa per aprire le prime lezioni e interessare gli studenti. Abbiamo scoperto che un fattore determinante è una cosa a cui non avevamo pensato: la temperatura [continua…]


Fonte dell’immagine di copertina

Evoluzione degli hard disk: dalle schede perforate agli SSD

Oggi il mondo è concentrato sul premio Nobel per la chimica assegnato ieri. Tutti a parlare dell’evoluzione tecnologica che ha cambiato la nostra vita negli ultimi 30 anni. Tuttavia, l’evoluzione tecnologica non è solo quella delle batterie al litio grazie alle quali sono possibili cose che fino a ieri erano impensabili.
 
Oggi mi è capitata sotto mano una scheda perforata. Chi se le ricorda? Nella Figura 1 vedete l’evoluzione degli hard disk: dalla scheda perforata (in questo caso intonsa e non ancora perforata), ad un hard disk da 740 MB fino ad arrivare ad un HD da 512 GB. Lasciamo perdere il fatto che il disco da 512 GB è in stato solido (SSD) mentre quello da 740 MB non lo è. Mi sono chiesto: quaranta e passa anni fa, quante schede perforate sarebbero state necessarie per immagazzinare la quantità di dati che oggi sono contenuti in un disco in stato solido da 512 GB?
Figura 1. Scheda perforata e due hard disk moderni
Per rispondere alla mia domanda ho assunto che la scheda pesi approssimativamente 1 g, abbia uno spessore di circa 0.2 mm ed una grammatura di circa 100 g/mq. La scheda contiene una quantità di informazioni corrispondenti a 100 B (mi scuso con gli informatici se ho sbagliato a contare i byte sulla scheda che vedete in Figura 1).
Facendo i calcoli con i dati approssimati summenzionati, è venuto che un SSD da 512 GB corrisponde a 5.12 miliardi di schede perforate. Questo ammontare corrisponde ad un peso di 5120 tonnellate, ovvero a circa il peso di una mandria di mille elefanti africani adulti come quello mostrato in Figura 2. Non voglio neanche pensare a cosa potrebbe succedere se i componenti di questa mandria di elefanti si inc…ehmmm…innervosissero e mi caricassero. 
Figura 2. Elefante africano che in media pesa 5 tonnellate (Fonte)
Ed il volume occupato da 5.12 miliardi di schede perforate? E’ pari a 10240 mc, ovvero un capannone di forma cubica avente lati di lunghezza di circa 22 m equivalente ad un palazzo di circa 7-8 piani.
 

Quante foreste abbiamo salvato e quanto spazio abbiamo risparmiato con lo sviluppo tecnologico e la miniaturizzazione informatica?

Pillole di scienza. Lieviti ed agenti lievitanti

Avete mai sentito parlare di cremor tartaro? Anche se sono un chimico, non mi interesso molto di cucina (se non come assaggiatore professionale…nel senso che mi piace mangiare) e solo recentemente ne ho sentito il nome. Mi è venuta la curiosità di sapere cosa fosse ed ho scoperto che è un banale sale potassico dell’acido tartarico. La struttura di quest’ultimo è riportata in Figura 1.

Figura 1. Acido tartarico. I pallini neri sono gli atomi di carbonio; i pallini rossi sono gli atomi di ossigeno; i pallini bianchi sono gli atomi di idrogeno. Le linee doppie sono i doppi legami carbonio-ossigeno. I gruppi -COOH sono detti gruppi carbossilici; i gruppi -OH sono chiamati gruppi ossidrilici o gruppi alcolici. L’acido tartarico è un acido dicarbossilico con due gruppi ossidrilici vicinali, ovvero posizionati su due atomi di carbonio adiacenti. La conformazione è stata ottenuta mediante ottimizzazione con la app WebMO per iPad Pro 9.2.

La Figura 2 riporta la struttura del sale potassico dell’acido tartarico, ovvero del cremor tartaro.

Figura 2. Bitartrato di potassio. Il codice colori è identico a quello di figura 1. La pallina viola è lo ione potassio. Il legame tratteggiato è un legame a idrogeno. La configurazione è stata ottenuta mediante ottimizzazione con la app WebMO per iPad Pro 9.2.

Il cremor tartaro (ovvero il bitartrato di potassio) è indicato anche come lievito chimico. Cosa vuol dire?

I lieviti

I lieviti sono degli esseri viventi. Più specificatamente sono dei microorganismi eucarioti monocellulari (Figura 3), estremamente importanti in molti processi legati alla trasformazione alimentare come la panificazione e la vinificazione.

Figura 3. Microfotografia di cellule di lievito di birra (Fonte)

Il loro ruolo è quello di ridurre il glucosio normalmente presente nelle fibre alimentari (per esempio l’amido) o nei liquidi (come quelli che si ottengono dalla spremitura dell’uva nel processo che inizia la vinificazione) in etanolo ed anidride carbonica  attraverso un processo che viene indicato come fermentazione alcolica (Figura 4).

Figura 4. Schema della fermentazione alcolica attraverso cui i lieviti riducono il glucosio ad alcol etilico ed anidride carbonica (Fonte)

L’anidride carbonica (Figura 5) che si sviluppa dalla fermentazione alcolica è la molecola che consente ai prodotti da forno, come il pane, la pizza ed i biscotti, di assumere quel loro caratteristico aspetto “gonfio” e una consistenza “sofficiosa”.

Figura 5. Molecola di anidride carbonica con la rappresentazione dei potenziali elettrostatici. La molecola ed i potenziali elettrostatici sono stati ottenuti mediante l’uso della app WebMO per iPad Pro 9.2.

In Figura 6 si riporta un esempio di pane lievitato e di pane non lievitato. Si può chiaramente vedere come il primo sia molto più “gonfio” del secondo proprio grazie all’azione dei lieviti che hanno consentito lo sviluppo della anidride carbonica che, imprigionata nel sistema, ha permesso di ottenere quella “mollica” soffice e gustosa.

Figura 6. A sinistra, pane casereccio ottenuto mediante panificazione con lievito. A destra, pane azzimo ottenuto mediante panificazione senza lievito (Fonte dell’immagine di sinistra. Fonte dell’immagine di destra).
Il lievito chimico

È possibile riprodurre gonfiore e sofficezza senza l’uso di lieviti? Certo che sì. La chimica ci aiuta. Il cremor tartaro è una molecola (Figura 2) che ha caratteristiche acide e che, sottoposta a riscaldamento, si decompone, attraverso un processo che si chiama decarbossilazione, in anidride carbonica e un derivato dell’acido propionico (Figura 7).

Figura 7. La decarbossilazione del bitartrato di potassio (ovvero del cremor tartaro) porta alla formazione di 1,2-diidrossi propionato di potassio (a sinistra) e anidride carbonica (a destra). Entrambe le molecole sono state ottenute mediante ottimizzazione energetica con la app WebMO per iPad Pro 9.2. Il codice dei colori è lo stesso che in Figura 1 e 2.

L’anidride carbonica che si ottiene dalla decarbossilazione del cremor tartaro ha la stessa funzione di quella che si sviluppa durante la fermentazione alcolica ad opera dei lieviti, ovvero garantisce gonfiore e sofficezza al prodotto (pane, pizza, dolce etc) a cui esso viene aggiunto. Questo è il motivo per cui questo sale dell’acido tartarico viene indicato come lievito chimico oppure, più correttamente, come agente lievitante. Esistono altri lieviti chimici? Assolutamente sì. Ci sono diverse molecole  che, sottoposte a trattamento termico – come quello che occorre durante la cottura di un alimento,  possono liberare anidride carbonica e conferire gonfiore e sofficezza al prodotto che prepariamo. Oltre al già citato cremor tartaro, agenti lievitanti sono il bicarbonato di ammonio, il bicarbonato di sodio, l’acido tartarico (Figura 1), il carbonato di calcio, il carbonato di magnesio ed i sali dell’acido pirofosforico (Figura 8).

Figura 8. Acido pirofosforico. Rosso e bianco sono i colori con cui vengono indicati rispettivamente ossigeno ed idrogeno. Le palline arancioni sono atomi di fosforo. La struttura è stata ottenuta mediante ottimizzazione energetica con la app WebMO per iPad Pro 9.2.
Note

Per i miei colleghi puntigliosi. Le configurazioni tridimensionali delle varie molecole riportate nelle varie figure sono solo dei minimi energetici relativi ottenuti mediante ottimizzazione con una app per iPad Pro 9.2 che ho appena scoperto e che sto imparando ad usare. Questo vuol dire che so benissimo che ci possono essere configurazioni ad energia minore e che quelle rappresentate possono essere sbagliate. Poiché questo NON è e NON vuole essere un lavoro scientifico da pubblicare su una rivista di alto impatto, ma solo una curiosità di carattere didattico divulgativo, non ho ritenuto necessario approfondire oltre le caratteristiche conformazionali delle diverse molecole. Grazie per la comprensione.

Per saperne di più

Lievitanti, tutti i segreti degli agenti chimici

 

Bere tanti succhi di frutta fa male

Sulla mia bacheca Facebook appaiono tante notizie. Sono soprattutto di carattere scientifico, dal momento che ho selezionato le cose in modo tale che mi appaiano prima queste rispetto ad altre. Tra le notizie scientifiche, oggi mi compare quella che dà il titolo a questo breve articoletto: “Bere tanti succhi di frutta fa male” (in basso lo screenshot dalla mia bacheca. Se cliccate sull’immagine si apre il link alla fonte della notizia)

Il web-magazine che riporta questa notizia è una fonte attendibile nell’ambito della divulgazione scientifica. Peraltro fa un lavoro egregio riportando notizie di lavori recenti in ambito medico senza alcuna inferenza soggettiva. Insomma, riportano le notizie che appaiono sulle riviste specialistiche traducendo il linguaggio tecnico in uno più facilmente comprensibile dalla massa delle persone che non hanno una preparazione specialistica. Fanno, in altre parole, quello che ci si aspetta da professionisti della divulgazione.

Ed allora perché sto scrivendo questa nota con termini che fanno chiaramente capire i miei intenti polemici? Non me la prendo con MedicalXpress, bensì con gli autori del lavoro che essi citano e che potete trovare cliccando sull’immagine qui sotto


Proviamo a leggerlo assieme.

Gli autori si chiedono ” Is the consumption of sugary beverages (ie, sugar-sweetened beverages and fruit juices) associated with an increased mortality risk?” ovvero: il consumo di bevande dolcificate – laddove per dolcificate intendono addizionate di zucchero (che si suppone sia il saccarosio) – tra cui i succhi di frutta, sono legate al rischio di una mortalità più elevata?

La domanda sembra legittima: se abusiamo di bevande zuccherate rischiamo o no di accorciare la nostra vita?

Per rispondere a questa domanda, gli autori hanno raccolto una serie di dati studiando il comportamento di ben 13 440 adulti con età ≥ 45 anni, specificando che hanno preso in considerazione sia bianchi che neri, nell’ambito di un progetto intitolato: “The Reasons for Geographic and Racial Differences in Stroke (REGARDS)“.

Considerazioni sul termine “razza”

Già il titolo del progetto, molto onestamente, mi dà fastidio.

Non sono un native English speaker, per cui mi faccio aiutare da un dizionario monolingue (TheSage, scaricabile liberamente qui) per capire cosa voglia dire “racial”. Qui sotto ciò che mi ha fornito la ricerca:

Da quanto si legge nella figura, il termine “racial” in inglese ha la stessa accezione di “razziale” in italiano.

Che il termine “razza” e gli aggettivi ad esso correlati vengano utilizzati da politici di varia estrazione per far leva sulla pancia di persone che hanno una visione della società civile che non va oltre il proprio ombelico, mi sta bene. Si tratta di politica. Secondo me andrebbe fatta in un altro modo, ma non si può pretendere che tutti abbiano il medesimo livello culturale. E’ compito del comparto istruzione, quindi anche il mio, fare in modo che certi concetti vengano diffusi e compresi, sempre che non ci sia asservimento al potere (qui il manifesto della razza del 1938 che fu firmato da “eminenti scienziati” dell’epoca, mentre qui  un eloquente documento che riporta anche la lista dei 12 professori universitari, gli unici, che rifiutarono il giuramento al fascismo – quindi al potere costituito – nel 1931).

Che il termine venga utilizzato da scienziati per dar titolo ad un progetto scientifico, mi infastidisce non poco. Cliccando sull’immagine qui sotto si apre un ottimo articolo apparso nel 2005 a firma del Prof. Luigi Cavalli Sforza e riproposto da Il Sole24Ore nel Settembre 2018 – per commemorare la morte del Prof. Cavalli Sforza avvenuta un paio di giorni prima – in cui si capisce come il concetto di “razza” applicato agli esseri umani non abbia alcun significato.

Tutti coloro che si occupano di scienza dovrebbero sapere ciò che dice il Prof. Cavalli Sforza, anche gli scienziati che hanno firmato l’articolo di cui si sta discutendo in questa sede e che lavorano ad Atlanta – capitale della Georgia (USA), uno dei sette stati che diedero vita alla Confederazione che scatenò la guerra civile americana e combatté contro l’abolizione della schiavitù.

Ma la mia vena polemica non è destinata all’uso inopportuno dell’aggettivo “razziale”. Va ben oltre.

Continuiamo la lettura.

Gli autori dichiarano

On enrollment in the REGARDS study, diet was assessed using a self-administered Block 98 food frequency questionnaire (FFQ), a validated semiquantitative FFQ that assesses the usual dietary consumption of 110 food items (NutritionQuest). For each food item included in the FFQ, participants were asked about their usual consumption patterns during the preceding year, with response options ranging from never to every day. In addition to frequency of consumption, participants were asked to estimate the usual quantity of food consumed as either the number of specified units or the portion of food served on a plate. The FFQ survey form was given to participants during the baseline in-home visit. Once completed, they were mailed by participants in preaddressed envelopes to the REGARDS operations center. Questionnaires were verified for completeness and sent to NutritionQuest for analysis”.

In pratica è stato somministrato un questionario al quale i candidati al progetto hanno dovuto dare risposta. A questo questionario che ha consentito la selezione dei pazienti, hanno fatto seguito interviste telefoniche a cadenza semestrale:

Study participants (or their family members) were interviewed by telephone every 6 months to log all hospital visits or death events“.

Il resto dello studio è tutta una descrizione dei risultati ed una discussione che mi ricorda molto da vicino quella fatta per il progetto EPI3 di cui ho parlato sia nel mio libro “Frammenti di chimica” che nel mio blog (qui sotto):

Omeopatia e fantasia. Parte V. Aggiornamenti

Manca un controllo, un bianco, da usare come riferimento per capire se, effettivamente, l’abuso delle bevande dolcificate sia veramente correlato ad una elevata probabilità di morte. Inoltre, il lavoro si basa su interviste (come per il progetto EPI3 già ampiamente criticato) in cui si dà una grande importanza alla componente soggettiva di chi viene intervistato. Come conseguenza dei pochi limiti che ho evidenziato, viene elaborata una correlazione che potrebbe essere senza causazione tra mortalità e bevande dolcificate.

Correlazione e casusazione

Immaginiamo di elaborare un progetto nel quale è previsto che vengano intervistate qualcosa come 50000 persone. Le domande vertono sull’uso di prodotti da agricoltura biologica e sulla eventuale presenza, in ogni famiglia, di individui con disturbi dello spettro autistico. Una possibile correlazione è quella riportata nella seguente figura:

fonte

Da questa figura si può concludere che il consumo di cibo biologico è correlato ai disturbi dello spettro autistico. Invito, tuttavia, i lettori a voler leggere la fonte prima di trarre conclusioni in merito.

Immaginiamo ora un altro progetto in cui, attraverso interviste telefoniche, si cerca di comprendere quanti suicidi attraverso impiccagione, strangolamento e soffocamento siano avvenuti in un certo lasso di tempo e quale tipologia di rivista stessero leggendo i malcapitati nel periodo immediatamente precedente la loro morte. Potrebbe venir fuori una cosa come quella della figura qui sotto:

fonte

Da questa figura si capisce che le spese per finanziare la scienza, lo sviluppo delle tecnologie in generale e quelle per andare nello spazio, in particolare, sono direttamente responsabili dei suicidi per impiccagione, strangolamento e soffocamento. Anche in questo caso invito i lettori ad accedere alla fonte della figura prima di esprimere ogni opinione in merito.

Di correlazioni senza causazioni ne possiamo fare parecchie. Anche un paio di anni fa avevo evidenziato come il consumo abitudinario di mozzarelle fosse direttamente responsabile della capacità degli studenti statunitensi di conseguire un dottorato in ingegneria civile (qui sotto il link)

Correlazioni e causalità ovvero delle fallacie degli antivaccinisti

Conclusioni

A onor del vero, gli autori dello studio concludono il loro lavoro scrivendo:

Despite the availability of a large national sample, the number of participants who died during the relatively short follow-up period was small. This increases the risk of a type 2 error, particularly in stratified analyses. In addition, sugary beverage consumption was based on self-report, which is subject to an underreporting bias, specifically for SSBs, that has been shown to differ by a respondent’s weight status, among other factors.25 In addition, beverage exposure estimates were available only at baseline. The extent to which that measure reflects consumption throughout the follow-up period is unknown. Furthermore, we were unable to estimate consumption of all types of SSBs, including sweetened teas, which is known to be high among some adults. Nevertheless, it is important to note that the absence of these data is likely to have biased the observed associations toward the null. Third, nearly one-third of the REGARDS cohort did not complete an FFQ, which may have led to selection bias, compromising the interval validity of our study“.

In altre parole, gli stessi autori si rendono perfettamente conto che le loro conclusioni non sono definitive e che lo studio avrebbe dovuto essere fatto prendendo in considerazione un approccio differente.

Nonostante questa conclusione che consente di dire che lo studio deve essere preso con le mollette, cosa pensate titoleranno le migliori testate giornalistiche quando si accorgeranno di poter scrivere “contrordine compagni. I succhi di frutta fanno male“, potendo in questo modo ottenere tanti like e tante condivisioni che vuol dire anche tanta pubblicità?

Ai posteri l’ardua sentenza. Intanto io mi vado a sbafare un ottimo succo di frutta. Visto che aumento la mia possibilità di morire (cosa che comunque accadrà), che almeno possa avvenire mentre si sviluppa in me la sensazione di soddisfazione conseguente all’aver assunto una bevanda dolcificata.

Fonte dell’immagine di copertina

Fart chemistry

Stavolta il titolo è in inglese. “Fart chemistry” dà l’idea di qualcosa legato alla fantascienza. Invece si tratta di una chimica legata alla salute umana, e che, prosaicamente, può essere identificata come “chimica delle scoregge“. Ebbene sì. Le flatulenze con odori più o meno forti sono inquadrate nell’ambito di quel ramo della chimica/biochimica/medicina che viene indicato come “flatologia“. Gli scienziati che si occupano di flatologia sono indicati come “flatologi“.

Fart composition

La composizione chimica di una flatulenza cambia da individuo ad individuo in funzione delle caratteristiche del suo metabolismo e da ciò che mangia.

La composizione tipica, ma anche più semplice, è: azoto molecolare, idrogeno molecolare, anidride carbonica, ossigeno molecolare e metano. Si tratta, insomma, della composizione dell’aria che respiriamo, sebbene con rapporti relativi alquanto differenti. Per esempio il metano può raggiungere l’ammontare del 10% in volume nei casi più estremi.

Nessuno dei gas citati ha odore. Allora la domanda nasce spontanea: come mai le flatulenze hanno odori sgradevoli che vanno da quello delle uova marce a quello del pesce e della carne in putrefazione?

Ebbene, tutto dipende da ciò che mangiamo, come dicevo. La Figura 1 mostra le molecole più importanti che sono state identificate nei gas prodotti dal nostro intestino

Figura 1. Molecole tipiche presenti nei gas prodotti dal nostro intestino

Tra tutte le molecole mostrate in Figura 1, il tipico odore di uova marce è dovuto ai composti contenenti zolfo, l’odore di feci è dovuto a scatolo e indolo, le ammine volatili “sanno” di pesce andato a male, mentre l’odore degli acidi grassi a catena corta assomiglia a quello del burro rancido.

La cosa “simpatica” è che quando ero studente, i professori ci dicevano di fare attenzione quando maneggiavamo sistemi volatili contenenti zolfo. Questi hanno non solo la peculiarità del cattivo odore, ma anche quella di attaccarsi ai tessuti. Per questo motivo, i profs ci invitavano caldamente ad usare le cappe ed i camici per non rischiare di impestare i vestiti ed essere costretti a denudarci prima di poter entrare in casa. Insomma…se vi scappano flatulenze dal caratteristico odore di uova marce mentre siete seduti sul divano, ricordatevi che l’odore può persistere nel tempo perché le molecole descritte nella Figura 1 possono attaccarsi al tessuto del divano allontanandosi da esso molto lentamente.

Non c’è che dire. Una miscela micidiale in quanto a “profumo”. Apriamo le finestre

Fonte: http://ilsilenziodielia.blogspot.com/2010/07/finestre-aperte.html
Per saperne di più

What Is a Fart Made Of?

The chemistry of farts

The composition of human fart gas

Fonte dell’immagine di copertinahttps://m.baklol.com/baks/Health/12-Shocking-Reasons-Why-You-Sh-_2236/1

Orbitali e premi Nobel

Mettendo ordine nel mio ufficio, mi è capitato tra le mani un articolo che avevo stampato tempo fa ed apparso su Angewandte Chemie International Edition English nel 1969. Chi si occupa di scienza nel campo chimico sa che si tratta di una delle riviste più accreditate del settore: i chimici farebbero carte false pur di veder pubblicato un lavoro su questa rivista. Il lavoro in questione è quello che vedete nell’immagine seguente: The conservation of Orbital Symmetry.

Roald Hoffmann ha vinto il premio Nobel nel 1981 per i suoi studi sui meccanismi di reazione assieme a Kenichi Fukui. I due scienziati svilupparono, indipendentemente l’uno dall’altro, la teoria in base alla quale si sviluppano le reazioni chimiche. Sul sito di Ang. Chemie Int. Ed. En. si trovano sia la Nobel lecture di Fukui dal titolo The Role of Frontier Orbitals in Chemical Reactions (immagine qui sotto)

che quella di Hoffmann dal titolo Building Bridges Between Inorganic and Organic Chemistry (immagine qui sotto)

Se Hoffmann e Fukui hanno vinto il premio Nobel per le loro ricerche nell’ambito della chimica teorica che hanno consentito l’elaborazione dei meccanismi di reazione come oggi li conosciamo, Robert B. Woodward (il primo autore della prima immagine riportata in questa breve nota) vinse il premio Nobel quattro anni prima del predetto articolo su Angew. Chemie Int. Ed. En. “for his outstanding achievements in the art of organic synthesis“.  Da notare: “art of organic synthesis“. Eh…sì…perché la sintesi chimica è a metà tra scienza ed arte. Occorre una enorme fantasia associata ad una profonda conoscenza chimica per poter sintetizzare un qualsiasi composto chimico. Il contributo di Woodward va dall’elaborazione della via sintetica della chinina, a quella del colesterolo, passando per il cortisone, la stricnina, l’acido lisergico e la cefalosporina. Sicuramente notevole è la via che egli elaborò per ottenere in laboratorio la vitamina B12 di cui potete trovare un pezzo nella figura qui sotto e nel link ad essa associato (basta cliccare sull’immagine).

Come dicevo altrove, la chimica ci è amica. Non tutti i prodotti di sintesi sono pericolosi, ma del resto la pericolosità di un prodotto è solo legata al cattivo uso che di esso si fa, come scrivevo già un po’ di tempo fa:

Contraddizioni culturali e paradossi cognitivi. Naturale / buono = chimico / tossico

Fonte dell’immagina di copertinahttps://www.unidformazione.com/orbitali-ibridi/