Su agricoltura biodinamica: riflessioni scientifiche

Circa un mese fa è comparsa una mia intervista su www.VinOsa.it in merito all’agricoltura biodinamica.

[…] È una pratica agricola che non ha nulla di scientifico, ma si basa su riti e superstizioni inventati da Rudolph Steiner all’inizio del ’900. Steiner era un visionario, ma non nel senso positivo del termine. Non va accomunato con gente del calibro di Newton, Galileo Galilei, Giordano Bruno – solo per mantenerci nel passato, citando persone a cui gli pseudo scienziati tendono sempre a confrontarsi – o Einstein, Planck, Dirac, Pauling – per andare a persone a noi più vicine nel tempo – che erano scienziati nel senso compiuto del termine. Il modo di essere visionari delle persone appena citate ha permesso lo sviluppo verticale della scienza, ovvero del corpo di conoscenze che oggi ci consente di usare i social network, di andare sulla Luna, su Marte o di aver superato le colonne d’Ercole del nostro sistema solare. Le visioni di Steiner sono quelle tipiche di una persona che non ha alcuna idea di come si possa fare scienza e basa le sue conoscenze sulla superstizione e sull’esoterismo […]

Se non avete ancora letto l’intervista ed avete voglia di divertirvi con delle valutazioni scientifiche su questa pratica agricola potete cliccare sull’immagine qui sotto. Quello sono io, stanco per le continue battaglie contro la pseudoscienza, mentre mi riposo per riprendere la lotta.

Grazie e buona lettura

Fonte dell’immagine di copertina

Sugli insetti e sui parabrezza

Avete mai sentito parlare del widescreen phenomenon? No? Eppure, tra gli ecologisti della domenica va per la maggiore. Si tratta della constatazione che il numero di insetti stia diminuendo perché i parabrezza delle auto non sono più così sporchi di insetti spiaccicati come quando eravamo piccoli.

Sono le classiche elucubrazioni di gente che di scienza non capisce niente e capisce ancor meno di come si realizza un disegno sperimentale per trovare una risposta alla domanda “la popolazione di insetti su scala globale sta veramente diminuendo?” oppure “esiste una relazione tra l’uso di agrofarmaci e numerosità della popolazione di insetti?”, e potrei continuare, naturalmente. È la stessa tipologia di approccio pseudoscientifico che viene usato dai fantastici fautori di quella robaccia che si chiama omeopatia e che si riassume con “su di me funziona” (ne ho già scritto qui).

La cosa bella è che queste elucubrazioni vengono diffuse da siti molto seguiti (per esempio qui e qui) che contribuiscono alla cosiddetta disinformazione o cattiva divulgazione scientifica.

Vediamo perché la relazione tra parabrezza, numero di insetti spiaccicati e popolosità degli stessi sia una bufala.

Innanzitutto, dobbiamo cominciare col dire che uno studio su scala globale relativo alla perdita di biodiversità (non solo, ma limitiamoci alla biodiversità) va disegnato in modo tale da ottenere risultati non solo replicabili, ma anche riproducibili[1]. Alla luce di quanto scritto, è possibile pensare che il numero di volte in cui puliamo il parabrezza delle nostre automobili sia un dato attendibile? La risposta è no. Il motivo è abbastanza semplice: percorriamo sempre la stessa strada? Sempre alla stessa velocità? Sempre nelle stesse condizioni climatiche? Sempre con la stessa auto?

Esistono strade di tantissime forme, dimensioni e condizioni, tutti fattori che vengono sempre ignorati quando il windscreen phenomen è usato come indice per misurare la popolazione degli insetti. Non dimentichiamoci, inoltre, che le strade generano i cosiddetti bordi nel paesaggio. Come sanno tutti quelli che si interessano di indagini analitiche di ogni tipo, gli effetti dei bordi sono sempre difficili da misurare e generalizzare.

E come facciamo il campionamento? Guidiamo verso i bordi della carreggiata? Allora ci dobbiamo aspettare di campionare una popolazione di insetti di corporatura più massiccia di quelli che potremmo rilevare sul parabrezza se guidassimo esattamente al centro della strada. E a che ora pensiamo di fare il campionamento? Persino io che non sono un entomologo so che la tipologia di insetti che vivono negli ambienti intorno alle strade differisce a seconda del periodo della giornata in cui ci muoviamo. E cosa andiamo a misurare? Il numero di resti presenti sul parabrezza? La loro densità? La forza che usiamo per staccare i poveri resti degli insetti spiaccicati?

Ma non basta. Se io guido sempre nella stessa microzona del pianeta, mi posso permettere di estrapolare le mie pseudo-osservazioni ad altre zone del pianeta? Ovviamente no, perché le mie pseudo-osservazioni sono valide solo per la strada che percorro abitualmente, non per le altre. Chi mi assicura che gli insetti non si siano evoluti in modo tale da andare a popolare le zone limitrofe a quelle che io frequento abitualmente con la mia auto, solo perché hanno imparato che la zona che frequento è quella più pericolosa del sistema in cui essi vivono?

Eh, sì. Tutte quelle elencate, ed anche di più, sono le domande a cui dobbiamo rispondere per rendere un dato attendibile. Sfido tutti gli pseudo-ambientalisti che usano il windscreen phenomenon a rispondere in modo coerente a tutte le domande sopra elencate.

Letture aggiuntive e note

The windscreen phenomenon: anecdata is not scientific evidence

More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Declining abundance of beetles, moths and caddisflies in the Netherlands

Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years

[1] Replicabilità e riproducibilità non hanno lo stesso significato. La prima si riferisce alla capacità del medesimo ricercatore (o gruppo di ricerca) di ottenere i medesimi risultati nello stesso laboratorio in tempi differenti. La seconda si riferisce alla capacità di ricercatori differenti in laboratori differenti e fisicamente lontani tra loro, di ottenere i medesimi risultati di una data ricerca scientifica.

Fonte dell’immagine di copertina

Ancora su anidride carbonica e mascherine

Vi ricordate la lettera aperta che all’inizio di ottobre ho scritto ad Enrico Montesano? No!? Eccola nel link qui sotto:

Lettera aperta ad Enrico Montesano

In questa lettera facevo notare al mai dimenticato Rugantino che quanto asseriva in merito alla pericolosità delle mascherine erano tutte sciocchezze. Lo facevo con la solita metodica scientifica, ovvero considerando gli aspetti quantitativi relativi alla dimensione delle molecole di anidride carbonica e quella dei pori delle mascherine attraverso cui il gas passa.

Per darvi una idea grafica delle conclusioni in merito al rapporto dimensionale tra la molecola di anidride carbonica e un poro di una mascherina chirurgica, potete far riferimento alla Figura 1.

Figura 1. Il puntino a sinistra è la rappresentazione di una molecola di anidride carbonica. Il cerchio a sinistra è la rappresentazione di un poro di una mascherina chirurgica.

In questa figura, considerando unitaria la dimensione della molecola di CO2 (il puntino a sinistra), un poro di una mascherina chirurgica risulta circa 800 volte più grande della molecola di anidride carbonica (cerchio a sinistra in Figura 1).

Nei giorni successivi alla pubblicazione della lettera aperta c’è stato un delirio di interventi (tra messaggi nel blog e lettere ai miei indirizzi e-mail) tutti a carattere monotematico. Ad eccezione di tre/quattro persone che si sono complimentate per aver finalmente evidenziato, numeri alla mano, l’incongruenza di quanto detto da Montensano e i figuri a cui egli si ispira, c’è stata gente che, per lo più in un italiano stentato e dimostrando di aver saltato tutte le lezioni sulle equivalenze fatte alle scuole elementari, pretendeva di mettere in dubbio i numeri riportati nella mia lettera aperta. Le argomentazioni andavano dall’aver usato concetti di chimica troppo complicati (SIC!), alla matematica troppo difficile (SIC!), al fatto che io non uso la mascherina in modo continuativo e non so cosa vuol dire stare tutto il giorno con questo dispositivo di protezione individuale, al fatto che non soffro di patologie che mi impediscono di indossare la mascherina. E potrei continuare.

Nel marasma di commenti tutti sulla falsariga di quanto appena riportato, ci sono stati alcuni interventi che meritano la mia attenzione. In sintesi, si tratta di commenti che evidenziano come le mie argomentazioni siano corrette considerando una singola molecola di CO2 ed un singolo poro di una mascherina chirurgica. Tuttavia, avrei dovuto considerare che noi espiriamo milioni di miliardi di molecole di anidride carbonica. I pori della mascherina rappresentano, quindi, un “collo di bottiglia” attraverso cui tutte quelle molecole non riescono a fuoriuscire tra un respiro e l’altro, con la conseguenza che reimmettiamo nel nostro organismo la CO2 che abbiamo appena espirato.

Purtroppo, la logica che ci ha consentito di sopravvivere alle belve feroci per arrivare fino ad oggi, non si può applicare in ambito scientifico dove i modelli che vengono sviluppati sono tutti, ma proprio tutti, controintuitivi. Inoltre, fare  affermazioni senza il supporto di dati numerici non è esattamente corretto sotto il profilo scientifico. Infatti, tutti i commenti in merito all’azione “collo di bottiglia” esercitata dalle mascherine erano di tipo aneddotico. Nessuno, ma proprio nessuno, si è mai peritato di fornire un modello matematico per spiegare i propri ragionamenti.

Vediamo perché l’idea del “collo di bottiglia” che non permette il passaggio della CO2 che espiriamo è completamente sbagliata.

Basta una banale ricerca in rete per trovare che la permeabilità (intesa come il flusso di gas che passa attraverso le mascherine per unità di superficie) è di circa 10 litri al minuto (L min-1) per le mascherine chirurgiche e di circa 5 L min-1 per le mascherine tipo FFP2 (qui). Volete sapere cosa significano questi numeri? Semplicemente che per ogni centimetro quadrato di mascherina, passano 10 L min-1 e 5 L min-1 (a seconda della tipologia di mascherina) di aria. Questi numeri sono stati misurati usando una pressione di esercizio di circa 20 mbar, ovvero la pressione esercitata dall’apparato respiratorio a riposo (qui). In ogni caso, più alta è la pressione esercitata contro le mascherine, maggiore è la loro permeabilità (qui). Considerando che il flusso di aria che espiriamo mediamente è di circa 6 L min-1 (qui), ne viene che di anidride carbonica tra la mascherina ed il viso non rimane nulla. In altre parole, non c’è alcun rischio di respirare la propria anidride carbonica.

Da dove viene, allora, la convinzione che le mascherine consentirebbero di respirare la propria “aria usata”?

Si tratta solo di fattori psicologici che nulla hanno a che fare con la reale capacità di una qualsiasi mascherina di impedire il passaggio dell’aria che fuoriesce dai nostri polmoni (qui e qui). In pratica, chi afferma che non riesce a respirare è solo vittima delle proprie impressioni personali che non hanno niente a che vedere con la realtà chimico-fisica delle mascherine il cui uso è fortemente consigliato (assieme alle distanze di sicurezza e ad elementari norme igieniche) per ridurre la dffusione del contagio da SARS-COV-2.

Note

Alcuni lettori del blog mi hanno chiesto come mai le mascherine chirurgiche vanno indossate in un ben preciso verso, ovvero con la parte colorata rivolta verso l’esterno. La risposta è stata data qualche tempo fa in questo link. In sintesi, la parte colorata di una mascherina chirurgica è fatta da materiale idrorepellente. Questo riduce la possibilità che le eventuali goccioline di saliva espirate da persone con cui, per esempio, stiamo parlando, possano penetrare attraverso lo strato colorato e raggiungere gli strati interni con possibilità di contaminarci.

Altri lettori mi hanno chiesto come mai gli occhiali si appannano quando indossiamo la mascherina. L’appannamento è dovuto al fatto che l’aria che espiriamo è calda. Quando le molecole di acqua calda che espiriamo entrano a contatto con la superficie fredda dei nostri occhiali, condensano dando luogo al fenomeno dell’appannamento (qui).

Letture e riferimenti

Characterization of face masks

An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration

Air permeability and pore characterization of surgical mask and gowns

On respiratory droplets and face masks

Characteristics of Respirators and Medical Masks

FONTE DELL’IMMAGINE DI COPERTINA

Cosa è e quali sono le applicazioni della rilassometria NMR?

Più volte ho citato la tipologia di lavoro di ricerca che faccio all’università. La tecnica di cui sono diventato esperto, dopo aver lavorato per tanto tempo sulla spettroscopia di risonanza magnetica nucleare in fase liquida e solida, è la cosiddetta rilassometria NMR a ciclo di campo (fast field cycling NMR relaxometry). Questa tecnica aiuta a capire la dinamica molecolare di tantissimi sistemi chimici. In altre parole, aiuta a capire come si muovono le molecole in diverse situazioni fisiche. Per esempio, si può capire come si muovono i nutrienti vegetali nei suoli, come si comportano i contaminanti ambientali per arrivare anche alla definizione di parametri innovativi che possono misurare (ovvero quantificare) l’erosione dei suoli.

Tutto questo, e altro ancora, è stato spiegato in un webinar sulla rilassometria NMR patrocinato dalla Stelar srl e dalla COST Action CA15209: ”European Network on NMR Relaxometry il 29/05/2020.

Se avete una quarantina di minuti liberi e volete sapere di più, potete ascoltare cliccando sull’immagine qui sotto

Fonte dell’immagine di copertina

Dormire nella stazione spaziale ISS

Oggi ero in auto. In genere mentre guido ascolto la radio. In uno dei tanti zapping veloci, mi capita di ascoltare un programma in cui l’ospite è un astrofisico. Questi parla della stazione spaziale ISS e della vita che si conduce a bordo.

Stazione spaziale ISS (Fonte)

Ciò che mi ha colpito moltissimo è stata la descrizione del come dormono gli astronauti.

Sapete che quando dormono in condizioni di assenza di peso, gli astronauti devono trovarsi in un ambiente con ottima aerazione?

La domanda vi sembrerà banale, ma ogni volta che ascolto notizie scientifiche mi trovo ad essere come un bambino di fronte ad un giocattolo. Anche se già lo conosce perché lo ha usato altre volte, lo guarda con meraviglia e pensa a cosa si possa ancora nascondere in quei meccanismi che ha visto centinaia di volte.

In effetti, siamo così abituati a vivere sulla Terra che neanche ci rendiamo conto che la vita in condizioni chimico-fisiche differenti richiede delle attenzioni particolari senza le quali essa non potrebbe esistere.

Quando ci sentiamo stanchi ed andiamo a letto, ci addormentiamo ma non per questo smettiamo di vivere. Continuiamo a respirare. Durante questa azione inspiriamo ossigeno ed espiriamo anidride carbonica. L’aria che circonda il nostro corpo, inclusa quella ricca di anidride carbonica che esce mentre respiriamo, è calda. Per questo motivo, si generano delle correnti convettive grazie alle quali l’aria calda (e per questo meno densa, ovvero più leggera) ricca di anidride carbonica che espiriamo si allontana verso l’alto venendo sostituita da aria fredda e più ricca di ossigeno.

Nelle condizioni di microgravità presenti nella stazione spaziale ISS, questi moti convettivi non si realizzano perché la microgravità porta ad assenza di peso e, quindi, non esistono zone di aria più leggere rispetto ad altre. La conseguenza è che durante il sonno, la testa degli astronauti viene circondata da una nuvola di anidride carbonica. Senza una corrente d’aria artificiale come, per esempio, quella generata da un ventilatore, la nuvola anzidetta non si disperderebbe turbando il sonno degli astronauti o, addirittura, portando alla morte, nel caso più drammatico.

Articoli simili

Svelato il mistero dei venti da eclisse

FONTE DELL’IMMAGINE DI COPERTINA

Le armi chimiche: i veleni naturali

Sapete che cosa è la chimica delle sostanze naturali? Si tratta di una branca della chimica che studia le proprietà chimiche (per esempio, struttura e conformazione) e la reattività di metaboliti primari e secondari delle piante e degli animali. La Treccani ne dà una bella definizione:

“È quel settore delle scienze chimiche che ha per oggetto lo studio della struttura, delle proprietà chimiche, delle trasformazioni delle sostanze organiche presenti negli organismi viventi (animali, piante o microorganismi), nonché del loro ruolo biologico”.

Perché vi sto dando questa definizione? Semplicemente perché sto leggendo un bel libro dal titolo “Storia dei veleni. Da Socrate ai giorni nostri” (Figura 1) in cui si descrivono le potenzialità venefiche di tantissime sostanze di origine naturale.

Figura 1. Libro sui veleni che ho acquistato recentemente

Non credo sia una novità che l’uso dei veleni sia noto fin dall’antichità. Essi venivano utilizzati sia per la caccia che per la guerra. Per esempio, nella seconda metà del XIX secolo, Alfred Fontan descrisse degli interessantissimi ritrovamenti nella grotta inferiore di Massat, nell’Ariège (Figura 2), un sito risalente all’epoca magdaleniana.

Figura 2. Zona dell’Ariege dove si trovano le grotte di Massat (Di TUBS – Opera propria. Questa grafica vettoriale non W3C-specificata è stata creata con Adobe Illustrator. Questa immagine vettoriale include elementi che sono stati presi o adattati da questa:  France adm-2 location map.svg (di NordNordWest)., CC BY-SA 3.0 de, https://commons.wikimedia.org/w/index.php?curid=45555827)

In particolare, tra i tanti reperti, furono individuate delle punte di lancia e freccia con delle interessanti scalanature (Figura 3).

Figura 3. Punte di lancia e freccia del periodo Magdaleniano (Fonte)

Negli anni successivi gli studiosi hanno compreso che le scanalature sulle punte di freccia e lancia servivano per fare aderire i veleni in modo tale che le prede (o i nemici), una volta colpiti anche in modo non mortale, potessero morire per effetto del veleno introdotto attraverso le ferite. Ancora oggi le popolazioni primitive che vivono nelle zone meno esplorate del pianeta fanno uso,  per la caccia o per la guerra, di punte  simili a quelle ritrovate nelle grotte di Messat .

Siete curiosi di sapere come si fa a rendere “velenosa” una punta di freccia o di lancia?

I veleni, come leggerete nel paragrafo successivo, vengono per lo più estratti dalle piante.  Jean de Maleissye, nel libro che sto leggendo, ci spiega come facevano alcune popolazioni dello Zimbabwe a preparare le loro armi. Molto verosimilmente, la stessa tecnica era applicata dalle popolazioni primitive.

“Si faceva a pezzi la pianta, la si mescolava ad acqua e si faceva bollire il tutto per molto tempo. Poi si lasciava ridurre il liquido finché non si addensava, assumendo la consistenza della pece. Il veleno veniva fissato sull’estremità superiore dell’arma tramite una cordicella che gli indigeni arrotolavano attorno alla punta. Lo spazio libero fra ogni spira di corda tratteneva infatti il veleno, quando vi si immergeva la punta dell’arma. Si lasciava seccare il preparato velenoso, poi si toglieva il filo. Con tutta probabilità, la cordicella consentiva di trattenere il veleno su superfici minuscole. Tale artificio impediva infatti al veleno di staccarsi prematuramente in grandi placche”.

Come cacciavano le popolazioni della civiltà magdaleniana?

Non lo sappiamo, in realtà. Possiamo immaginare dalle ricostruzioni basate sugli utensili ritrovati in giro per l’Europa, che i magdaleniani “dopo aver colpito con una o più frecce avvelenate un grande cervo o una renna, [ne seguono] le tracce per ore o anche per giorni, fintanto che, stremato dal veleno, dalla perdita di sangue e dallo sforzo compiuto, il grande animale non crolla in un bosco ceduo” (Fonte). Una volta catturata la preda, i cacciatori rimuovono la parte avvelenata e fanno a pezzi tutto il resto della carcassa che viene usata per alimentarsi.

Origine dei veleni

In genere si tratta di sostanze che vengono estratte dalle piante. Una di queste è la Aconitum napellus o aconito,  una pianta che cresce in zone montuose e nota, per le sue proprietà tossiche, già a i tempi dei Galli e dei Germani (Figura 4).

Figura 4. Aconito, pianta molto comune ed estremamente tossica

Le sue parti, incluse le radici, contengono miscele complesse di alcaloidi quali: aconitina, napellina, pseudoaconitina, aconina, sparteina, efedrina (Figura 5).

Figura 5. Struttura chimica dei principali alcaloidi presenti nei tessuti di Aconitum napellus.

Tutte queste molecole hanno attività neuro- e cardio-tossica. La loro dose letale è dell’ordine di pochi milligrammi (1-4 mg) per chilogrammo di peso corporeo.  Immaginate, quindi, cosa può succedere se una freccia avvelenata con questa miscela di alcaloidi vi colpisse anche in un punto non vitale. Il veleno entrerebbe nel sangue e sareste soggetti a “rallentamento dei battiti cardiaci, diminuzione della pressione arteriosa e rallentamento del ritmo respiratorio” fino a  paralisi cardiaca e respiratoria (Fonte). Anche l’ingestione di questa miscela di alcaloidi porta alla stessa fine.

Ma volete sapere un’altra cosa? Avete presente la “potentissima” medicina tradizionale cinese?

Ebbene, nel 2018, è stato pubblicato un lavoro di revisione della letteratura scientifica in merito alla tossicità degli alcaloidi dell’aconito. Il lavoro è liberamente scaricabile qui. Nell’introduzione si evidenzia come gli estratti della radice di questa pianta siano usati nella medicina tradizionale cinese come rimedi per problemi cardiovascolari, artriti reumatoidi, bronchite, dolori generici e ipotiroidismo. Non sono un medico, però a me sembra quasi la panacea di ogni male (mi correggano i medici che leggono questo articolo se sbaglio, per favore). Nella stessa introduzione viene anche rilevato che le autorità sanitarie di molti paesi asiatici sono costrette a regolamentare l’uso di questo preparato a causa della sua elevata tossicità. Infatti, tra il 2001 e il 2010 sono stati osservati, per esempio, ben 5000 casi di tossicità da alcaloidi di aconito. Come mai tutte queste intossicazioni? Semplicemente perché, come evidenziato anche in un lavoro del 2019 pubblicato su Forensic Science, Medicine and Pathology, una rivista della Springer con impact factor nel 2019 di 1.611 (si può liberamente scaricare qui), gli estratti di aconito vengono usati senza prescrizione medica ed è facile usare la logica spicciola secondo cui se la quantità x mi permette di guarire, allora la quantità xn mi farà guarire più velocemente. 

Conclusioni

La natura ci è nemica? Neanche per sogno. Allora ci è amica? neanche per sogno parte seconda. Alla natura non importa nulla di noi. I veleni possono essere considerati  la risposta evolutiva delle prede ai predatori. Quando, in modo casuale ed imprevedibile, una modifica genetica consente la nascita di una pianta con un corredo metabolico appena un po’ diverso da quello delle sue “compagne”, è possibile che essa diventi indigesta, ovvero tossica, per i predatori. Questa nuova caratteristica favorisce la sopravvivenza della pianta modificata rispetto alle sue “sorelle” non modificate. Nel momento in cui tutte le piante non modificate si sono esaurite a causa della pressione alimentare dei predatori, rimangono in vita solo quelle modificate da cui i predatori si tengono lontani… a meno di non capire che esse possono essere sfruttate non a fini alimentari ma per la caccia e per la guerra.

Fonte dell’immagine di copertina

Chimica e storia. In memoria dei caduti per effetto dei gas in guerra

29 giugno 1916. Ore 5:30. I soldati italiani che vivono nelle trincee scavate sul Monte San Michele nel Carso isontino si stanno lentamente svegliando quando “una cortina di fumo non più alta di due metri […] rotola adagio, dato che non c’è vento, verso di noi”[1].

Panoramica della zona del Monte San Michele (Fonte)

I soldati, allarmati dai loro ufficiali,  indossano le protezioni antigas costituite da “una maschera che ha una pinzetta che serve per chiudere le narici e una specie di filtro dal quale parte una gomma che termina con una specie di testina, la quale si tiene in bocca e così si respira. In più ha una membrana con elastico che copre la faccia e le orecchie perfettamente. Inoltre, ci hanno dato una pezzuola di gomma come quella della membrana della maschera: questa in caso si deve mettere in mezzo alle gambe e legare con le fettucce che è dotata. In più una scatola di vasellina speciale, da ungere tutto attorno a questa pezzuola e anche sotto le ascelle, perché i gas che possono buttare, ti prendono nelle parti deboli e possono uccidere anche senza respirarli”[2].

È il primo attacco con i gas che l’esercito austro-ungarico sferra contro il fronte italiano dislocato sul monte San Michele. L’attacco, in poche ore (dalle 5:30 alle 9:30 circa) si conclude con la morte di circa 7000 italiani, un numero enorme considerando che più o meno lo stesso numero di soldati è deceduto nell’insieme di tutte le guerre risorgimentali[3]. Tuttavia, non tutti sono morti per effetto dei gas. I feriti, i moribondi, i soldati intontiti dai gas sono finiti a colpi di mazze ferrate.

Mazze ferrate usate da tutti gli schieramenti belligeranti durante la Prima guerra mondiale (Fonte)
L’effetto del gas dal diario del cap. med. Giuseppe Pisanò dal posto di medicazione sul San Michele[4]

“L’individuo che si trova sotto l’azione dei gas venefici presenta grande agitazione dovuta in gran parte alla difficoltà del respiro, pallore accentuato del volto e delle mucose visibili: miosi. In molti casi il colorito è terreo, come quello dei malarici, in altri è cianotico con accentuazione alle labbra e alle orbite, i muscoli del volto e delle labbra sono scossi da movimenti tonico-clonici, così pure la lingua, e dalla bocca e dalle nari fuoriescono muco e bava spumosi lievemente  colorati in rosso uniforme dal sangue.

La respirazione è estremamente difficile […]. Gli spazi intercostali sono tesi, rigidi sì da richiamare alla mente un’altra grave intossicazione: quella da virus tetanico. […] Alla ascoltazione del torace si rivelano ronchi sibilanti e rantoli a medie bolle diffusi su tutto l’ambito toracico. […] Passando all’apparato gastrointestinale si nota: vomito, defecazioni e orinazioni non contenibili: le feci non sono diarroiche, ma sono mollicce e intensamente colorate in giallo-oro, così pure le urine. Esiste inoltre in quasi tutti una sensazione di violento e molesto dolore all’epigastrio con irradiazioni all’aia gastrica e all’aia colica sì da avere anche qui l’impressione della esistenza di uno spasmo tonico-clonico alla muscolatura liscia dei visceri addominali. […] Il sangue (e ciò potei constatare avendo praticato un salasso in un caso molto grave che fu poi seguito da decesso) è molto scuro, coagula lentamente formando un coagulo di consistenza molliccia, ed il siero che si separa contiene discreta quantità di sangue emolizzato, cosa del resto dimostrata anche dalla presenza, nello sputo e nel vomito, di guigna già rilevata”.

Questi descritti sono sola una parte dei sintomi dovuti all’avvelenamento da gas usati la mattina del 29 giugno 1916 dalle truppe austroungariche. L’ufficiale medico Pisanò descrive anche una possibile cura per alleviare le sofferenze degli avvelenati e per rimetterli in sesto: cardiotonici, morfina ed atropina che, secondo il dottore, erano in grado di “calmare lo stimolo stizzoso della tosse, permettendo una migliore ossigenazione del sangue” con  “notevole benefica influenza su tutta la ulteriore evoluzione del male”.

Quali furono i gas usati dall’esercito austroungarico?

Si tratta di una miscela di cloro molecolare e fosgene. Sono aggressivi soffocanti che hanno un tempo di permanenza nell’ambiente molto veloce e, per questo, permettono agli attaccanti di sopraggiungere a sorpresa sugli attaccati e decimarli. È quanto effettivamente accaduto. Tuttavia, stando al bollettino del Generale Cadorna, le riserve italiane si sono comportate molto bene e, nonostante le perdite subite, sono riuscite a ricacciare indietro i soldati nemici.

Il cloro fu scoperto nel 1774 da Carl Wilhelm Scheele, un chimico svedese, che pensò erroneamente potesse contenere ossigeno. Fu solo nel 1810 che Humphry Davy, un chimico inglese, capì che non si trattava di un gas contenente ossigeno, ma di qualcosa di nuovo che chiamò cloro, da chloros che vuol dire verde. Infatti, il cloro molecolare si presenta come un gas dal colore verde. “Gli effetti del cloro sulla salute umana dipendono dalla quantità di cloro presente e dalla durata e frequenza di esposizione. Gli effetti dipendono inoltre dalla salute dell’individuo o delle condizioni dell’ambiente a seguito di esposizione.

La respirazione di piccole quantità di cloro in brevi periodi di tempo ha effetti negativi sull’apparato respiratorio umano. Gli effetti vanno da tosse e dolori toracici, a ritenzione di acqua nei polmoni. Il cloro irrita la pelle, gli occhi e l’apparato respiratorio. Questi effetti non tendono ad accadere ai livelli di cloro normalmente trovati nell’ambiente” (Fonte).

Il fosgene (COCl2) è un composto noto fin dal XIX secolo. Scoperto da John Davy, esso è estremamente reattivo e viene usato come intermedio in molte reazioni chimiche. Penetrando negli alveoli, il fosgene provoca un aumento della permeabilità degli stessi permettendo al plasma di uscire. Il sangue perde volume, si concentra e si verifica anossemia. In altre parole, si riduce la concentrazione di anidride carbonica nel sangue ed aumenta quella di ossigeno che ha, in quelle condizioni, una elevata affinità per l’emoglobina. Questo vuol dire che quando l’emoglobina arriva nelle cellule non rilascia l’ossigeno necessario ai processi metabolici cosicché i tessuti cominciano a “morire” per mancanza di ossigeno.

Conclusioni

L’uso dei gas nella Prima guerra mondiale è stato un orrore che non ci ha insegnato nulla. Ancora oggi in molte parti del mondo i gas vengono usati per uccidere sia militari che popolazioni civili. E dire che il bando alle armi chimiche non è cosa nuova. Infatti, già nel 1874, con la dichiarazione di Bruxelles, l’uso dei gas come armi fu proibito. Nel tempo, il bando è stato più volte reiterato, ma, nonostante questo, ci sono ancora degli individui (non mi sento di definirli animali perché ho rispetto per questi esseri viventi, ma nemmeno esseri umani perché un essere umano non dovrebbe permettere uccisioni così abominevoli) che fanno largo uso di armi vietate da tutte le convenzioni.

Questo articoletto serve per onorare non solo la memoria dei soldati italiani caduti sul monte San Michele il 29 giugno 1916, ma anche tutti coloro che sono stati vittime dell’uso dei gas in guerra.

Riferimenti

[1] N. Mantoan “La guerra dei gas. 1914-1918” Gaspari editore (2004), 3^ ed.

[2] N. Mantoan, Op. Cit.

[3] N. Mantoan, Op. Cit.

[4] N. Mantoan, Op. Cit.

Fonte dell’immagine di copertina

La chimica delle mascherine chirurgiche

Chi mi segue sicuramente sa che qualche tempo fa ho dedicato un articolo alle mascherine necessarie per proteggerci dalla diffusione  del Covid19.

Come funzionano le maschere filtranti

 

In esso ho solo accennato alla funzione delle mascherine chirurgiche. Ora voglio entrare nel dettaglio della loro chimica.

Alzi la mano chi di voi non ha mai sentito parlare del tessuto non tessuto detto anche TNT.

No…non è il trinitrotoluene, noto per la sua potenzialità esplosiva. Quindi, se tra i miei lettori c’è qualche appassionato di “fuochi artificiali” non cerchi di dar fuoco al TNT di cui parlo in questo articoletto perché non otterrà alcun botto particolare, ma solo una bella fiamma.

Torniamo a noi.

Se facciamo una banale ricerca in Wikipedia, si trova che il tessuto non tessuto è un materiale in cui non è possibile distinguere una trama ben precisa come nel caso dei normali tessuti che indossiamo. Insomma si tratta di un materiale che viene ottenuto mediante dei procedimenti industriali particolari che, per ora, non rappresentano oggetto di discussione.

Le sue peculiarità lo rendono molto versatile tanto è vero che viene utilizzato in diversi campi: da quello edilizio a quello tessile, fino ad arrivare al campo medico. Ebbene sì, anche in campo medico questo materiale viene utilizzato. Infatti, santo Google alla richiesta di informazioni sul tessuto non tessuto restituisce, tra i tanti siti web, un link a un’azienda che vende chilometri di tessuto non tessuto per la fabbricazione delle mascherine chirurgiche di cui oggi abbiamo estrema necessità a causa del virus SARS-CoV2.

Ma cosa è questo TNT? Appurato che la sigla non si riferisce al trinitrotoluene, noto esplosivo, di cosa si tratta?

Ebbene, non è altro che banalissima plastica. Il termine che ho appena usato non è molto corretto, se vogliamo essere puntigliosi. Infatti, “plastica” è un termine generico che si riferisce a una classe di composti molto differenti tra di loro sia per caratteristiche chimiche che caratteristiche fisiche.

La plastica con cui è fatto il TNT può essere o polipropilene o poliestere. In realtà, se vogliamo essere ancora puntigliosi, bisognerebbe parlare di poliesteri e non di poliestere. Infatti, anche questa è una classe di composti che differiscono tra loro per proprietà chimiche e fisiche. In ogni caso, sono più che sicuro che ne avete già sentito parlare, non foss’altro per il fatto che questi nomi li trovate scritti sulle etichette dei vostri capi di abbigliamento quando leggete che assieme al cotone essi contengono anche poliestere e polipropilene (Figura 1).

Figura 1. Tipica etichetta di un capo di vestiario (Fonte)

Per poter avere una idea di quali siano gli oggetti di uso comune  che contengono le plastiche anzidette, potete far riferimento alla Figura 2.

Figura 2. Tipici oggetti fatti di plastica
Ma veniamo alle mascherine chirurgiche.

Esse sono fatte da strati sovrapposti di tessuti ottenuti sia con polipropilene che con poliestere. In particolare, lo stato esterno è costituito da un foglio di polipropilene che viene trattato per farlo diventare idrofobo e conferirgli resistenza meccanica. Lo strato intermedio può essere fatto sia da polistirene che da polipropilene che vengono lavorati in modo da produrre un foglio sottile con pori di diametro nell’intervallo 1-3 μm. Infine, il terzo strato (quando è presente) è fatto da polipropilene che ha il compito di proteggere il volto dallo strato intermedio filtrante (Figura 3). La capacità filtrante verso l’esterno (ovvero la capacità di trattenere le goccioline di sudore/saliva) di queste mascherine è molto elevata. Tuttavia, esse hanno una bassa capacità filtrante dall’esterno (Riferimento).

Figura 3. Strati di polipropilene con cui sono fatte le mascherine chirurgiche (Fonte)

Insomma, da questa breve digressione avete capito che le mascherine chirurgiche che indossiamo in questi giorni sono fatte di plastica.

C’è un impatto ambientale di questa plastica? Beh…se l’argomento vi intriga posso rimandare ad un secondo articolo l’impatto che le mascherine che usiamo hanno sull’ambiente.

Fonte dell’immagine di copertina

Fa freddo lassù?

Checché ne dicano chimici e fisici, le due discipline di cui essi sono rappresentanti sono strettamente correlate tra di loro. A certi livelli sono talmente incuneate l’una nell’altra che è difficile dire quando finisce la chimica e quando comincia la fisica. Prendete per esempio la quantomeccanica. Tutti quelli che ne parlano sono fisici, ma questa branca della fisica può essere considerata anche chimica grazie agli sforzi compiuti da Linus Pauling che, nella prima metà del XX secolo, si “inventò” la chimica quantistica, o quantochimica, per spiegare la natura del legame chimico (Figura 1).

Figura 1. Raccolta dei lavori di Linus Pauling in cui viene identificata la natura del legame chimico.

Fino a che Pauling non si impadronì della quantomeccanica per adattarla alla chimica, la rottura e la formazione dei legami chimici rimase in una sorta di limbo che faceva dei chimici dei veri e propri praticoni, abilissimi nel “maneggiare” le molecole, ma ancora lontani dal poter prima progettare e poi realizzare in laboratorio quanto avevano in mente.

Perché vi scrivo tutto questo?

Dovete sapere che in questo periodo di quarantena sono costretto a fare lezione per via telematica. Mi manca fortissimamente il contatto con gli studenti ed il poter trasferire le mie conoscenze non solo con le parole ma anche con la prossemica e con l’attività di laboratorio. In questo contesto sto studiando le lezioni che devo fare nelle prossime settimane per il mio corso di “Recupero delle aree degradate”. Una delle ultime lezioni riguarda la contaminazione atmosferica. È proprio ripassando le diapositive che presenterò tra un paio di settimane che ho realizzato anche a me stesso ciò che dico normalmente agli studenti dei miei corsi: chimica e fisica sono parenti stretti; non si può capire la chimica se non si conosce la fisica e non si può comprendere a fondo la fisica se non si hanno anche conoscenze chimiche. Sono sicuro che i miei amici fisici dissentiranno da quanto ho appena scritto, ma lasciatemi dire che chi afferma che per conoscere la fisica non c’è bisogno della chimica ha profonde falle cognitive. È come dire che la conoscenza umanistica non serve a chi si occupa di scienza. In realtà, la conoscenza umanistica aiuta a pensare, a mettere ordine nelle proprie idee, nel proprio modo di esprimersi e nel modo di presentare ciò che sappiamo.

Ma andiamo con ordine.

La fisica dell’atmosfera è direttamente legata alla sua chimica.
Nella Figura 2 si evidenzia la geografia dell’atmosfera con l’indicazione dei cambiamenti di temperatura (quindi una proprietà fisica) che si osservano man mano che ci allontaniamo dalla superficie terrestre.

Figura 2. Geografia dell’atmosfera con indicazioni dei cambiamenti di temperatura che si osservano al variare dell’altezza.

Usando il linguaggio tipico della Scienza del Suolo, la Figura 2 mostra il profilo dell’atmosfera nel quale è possibile individuare diversi orizzonti. L’orizzonte più vicino al suolo ha un’altezza di circa 16 km. Esso viene indicato col termine di troposfera in cui il suffisso “tropo” è di derivazione greca e vuol dire “mutazione”, “cambiamento”. La composizione chimica della troposfera è abbastanza complessa. Essa è costituita non solo da ossigeno ed azoto molecolari, ma anche da vapor d’acqua, anidride carbonica e tutte le altre varie anidridi come quelle di azoto e zolfo che hanno sia origine antropica che origine naturale. Per effetto dell’energia termica rilasciata dal suolo, le molecole di gas più vicine ad esso si riscaldano, diminuiscono di densità e si muovono verso l’alto venendo sostituite dalle molecole di gas più fredde e più dense che si trovano ad altezze maggiori. Si realizzano, quindi, delle correnti ascensionali (Figura 3) che sono sfruttate, per esempio, dai deltaplanisti o da chi è appassionato di volo senza motore.

Figura 3. Schema delle correnti ascensionali che si realizzano per effetto del riscaldamento al suolo delle molecole di gas atmosferico.

È proprio grazie all’energia termica rilasciata dal suolo che possiamo spiegare perché nella troposfera la temperatura diminuisce con l’altezza. Infatti, più vicini siamo al suolo, più risentiamo del calore emesso dalla superficie terrestre. Più ci allontaniamo dal suolo, più si riduce la temperatura per effetto della dissipazione del calore che proviene dalla superficie terrestre.
Tra 16 e 50 km di altezza c’è l’orizzonte atmosferico che viene definito stratosfera. In questo orizzonte c’è una concentrazione media di ozono che è dell’ordine delle decine di parti per milioni (v/v) contro i 0.04 ppm medi presenti nella troposfera. Questa elevata concentrazione di ozono rende conto dell’aumento di temperatura che si osserva man mano che ci si allontana dalla superficie terrestre e si passa dai 16 ai 50 km di altezza. Infatti, le radiazioni luminose provenienti dal suolo, da un lato, consentono la degradazione dell’ozono (O3) ad ossigeno molecolare (O2) ed ossigeno radicalico (O∙) in una reazione esotermica, dall’altro consentono un aumento dell’energia cinetica dei gas della stratosfera con conseguente aumento dell’energia termica.
Tra 50 ed 85 km c’è l’orizzonte che chiamiamo mesosfera. In questo orizzonte si osserva di nuovo una diminuzione di temperatura all’aumentare dell’altezza. Infatti, la temperatura della mesosfera può arrivare fino a -90°C. Questa diminuzione di temperatura è legata alla riduzione della densità dei gas ivi contenuti. L’energia termica proveniente dal Sole, pur incrementando l’energia cinetica delle molecole di gas, non è, tuttavia, in grado (a causa della bassa concentrazione di tali gas) di portare ad un aumento della temperatura.
L’orizzonte incluso tra 85 e 500 km di altezza prende il nome di termosfera. La composizione chimica della termosfera vede la presenza di molecole di ossigeno e molecole contenenti azoto. La radiazione elettromagnetica proveniente dal sole consente la ionizzazione delle molecole anzidette in reazioni di tipo esotermico. L’esotermicità delle reazioni appena citate, associate all’aumento dell’energia cinetica dei sistemi gassosi presenti nella termosfera, portano ad un aumento della temperatura che può arrivare fino a 1200 °C. Gli ioni presenti nella termosfera non solo sono in grado di far “rimbalzare” le onde radio consentendo, quindi, le comunicazioni sul globo terrestre, ma sono anche responsabili delle aurore boreali. Infatti, essi assorbono energia solare riemettendola sotto forma di radiazioni luminose che danno luogo alle meravigliose scenografie che si osservano nell’emisfero Nord del nostro pianeta (Figura 4).

Figura 4. Aurora boreale (Fonte).
Conclusioni

Fa freddo lassù? La risposta corretta è: dipende. Dipende dall’altezza a cui ci troviamo e dalla chimica degli orizzonti del profilo atmosferico. Come dicevo più su, questo post nasce dal desiderio di condividere con voi le meraviglie di due discipline interconnesse tra loro: la chimica e la fisica. Come potete intuire leggendo questo breve articolo, le conoscenze chimiche riescono a spiegare i fenomeni fisici che si osservano nell’atmosfera. Spero possiate perdonare le inesattezze che sicuramente ho scritto e che tutto ciò possa innescare una discussione interessante.

Altre letture

Fundamentals of physics and chemistry of atmosphere

Fonte dell’immagine di copertina

 

 

Pillole di scienza. Alla ricerca degli elettroni di Dirac

Cosa è un elettrone di Dirac?

Si tratta di un elettrone che è descritto dall’equazione di Dirac (Figura 1).

Figura 1. Equazione di Dirac

Semplice vero? Certo come no! Questa è la classica spiegazione a ciambella, ovvero un giro di parole che non spiega nulla se non si è un addetto ai lavori.

Cerchiamo di capire cos’è e perché è importante l’equazione di Dirac.

Ormai è noto a tutti che l’inizio del XX secolo è stato molto prolifico in termini scientifici. È nata, infatti, la meccanica quantistica (MQ) grazie alla quale oggi tutti hanno sentito parlare almeno una volta nella vita dell’equazione di Schoeredinger che, tra le tante cose, permette di descrivere il comportamento degli elettroni.

Una delle cose che viene insegnata a livello semplicistico a tutti gli studenti dei primi anni di corsi di studio scientifici è che l’equazione di Schoeredinger permette di definire gli orbitali come quella zona di spazio in cui esiste una buona probabilità di trovare gli elettroni. Come ho già scritto, questa è una supersemplificazione. Tuttavia fatemela passare per buona perché qui non si sta facendo una lezione di meccanica quantistica, bensì si cerca di fare un po’ di divulgazione per avvicinare concetti complessi a chi non è del settore.

Negli stessi anni in cui nasceva e si sviluppava la MQ, nasceva e si sviluppava anche la teoria della relatività ristretta (RR) di Albert Einstein. Questa si basa sostanzialmente su due postulati. Il primo postulato stabilisce che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, il secondo afferma che la luce si propaga nel vuoto ad una velocità ben definita pari a 2.99 x 108 m s-1.

”Bene. Bravo. Ed ora? Dove vuoi arrivare mettendo assieme MQ e RR?” vi starete chiedendo.

Abbiate un attimo di pazienza, per favore. Lasciatemi ancora poche parole per arrivare al punto.

Meccanica quantistica e relatività ristretta sono due facce della stessa medaglia.

Fin da quando le due teorie, della MQ e della RR, si sono affermate, gli studiosi hanno cercato di unificarle. Tuttavia, tra le tante difficoltà che essi hanno incontrato, una particolarmente “ostica” è stata quella relativa alla asimmetria tra spazio e tempo della teoria di Schoeredinger che mal si conciliava con la simmetria spazio-temporale di Einstein. In altre parole, mentre Schoeredinger trattava spazio e tempo come se fossero due cose distinte e separate, Einstein considerava le dimensioni spaziali alla stessa stregua della dimensione temporale (prego i miei amici fisici di non essere troppo severi con me se sto semplificando troppo. Anzi, vi invito a correggermi se ritenete che io stia andando fuori dal seminato).

Solo Dirac, grazie alla sua genialità, riuscì a risolvere il problema elaborando una equazione (quella dell’immagine di Figura 1) con la quale riuscì a trattare le particelle quantistiche (quindi anche gli elettroni) nel regime relativistico.

Ma allora, a cosa serve sapere cosa sono gli elettroni di Dirac?

L’equazione di Dirac descrive molto bene il comportamento degli elettroni nei semiconduttori ed in sistemi quali il grafene. Per associazione, anche se studi del genere non sono stati ancora condotti, l’equazione di Dirac dovrebbe descrivere bene anche il comportamento di sistemi simil-grafene quali il biochar. Tuttavia, bisogna aggiungere che il numero di tecniche analitiche capaci di confermare sperimentalmente il comportamento degli elettroni secondo Dirac si può contare sulla punta delle dita di una sola mano. Si tratta di tecniche che sono “maneggiate” con una certa familiarità dai fisici, ma che per un chimico sono alquanto “ostiche”.

La risonanza magnetica nucleare (NMR) e gli elettroni di Dirac.

È di pochi giorni fa la notizia che su Nature Communication è apparso uno studio attraverso cui, per la prima volta, sono stati osservati mediante NMR (una tecnica molto amata dai chimici, incluso me che faccio l’NMR-ista sin dal 1992) gli effetti che gli stati elettronici di Dirac (ovvero quelli descritti dall’equazione di Figura 1) hanno sul comportamento dei nuclei di una lega metallica fatta da Bismuto e Tellurio (Bi2Te3) che viene utilizzata come isolante.
Se avete voglia di leggere l’articolo originale basta cliccare sull’immagine qui sotto.

Figura 2. Immagine tratta dall’articolo di Nature Communications.
Ed allora?

Bella domanda. Intanto si aggiunge una nuova tecnica a quelle già usate per lo studio del comportamento degli elettroni e la verifica sperimentale dell’equazione di Dirac. Inoltre, si aprono nuovi scenari per la progettazione di nuovi materiali con proprietà sempre più sofisticate da poter utilizzare nei campi più disparati come la ricerca spaziale o quella medica.

Per approfondire

What the heck is a Dirac electron?

Dirac electrons

The metal-insulator transition depends on the mass of Dirac electrons

Relatività ristretta

Giorgio Chinnici, Assoluto e relativo, Hoepli ed. 

Giorgio Chinnici, La stella danzante, Hoepli ed. 

Fonte dell’immagine di copertina