Lettera aperta ad Enrico Montesano

Avete presente le dichiarazioni di Enrico Montesano, indimenticabile protagonista di uno dei film più trash degli anni ’70 dal titolo “Febbre da cavallo”, in merito alle mascherine che dobbiamo indossare per proteggerci dal virus del Covid-19? Riporto dai giornali (qui, qui e qui, per esempio):

Le mascherine che oggi vengono usate ci fanno respirare la nostra anidride carbonica.

Ecco. È proprio per questa affermazione che desidero scrivere una lettera aperta ad Enrico Montesano.

_______________________________________________________________

Caro Enrico,

nonostante la differenza di età che ci contraddistingue o, forse, proprio per quella, mi permetto di darti del “tu” perché quando ero un bambino e poi un adolescente sei stato uno dei comici che più mi hanno messo di buon umore. Sebbene “Febbre da cavallo” io lo giudichi un trash, non posso negare che è uno dei miei film preferiti perché ogni volta che lo riguardo mi proietto in un’epoca in cui ero molto più spensierato di adesso.

Caro Enrico, quando fai certe affermazioni e citi certi figuri dei quali ti fidi in merito a problemi di ordine sanitario, non ci fai una bella figura. Ovviamente sei libero di credere in chi ti pare, ma non puoi aspettarti, poi, il rispetto che meriteresti come attore quando entri in un campo della conoscenza che non ti compete. Anche se dici di informarti, penso che le tue fonti non siano esattamente attendibili.

Lasciando perdere tutte le sciocchezze che hai detto in merito al Covid-19 ed alle mascherine, mi voglio soffermare solo su quello che hai detto in merito all’anidride carbonica. Naturalmente, come dicevo sopra, sei libero di credere in chi ti pare e ritenere che io dica sciocchezze. L’unica cosa è che le mie “sciocchezze” sono verificabili, mentre le tue e quelle dei figuri che citi non lo sono per il semplice motivo che sono ben lontane dalla realtà.

Andiamo più nel merito.

Le mascherine che indossiamo non ci fanno respirare la nostra anidride carbonica nelle normali condizioni in cui le usiamo. Vediamo perché.

Ho già scritto in merito al meccanismo di funzionamento delle mascherine. Basta cliccare qui sotto

Come funzionano le maschere filtranti

In questo articolo ho messo in evidenza che le dimensioni dei pori delle mascherine sono dell’ordine dei micrometri. Prendiamo solo i pori più piccoli delle mascherine più efficaci: 0.2 μm, ovvero la 0.2 milionesima parte del metro, in altre parole 0.2 x 10-6 m. Sembra una dimensione molto piccola, vero Enrico?

Ed ora ti invito a scaricare un programmino di chimica computazionale che io uso sul tablet. Si chiama WebMO. La versione per iPad che uso io costa solo circa 5 €. Non penso che l’acquisto sia impossibile per te. Grazie a questo programmino è possibile disegnare la molecola di anidride carbonica e studiarla in tutte le sue caratteristiche. È un programmino estremamente intuitivo e facile da usare. Superato il panico di chi non conosce la chimica vedrai che lo apprezzerai molto.

Ebbene, caro Enrico, grazie a questo programmino, la molecola di anidride carbonica è quella che ti riporto qui sotto:

Ho evidenziato gli atomi di ossigeno e di carbonio in modo da permettere al programmino di fornire la distanza tra questi due atomi. Come leggi in basso, la distanza è circa 1.275 Å, ovvero 1.275 x 10-10 m. Se consideriamo, in prima approssimazione, la molecola di anidride carbonica in continua rotazione, possiamo considerarla come una sfera del diametro pari a 2 x 1.275 x 10-10 m, ovvero una sfera del diametro di 2.550 x 10-10 m.

Adesso, come si faceva alle scuole elementari, facciamo il rapporto tra le dimensioni di un poro di una mascherina e quella del diametro della sfera suddetta:

0.2 x 10-6 m/2.55 x 10-10 m = 784

In altre parole, mio caro Enrico, il poro più piccolo della mascherina più efficace è circa 800 volte più grande della molecola di anidride carbonica.

Sai cosa vuol dire questo?

Leggo da Wikipedia che tu sei alto 1.73 m. Se immagini di essere la molecola di anidride carbonica, devi moltiplicare la tua altezza per 784 ed ottieni la larghezza del tunnel nel quale decidi di passare. Si tratta, cioè, di un tunnel la cui larghezza è di circa 1356 m, ovvero 1 km e circa 400 m. Non mi vorrai mica far credere che non riesci ad attraversare un buco di questa larghezza?

Capisci, adesso, caro Enrico, perché hai detto una sciocchezza sesquipedale?

Ti saluto affettuosamente ricordando sempre con enorme piacere, oltre che tanta nostalgia per il tempo passato, i tuoi film ed il tuo famoso Rugantino.

Tuo,

Rino

Fonte dell’immagine di copertina

Oli, sali e zuccheri

Oggi ho trovato una bella sorpresa on line. La C1V edizioni ha reso disponibili le presentazioni fatte nel 2018 in occasione del secondo Convegno Nazionale Medicina e Pseudoscienza (CNMP).  Durante il convegno ho fatto una lunga lezione divulgativa sulle false informazioni in merito agli oli, ai sali ed agli zuccheri. Qualche mese dopo avrei pubblicato “Frammenti di Chimica” in cui si trovano molte delle cose che ho detto in quel convegno.
Se volete divertirvi ad ascoltarmi, qui sotto ci sono i miei tre interventi.

Prima parte

Seconda parte

Terza parte

In realtà il congegno del 2018 è stato molto ricco. Hanno partecipato tutti gli scienziati attivi nella lotta alle bufale: da Silvio Garattini a Piero Angela, da Roberto Burioni a Francesco Galassi e tanti tanti altri. Se volete fare un viaggio nel tempo e partecipare al convegno, potete iscrivervi al canale YouTube della C1V e ascoltare tutte le presentazioni. Basta cliccare sull’immagine qui sotto.

 

Pillole di scienza. Alla ricerca degli elettroni di Dirac

Cosa è un elettrone di Dirac?

Si tratta di un elettrone che è descritto dall’equazione di Dirac (Figura 1).

Figura 1. Equazione di Dirac

Semplice vero? Certo come no! Questa è la classica spiegazione a ciambella, ovvero un giro di parole che non spiega nulla se non si è un addetto ai lavori.

Cerchiamo di capire cos’è e perché è importante l’equazione di Dirac.

Ormai è noto a tutti che l’inizio del XX secolo è stato molto prolifico in termini scientifici. È nata, infatti, la meccanica quantistica (MQ) grazie alla quale oggi tutti hanno sentito parlare almeno una volta nella vita dell’equazione di Schoeredinger che, tra le tante cose, permette di descrivere il comportamento degli elettroni.

Una delle cose che viene insegnata a livello semplicistico a tutti gli studenti dei primi anni di corsi di studio scientifici è che l’equazione di Schoeredinger permette di definire gli orbitali come quella zona di spazio in cui esiste una buona probabilità di trovare gli elettroni. Come ho già scritto, questa è una supersemplificazione. Tuttavia fatemela passare per buona perché qui non si sta facendo una lezione di meccanica quantistica, bensì si cerca di fare un po’ di divulgazione per avvicinare concetti complessi a chi non è del settore.

Negli stessi anni in cui nasceva e si sviluppava la MQ, nasceva e si sviluppava anche la teoria della relatività ristretta (RR) di Albert Einstein. Questa si basa sostanzialmente su due postulati. Il primo postulato stabilisce che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, il secondo afferma che la luce si propaga nel vuoto ad una velocità ben definita pari a 2.99 x 108 m s-1.

”Bene. Bravo. Ed ora? Dove vuoi arrivare mettendo assieme MQ e RR?” vi starete chiedendo.

Abbiate un attimo di pazienza, per favore. Lasciatemi ancora poche parole per arrivare al punto.

Meccanica quantistica e relatività ristretta sono due facce della stessa medaglia.

Fin da quando le due teorie, della MQ e della RR, si sono affermate, gli studiosi hanno cercato di unificarle. Tuttavia, tra le tante difficoltà che essi hanno incontrato, una particolarmente “ostica” è stata quella relativa alla asimmetria tra spazio e tempo della teoria di Schoeredinger che mal si conciliava con la simmetria spazio-temporale di Einstein. In altre parole, mentre Schoeredinger trattava spazio e tempo come se fossero due cose distinte e separate, Einstein considerava le dimensioni spaziali alla stessa stregua della dimensione temporale (prego i miei amici fisici di non essere troppo severi con me se sto semplificando troppo. Anzi, vi invito a correggermi se ritenete che io stia andando fuori dal seminato).

Solo Dirac, grazie alla sua genialità, riuscì a risolvere il problema elaborando una equazione (quella dell’immagine di Figura 1) con la quale riuscì a trattare le particelle quantistiche (quindi anche gli elettroni) nel regime relativistico.

Ma allora, a cosa serve sapere cosa sono gli elettroni di Dirac?

L’equazione di Dirac descrive molto bene il comportamento degli elettroni nei semiconduttori ed in sistemi quali il grafene. Per associazione, anche se studi del genere non sono stati ancora condotti, l’equazione di Dirac dovrebbe descrivere bene anche il comportamento di sistemi simil-grafene quali il biochar. Tuttavia, bisogna aggiungere che il numero di tecniche analitiche capaci di confermare sperimentalmente il comportamento degli elettroni secondo Dirac si può contare sulla punta delle dita di una sola mano. Si tratta di tecniche che sono “maneggiate” con una certa familiarità dai fisici, ma che per un chimico sono alquanto “ostiche”.

La risonanza magnetica nucleare (NMR) e gli elettroni di Dirac.

È di pochi giorni fa la notizia che su Nature Communication è apparso uno studio attraverso cui, per la prima volta, sono stati osservati mediante NMR (una tecnica molto amata dai chimici, incluso me che faccio l’NMR-ista sin dal 1992) gli effetti che gli stati elettronici di Dirac (ovvero quelli descritti dall’equazione di Figura 1) hanno sul comportamento dei nuclei di una lega metallica fatta da Bismuto e Tellurio (Bi2Te3) che viene utilizzata come isolante.
Se avete voglia di leggere l’articolo originale basta cliccare sull’immagine qui sotto.

Figura 2. Immagine tratta dall’articolo di Nature Communications.
Ed allora?

Bella domanda. Intanto si aggiunge una nuova tecnica a quelle già usate per lo studio del comportamento degli elettroni e la verifica sperimentale dell’equazione di Dirac. Inoltre, si aprono nuovi scenari per la progettazione di nuovi materiali con proprietà sempre più sofisticate da poter utilizzare nei campi più disparati come la ricerca spaziale o quella medica.

Per approfondire

What the heck is a Dirac electron?

Dirac electrons

The metal-insulator transition depends on the mass of Dirac electrons

Relatività ristretta

Giorgio Chinnici, Assoluto e relativo, Hoepli ed. 

Giorgio Chinnici, La stella danzante, Hoepli ed. 

Fonte dell’immagine di copertina

 

 

 

 

 

Bustine di scienza. La popolarità

Inizio una nuova “rubrica” in questo blog dal titolo “Bustine di scienza”. L’idea nasce sulla falsariga delle “Bustine di Minerva” che Umberto Eco scriveva su L’Espresso. L’intento  delle “Bustine di scienza” è quello di fornire delle brevi e semplici informazioni sul metodo scientifico in modo da consentire a quante più persone possibile, principalmente studenti delle scuole inferiori e superiori, di avvicinarsi al fantastico mondo scientifico che ci consente di spiegare come avvengono i fenomeni intorno a noi.

Questa prima bustiona è dedicata alla fallacia secondo cui le teorie scientifiche sarebbero accettate dalla maggioranza della comunità scientifica in base alla loro popolarità.

Non è così.

Sebbene sia possibile leggere ovunque che “la maggioranza degli scienziati è d’accordo che…” non vuol dire che gli scienziati si riuniscano annualmente e decidano per alzata di mano quale debba essere il modello scientifico in voga per quell’anno.

I modelli scientifici non sono approvati in base alla loro popolarità, quanto piuttosto in base alle evidenze in grado di supportarli o di contraddirli.

Una teoria scientifica viene considerata valida dopo anni, talvolta anche dopo decine di anni, una volta che le diverse evidenze che la supportano hanno passato il vaglio critico dell’intera comunità scientifica.

Dire che una teoria è accettata dalla maggioranza degli scienziati, non vuol dire che esiste una comunità che a maggioranza accetta il modello teorico sulla base di gusti personali; vuol dire, al contrario, che la maggioranza degli scienziati ritiene che la teoria descriva accuratamente i fatti osservati.

E la minoranza della comunità scientifica? Semplicemente ritiene che le evidenze a supporto del modello teorico non siano sufficientemente accurate da poter suggerire quella determinata teoria.

Gli scienziati che appartengono a questa minoranza propongono teorie alternative ma sempre partendo dall’osservazione degli stessi fatti.

Vi dice qualcosa la contrapposizione tra i modelli cosmologici in voga qualche secolo fa?

Accanto al modello geocentrico fu sviluppato quello eliocentrico e quello elio-geo-centrico. Tutti i modelli avevano un impianto matematico di tutto rispetto e tutti descrivevano in egual modo gli stessi fatti osservati. Il modello geocentrico e quello elio-geo-centrico furono abbandonati quando nuove osservazioni (quelle di Galileo Galilei) consentirono di dimostrare che la Terra non era il centro di nulla.

Da tutto questo si conclude che i fantomatici ricercatori indipendenti, pseudo-emuli di Galileo Galilei, che propongono teorie alternative per spiegare fenomeni che vedono solo loro (lettura del pensiero, rabdomanzia, telecinesi, fantasmi, paranormale in genere) non sono altro che degli imbonitori che sfruttano l’ingenuità di persone che non hanno strumenti per distinguere fenomeni reali da pura fantasia.