La chimica del barbecue. Cosa si nasconde dietro una grigliata perfetta?

Cosa rende irresistibile il profumo che si sprigiona da un barbecue?

Perché una bistecca alla brace ha un sapore così complesso e unico rispetto a una cotta in padella? E come mai la semplice fiamma, a contatto con carne, verdure o formaggi, riesce a creare un’esplosione di aromi che conquista tutti?

La risposta non sta solo nell’abilità del cuoco o nella qualità degli ingredienti: è scritta nella chimica, una storia affascinante fatta di temperature, reazioni e molecole aromatiche. Una danza invisibile che trasforma pezzi di carne e verdura in piatti dal profumo inconfondibile.

Capire cosa succede sulla griglia non serve solo a saziare la curiosità scientifica: significa anche imparare a domare meglio il fuoco, scegliere i tempi giusti, sfruttare le reazioni naturali per ottenere una grigliata perfetta.

E poi, diciamolo: sapere che dietro ogni morso c’è la celebre reazione di Maillard, o che il fumo trasporta molecole come guaiacolo e siringolo, offre un ottimo argomento per fare colpo sugli amici mentre si aspetta che la brace sia pronta.

La reazione di Maillard: la magia chimica dietro la crosticina

Quando il cibo supera circa 140–165 °C, sulla superficie degli alimenti avviene una serie di reazioni chimiche note come reazione di Maillard. È un processo complesso che coinvolge principalmente:

  • i gruppi carbonilici (–C=O) degli zuccheri riducenti presenti negli alimenti,
  • e i gruppi amminici (–NH₂) degli amminoacidi o delle catene laterali delle proteine.

Questi gruppi reagiscono formando inizialmente glicosilamine instabili, che poi si trasformano in composti chiamati Amadori (o composti di Amadori). Da qui, la reazione prosegue dando luogo a decine di trasformazioni successive che generano:

  • pigmenti bruni (melanoidine)
  • composti aromatici come furani, pirazine, tiofeni
  • molecole che arricchiscono l’aroma con note di tostato, caramellato, “nocciolato”.

La struttura di tutte le molecole menzionate sono riportate in Figura 1.

Figura 1. Strutture chimiche tipiche dei prodotti della reazione di Maillard, responsabili di aroma e colore durante la cottura.

È proprio questo intricato intreccio chimico che regala alla carne grigliata il suo sapore inconfondibile e la crosticina croccante.

Dal punto di vista pratico, la Maillard richiede:

  • una temperatura sufficientemente alta (troppo bassa: la reazione non parte; troppo alta: carbonizzazione e gusto amaro),
  • una superficie relativamente asciutta, perché l’acqua in eccesso dissipa il calore e rallenta il processo.

Il ruolo del fumo: aromi che vengono dal fuoco

Quando il grasso, i succhi della carne o i condimenti colano sulle braci incandescenti, non si limitano a bruciare: subiscono una vera e propria pirolisi (decomposizione termica in assenza o carenza di ossigeno) che libera una miriade di composti volatili. Tra questi troviamo:

  • aldeidi e chetoni, che contribuiscono a note dolciastre o leggermente fruttate;
  • fenoli (come guaiacolo e siringolo), responsabili delle tipiche note affumicate, simili a quelle che si percepiscono in alcuni whisky torbati;
  • acidi organici, che aggiungono un tocco di acidità e complessità;
  • e purtroppo anche idrocarburi policiclici aromatici (IPA), potenzialmente dannosi se la combustione è incontrollata o eccessiva.

Le strutture tipiche dei composti elencati sono riportate in Figura 2.

Il tipo di legno scelto per alimentare il barbecue o l’affumicatura ha un ruolo fondamentale nella qualità e nel profilo aromatico del fumo.

  • Il rovere tende a produrre fumi più robusti, ricchi di tannini e aromi complessi;
  • il ciliegio dona sentori più dolci e delicati;
  • il melo regala un affumicato leggero, quasi fruttato.

La combustione del legno stesso sprigiona anche lignina e cellulosa che, degradandosi, originano i composti aromatici più caratteristici. È per questo che chi ama il barbecue studia con attenzione quale legno usare, dosando la quantità di fumo per evitare che prevalga un sapore amaro o eccessivamente bruciato.

In sintesi: quando si sente dire che “la brace dà sapore”, dietro c’è una vera orchestra chimica che lavora nel fumo e nei vapori caldi, trasformando il cibo e arricchendolo di complessità.

Figura 2. Composti volatili e potenzialmente tossici che si formano durante la pirolisi dei grassi e del legno nel barbecue.

Brace sì, fiamma no: l’arte di domare il fumo

Chi si avvicina al barbecue scopre presto un segreto fondamentale: la grigliata perfetta non si fa sulla fiamma viva, ma sopra una brace uniforme.
Le fiamme dirette, infatti, bruciano troppo rapidamente la superficie del cibo, creando zone carbonizzate e amare e aumentando la formazione di composti potenzialmente nocivi (come gli idrocarburi policiclici aromatici, Figura 2).

Le braci, invece, rilasciano un calore più stabile e diffuso che permette alle reazioni come la Maillard di avvenire con calma, creando la crosticina dorata senza bruciare.

Anche il fumo va controllato:

  • Evitare che grassi o marinature troppo oleose cadano in quantità eccessive sulla brace, perché produrrebbero fiammate improvvise e fumo acre.
  • Usare legni stagionati, senza vernici o resine, per generare un fumo aromatico più “pulito”.
  • Regolare l’ingresso dell’aria (nei barbecue con coperchio) per mantenere una combustione lenta e controllata.

Così, la magia chimica lavora al meglio: il calore trasforma lentamente le proteine e gli zuccheri, il fumo arricchisce di note affumicate e il risultato sarà una carne saporita e profumata, senza retrogusti amari o bruciati.

Marinature, verdure e formaggi: come i condimenti cambiano la chimica del barbecue

Non c’è barbecue senza spezie, erbe, marinature… e neanche senza qualche verdura o formaggio sulla griglia.
Tutti questi “ingredienti extra” non servono solo a insaporire, ma modificano davvero la chimica della cottura.

Le marinature a base di olio, vino, birra o succo di limone non solo aggiungono aromi, ma:

  • rendono la carne più tenera grazie a una parziale denaturazione delle proteine (specialmente per effetto di acidi e alcol);
  • favoriscono la formazione di crosticine più aromatiche, perché gli zuccheri e le proteine extra della marinata diventano nuovi “combustibili” per la reazione di Maillard;
  • creano una sottile pellicola protettiva che limita la perdita di succhi durante la cottura.

Le spezie e le erbe portano in dote oli essenziali e molecole aromatiche che, con il calore, si volatilizzano o si trasformano, generando sentori nuovi: pensiamo al timolo del timo, al carvacrolo dell’origano, oppure alla capsaicina del peperoncino che resiste anche alla cottura.

Verdure e formaggi, a loro volta, reagiscono in modi diversi:

  • le verdure ricche di zuccheri, come peperoni e cipolle, sviluppano aromi dolci e note caramellate;
  • i formaggi, grazie alla loro parte proteica e grassa, diventano veri “catalizzatori” di Maillard, aggiungendo complessità e note tostate.

In pratica, ogni ingrediente che aggiungiamo porta nuovi substrati chimici da trasformare sul fuoco, moltiplicando profumi e sapori.
Ecco perché ogni barbecue diventa unico: dipende dal legno scelto, dalle spezie, dai succhi della carne, dal tipo di brace… un mix irripetibile di scelte e reazioni chimiche.

Il controllo del calore: scienza e arte della brace

Il barbecue non è solo istinto: è vera e propria termodinamica applicata.
Il calore che cuoce la carne arriva in tre modi diversi:

  • per irraggiamento, cioè l’energia che parte dalle braci incandescenti e investe direttamente il cibo;
  • per conduzione, quando la parte a contatto con la griglia trasmette calore agli strati più interni;
  • per convezione, grazie al movimento dell’aria calda che avvolge e cuoce lentamente anche le zone non direttamente esposte.

Gestire questi tre flussi è fondamentale per evitare che la carne diventi stopposa fuori e cruda dentro.

  • La cottura diretta, sopra la brace viva, genera subito temperature elevate: è ideale per pezzi piccoli e sottili (come bistecche o spiedini) e per formare la crosticina grazie alla reazione di Maillard.
  • La cottura indiretta, invece, tiene la carne lontana dalla fonte diretta di calore e sfrutta il calore più dolce della convezione: perfetta per grossi tagli o per cuocere lentamente senza bruciare la superficie.

La bravura del grigliatore sta proprio nell’alternare queste due tecniche: una rosolatura iniziale a fuoco diretto per fissare i succhi e formare la crosta, seguita da una fase più lunga a fuoco indiretto per portare l’interno alla temperatura desiderata.

Infine, non bisogna dimenticare che diversi alimenti reagiscono in modo diverso al calore:

  • le carni più grasse resistono meglio alle alte temperature perché il grasso protegge e ammorbidisce le fibre;
  • i tagli magri o le verdure, invece, rischiano di asciugarsi e richiedono temperature più dolci o cotture più brevi.

In breve, dietro una grigliata perfetta c’è sempre un grigliatore che, anche senza saperlo, diventa un piccolo ingegnere del calore.

Perché la carne diventa tenera (e perché deve riposare)

Durante la cottura, nella carne avviene una trasformazione invisibile ma fondamentale: le proteine, soprattutto quelle del collagene presente nei tessuti connettivi, iniziano a denaturarsi sopra i 60°C.
Quando la temperatura interna sale intorno ai 70-80°C, il collagene si trasforma lentamente in gelatina, una sostanza che lega l’acqua e rende la carne più succosa e tenera.

Ecco perché i tagli ricchi di tessuto connettivo, come costine, punta di petto o spalla, danno il meglio con la tecnica “low & slow”: cotture a bassa temperatura (90-120°C sulla griglia) per diverse ore. Questo tempo serve proprio a permettere alle fibre dure di “sciogliersi” e diventare morbide.

Ma il processo non si ferma quando togliamo la carne dal barbecue: per qualche minuto, il calore continua a diffondersi verso il centro, e i succhi che durante la cottura si sono spinti verso l’esterno rientrano lentamente nelle fibre.
È il motivo per cui gli chef consigliano sempre di lasciare riposare la carne qualche minuto, coperta leggermente con un foglio di alluminio:

  • se la tagliassimo subito, i succhi colerebbero sul tagliere, lasciando la carne asciutta;
  • invece, aspettando, otterremo una fetta più umida, uniforme e saporita.

Anche qui, la chimica è la nostra alleata: conoscere queste trasformazioni ci insegna che il riposo non è solo “una pausa”, ma l’ultimo passo di cottura, essenziale per valorizzare ore di preparazione.

Il lato nascosto del barbecue: quando la chimica diventa un rischio

Non tutto ciò che nasce sulla brace è buono: la combustione incompleta del legno, del carbone o del grasso colato sulla brace produce molecole come gli idrocarburi policiclici aromatici (IPA) e le ammine eterocicliche. Questi composti, se assunti in grandi quantità o per lunghi periodi, sono potenzialmente cancerogeni.

Un aspetto poco noto è che gli IPA sono ancora più pericolosi se inalati: respirare il fumo che sale dalla griglia espone direttamente i tessuti dei polmoni, dove queste molecole possono trasformarsi in forme ancora più reattive, capaci di legarsi al DNA. È lo stesso meccanismo per cui il fumo di sigaretta aumenta il rischio di diversi tipi di carcinoma polmonare.

Cosa possiamo fare per ridurre il rischio senza rinunciare al piacere del barbecue?

  • Evitare fiammate e contatto diretto della carne con la fiamma.
  • Cuocere a brace, non a fiamma viva.
  • Marinare la carne prima di cuocerla: le marinature a base di vino, birra, olio, spezie ed erbe aromatiche contengono antiossidanti che riducono la formazione di ammine eterocicliche.
  • Rimuovere le parti carbonizzate prima di mangiare.
  • Usare legni adatti e ben stagionati, evitando resine o additivi chimici.

In sintesi: conoscere i meccanismi chimici non serve solo a far bella figura con gli amici, ma anche a grigliare in modo più sano e consapevole.

I consigli dello scienziato del BBQ (non del grigliatore esperto)

Non sono un maestro della griglia. Sono un chimico che, incuriosito dai profumi e dalle reazioni che si sprigionano da una grigliata, ha deciso di studiare cosa accade davvero tra brace, carne e molecole.

Ecco alcuni spunti – scientificamente fondati – per una grigliata più gustosa e (un po’) più sana:

  • Brace, non fiamma viva: il calore della brace è più stabile e uniforme. Evita fiammate che carbonizzano la carne e favoriscono la formazione di sostanze indesiderate.
  • Marinature intelligenti: acidi (limone, vino, aceto) e antiossidanti (spezie, erbe, birra) non solo danno sapore, ma riducono la formazione di composti potenzialmente dannosi.
  • Cottura indiretta per i pezzi grandi: permette al calore di penetrare meglio, ammorbidendo i tessuti connettivi senza bruciare l’esterno.
  • Riposo dopo la griglia: aspettare qualche minuto prima di tagliare la carne permette ai succhi di ridistribuirsi e la rende più tenera e succosa.
  • Niente legna verniciata o resinosa: usa legni naturali e stagionati per un fumo aromatico e sicuro.
  • Togli il grasso in eccesso: meno gocciolamenti sulla brace = meno fumo acre e meno IPA nell’aria.

Non servono strumenti da laboratorio o complicati termometri molecolari: basta un po’ di consapevolezza e curiosità per trasformare la grigliata in un piccolo esperimento scientifico… con ottimi risultati nel piatto.

Conclusione: scienza e passione sulla griglia

Capire un po’ di chimica non toglie nulla alla poesia del barbecue: anzi, la arricchisce. Permette di scegliere meglio il tipo di legno, il taglio di carne, la temperatura e i tempi giusti. Così, la prossima volta che preparerete la brace, potrete raccontare agli amici che dietro quella crosticina dorata si nasconde una sinfonia di reazioni, dalla Maillard ai composti aromatici del fumo, che i chimici studiano da decenni.
E magari, tra una costina e una birra, ci sarà anche spazio per un po’ di divulgazione scientifica fatta con leggerezza e… buon gusto.

P.S. Se alla fine qualcosa dovesse andare storto sulla griglia… ricordatevi: è sempre colpa della termodinamica, non del chimico che vi ha raccontato la storia 😎🥩🤓

📚 Letture consigliate

Harold McGee – On Food and Cooking: The Science and Lore of the Kitchen

Nathan Myhrvold & al. – Modernist Cuisine: The Art and Science of Cooking

Jeff Potter – Cooking for Geeks: Real Science, Great Hacks, and Good Food

Scienza e cultura

Ieri sera (il 26 Giugno 2021) ho partecipato ad un interessante evento culturale a Bassano del Grappa: La Milanesiana. Si tratta di un progetto itinerante che ha raggiunto il suo ventiduesimo anno di età. Ha come oggetto un tema differente per ogni anno. Quest’anno l’evento è stato dedicato al progresso.

Benché accattivante, il tema non viene spiegato molto bene. Nel programma, che si può trovare a questo link, è scritto:

Il tema di questa ventiduesima edizione, come quello degli ultimi anni, è stato scelto da Claudio Magris: il Progresso. Un tema già in sé denso di paradossi. Dopo quello che abbiamo vissuto possiamo ancora parlare di progresso? E possiamo farlo in modo univoco? Possiamo dire, forse, che ci sono tanti progressi, almeno quanti sono i passi indietro?

Belle parole. Ma cos’è il progresso?

Non voglio addentrarmi in una discussione sul significato di progresso. Ciò che, in realtà, mi ha colpito e mi ha lasciato con l’amaro in bocca è stata la distinzione tra progresso scientifico e progresso culturale introdotta nei primi minuti della presentazione dell’evento ideato da Elisabetta Sgarbi. Questa distinzione mi ha fatto riflettere e mi porta a riflettere “ad alta voce” su questo blog in cui, tra le tante cose, spesso condivido le mie perplessità.

Se una persona dallo spessore culturale di Elisabetta Sgarbi sente la necessità di parlare di progresso scientifico e progresso culturale, separando la scienza dalla cultura, vuol dire che l’influenza del pensiero di Gentile secondo cui “il sapere scientifico veniva relegato nella categoria dell’utilità e nello stesso tempo gli si negava il valore di conoscenza concettuale e soprattutto di cultura” è ancora viva e vegeta.

Eppure le prime pagine dei libri di filosofia del liceo sono occupate dal pensiero dei rappresentanti della scuola di Mileto: Talete, Anassimandro e Anassimene. Nella loro ricerca del principio delle cose (l’acqua per Talete, l’apeiron o l’indefinito per Anassimandro e l’aria per Anassimene), questi Maestri facevano uso di un primordiale metodo scientifico basato sull’osservazione e sull’induzione. In altre parole, partendo dalla constatazione di certi fatti osservati (per esempio, l’acqua necessaria alla vita per Talete, l’aria che permea ogni cosa per Anassimene, oppure un insieme di fattori che Anassimandro chiama “indefinito”) questi pensatori traevano conclusioni di carattere generale sull’origine della vita e delle cose che ci circondano. E cosa dire di Democrito che, basandosi sull’osservazione che un coltello può tagliare un oggetto in pezzi sempre più piccoli fino ad un punto oltre il quale non è più possibile proseguire, introdusse il concetto di a-tomo, ovvero di indivisibile? Se vogliamo, lo stesso Aristotele può essere considerato come un precursore del moderno scienziato. Pur con le limitazioni del suo tempo, nella sua Fisica, Aristotele aveva osservato che tutto ciò che ci circonda è generato dalla combinazione di aria, acqua, terra e fuoco a cui bisogna aggiungere l’etere indispensabile per la comprensione della natura dei corpi celesti. Arrivando ad epoche più recenti, non si può non ricordare Leonardo da Vinci conosciuto non solo per le sue doti artistiche, ma anche per quelle ingegneristiche e scientifiche, oppure Göthe, appassionato di chimica, che, nelle sue “Affinità elettive“, descrive in modo sublime il concetto di affinità chimica usato ancora oggi per spiegare la formazione dei legami chimici:

Bisogna vedere in azione davanti ai propri occhi queste sostanze all’apparenza inerti, e tuttavia intimamente sempre disposte, ed osservare con partecipazione il loro cercarsi, attirarsi, assorbirsi, distruggersi, divorarsi, consumarsi, e poi il loro riemergere dalla più intima congiunzione in forma mutata, nuova, inattesa: allora si che si deve attribuire loro un vivere eterno, anzi, addirittura intelletto e ragione, dal momento che i nostri sensi appaiono appena sufficienti ad osservarli e la nostra ragione a stento capace di interpretarli“.

Lo stesso Kant ha dedicato parte della sua opera al pensiero scientifico, così come Heisenberg , sì – proprio quello del principio di indeterminazione, ha usato la sua logica scientifica per dare un contributo alla filosofia. E cosa dire di Schöredinger che col suo “Che cos’è la vita?” ha influenzato generazioni di scienziati che, poi, hanno dato un contributo notevole allo sviluppo delle conoscenze umane (Monod, De Duve, etc)? Vogliamo parlare anche di Edward O. Wilson o di Stephen J. Gould che col loro lavoro hanno consentito di capire in che modo si sviluppano le società di esseri viventi?

Tutto questo semplicemente per dire che quello che noi identifichiamo come pensiero scientifico è in tutto e per tutto pensiero umano e, in misura più o meno variabile, contribuisce allo sviluppo culturale della comunità di cui facciamo parte. In questo senso, per cultura non intendo la conoscenza della storia, della filosofia, della letteratura o, più genericamente, l’insieme delle conoscenze puramente concettuali “sensu Gentile“, ma l’intero spettro di conoscenze che acquisiamo durante la nostra vita e trasmettiamo alle generazioni future.  Che il pensiero scientifico consenta anche di produrre tecnologia e di  risolvere problemi di natura tecnica è solo un dettaglio che è insito nella natura stessa di tale pensiero.

Fonte dell’immagine di copertina

La risonanza magnetica nucleare nell’analisi degli alimenti

Siete curiosi di avere informazioni dettagliate sulla risonanza magnetica nucleare? Volete sapere in che modo può aiutare nelle analisi degli alimenti? Queste e molte altre domande avranno risposta domenica 28 Febbraio alle ore 16:00 sul canale YouTube BioLogic di Daniel Puente. Vi aspetto per la diretta streaming e per rispondere alle vostre domande e soddisfare le vostre curiosità scientifiche.

Per la diretta basta cliccare sull’immagine qui sotto

https://www.youtube.com/watch?v=zoZlb4cz7tE&ab_channel=BioLogic&fbclid=IwAR09hZz8QWYWGz91qXtpsDFz0jhe05wfw1tk0lUUf9cGKLs9wMpxL_Bw8Q0

Foto di copertina gentilmente concessa dal Prof. Paolo Lo Meo dell’Università degli Studi di Palermo

Lettera aperta ad Enrico Montesano

Avete presente le dichiarazioni di Enrico Montesano, indimenticabile protagonista di uno dei film più trash degli anni ’70 dal titolo “Febbre da cavallo”, in merito alle mascherine che dobbiamo indossare per proteggerci dal virus del Covid-19? Riporto dai giornali (qui, qui e qui, per esempio):

Le mascherine che oggi vengono usate ci fanno respirare la nostra anidride carbonica.

Ecco. È proprio per questa affermazione che desidero scrivere una lettera aperta ad Enrico Montesano.

_______________________________________________________________

Caro Enrico,

nonostante la differenza di età che ci contraddistingue o, forse, proprio per quella, mi permetto di darti del “tu” perché quando ero un bambino e poi un adolescente sei stato uno dei comici che più mi hanno messo di buon umore. Sebbene “Febbre da cavallo” io lo giudichi un trash, non posso negare che è uno dei miei film preferiti perché ogni volta che lo riguardo mi proietto in un’epoca in cui ero molto più spensierato di adesso.

Caro Enrico, quando fai certe affermazioni e citi certi figuri dei quali ti fidi in merito a problemi di ordine sanitario, non ci fai una bella figura. Ovviamente sei libero di credere in chi ti pare, ma non puoi aspettarti, poi, il rispetto che meriteresti come attore quando entri in un campo della conoscenza che non ti compete. Anche se dici di informarti, penso che le tue fonti non siano esattamente attendibili.

Lasciando perdere tutte le sciocchezze che hai detto in merito al Covid-19 ed alle mascherine, mi voglio soffermare solo su quello che hai detto in merito all’anidride carbonica. Naturalmente, come dicevo sopra, sei libero di credere in chi ti pare e ritenere che io dica sciocchezze. L’unica cosa è che le mie “sciocchezze” sono verificabili, mentre le tue e quelle dei figuri che citi non lo sono per il semplice motivo che sono ben lontane dalla realtà.

Andiamo più nel merito.

Le mascherine che indossiamo non ci fanno respirare la nostra anidride carbonica nelle normali condizioni in cui le usiamo. Vediamo perché.

Ho già scritto in merito al meccanismo di funzionamento delle mascherine. Basta cliccare qui sotto

Come funzionano le maschere filtranti

In questo articolo ho messo in evidenza che le dimensioni dei pori delle mascherine sono dell’ordine dei micrometri. Prendiamo solo i pori più piccoli delle mascherine più efficaci: 0.2 μm, ovvero la 0.2 milionesima parte del metro, in altre parole 0.2 x 10-6 m. Sembra una dimensione molto piccola, vero Enrico?

Ed ora ti invito a scaricare un programmino di chimica computazionale che io uso sul tablet. Si chiama WebMO. La versione per iPad che uso io costa solo circa 5 €. Non penso che l’acquisto sia impossibile per te. Grazie a questo programmino è possibile disegnare la molecola di anidride carbonica e studiarla in tutte le sue caratteristiche. È un programmino estremamente intuitivo e facile da usare. Superato il panico di chi non conosce la chimica vedrai che lo apprezzerai molto.

Ebbene, caro Enrico, grazie a questo programmino, la molecola di anidride carbonica è quella che ti riporto qui sotto:

Ho evidenziato gli atomi di ossigeno e di carbonio in modo da permettere al programmino di fornire la distanza tra questi due atomi. Come leggi in basso, la distanza è circa 1.275 Å, ovvero 1.275 x 10-10 m. Se consideriamo, in prima approssimazione, la molecola di anidride carbonica in continua rotazione, possiamo considerarla come una sfera del diametro pari a 2 x 1.275 x 10-10 m, ovvero una sfera del diametro di 2.550 x 10-10 m.

Adesso, come si faceva alle scuole elementari, facciamo il rapporto tra le dimensioni di un poro di una mascherina e quella del diametro della sfera suddetta:

0.2 x 10-6 m/2.55 x 10-10 m = 784

In altre parole, mio caro Enrico, il poro più piccolo della mascherina più efficace è circa 800 volte più grande della molecola di anidride carbonica.

Sai cosa vuol dire questo?

Leggo da Wikipedia che tu sei alto 1.73 m. Se immagini di essere la molecola di anidride carbonica, devi moltiplicare la tua altezza per 784 ed ottieni la larghezza del tunnel nel quale decidi di passare. Si tratta, cioè, di un tunnel la cui larghezza è di circa 1356 m, ovvero 1 km e circa 400 m. Non mi vorrai mica far credere che non riesci ad attraversare un buco di questa larghezza?

Capisci, adesso, caro Enrico, perché hai detto una sciocchezza sesquipedale?

Ti saluto affettuosamente ricordando sempre con enorme piacere, oltre che tanta nostalgia per il tempo passato, i tuoi film ed il tuo famoso Rugantino.

Tuo,

Rino

Fonte dell’immagine di copertina

Oli, sali e zuccheri

Oggi ho trovato una bella sorpresa on line. La C1V edizioni ha reso disponibili le presentazioni fatte nel 2018 in occasione del secondo Convegno Nazionale Medicina e Pseudoscienza (CNMP).  Durante il convegno ho fatto una lunga lezione divulgativa sulle false informazioni in merito agli oli, ai sali ed agli zuccheri. Qualche mese dopo avrei pubblicato “Frammenti di Chimica” in cui si trovano molte delle cose che ho detto in quel convegno.
Se volete divertirvi ad ascoltarmi, qui sotto ci sono i miei tre interventi.

Prima parte

Seconda parte

Terza parte

In realtà il congegno del 2018 è stato molto ricco. Hanno partecipato tutti gli scienziati attivi nella lotta alle bufale: da Silvio Garattini a Piero Angela, da Roberto Burioni a Francesco Galassi e tanti tanti altri. Se volete fare un viaggio nel tempo e partecipare al convegno, potete iscrivervi al canale YouTube della C1V e ascoltare tutte le presentazioni. Basta cliccare sull’immagine qui sotto.

 

Pillole di scienza. Alla ricerca degli elettroni di Dirac

Cosa è un elettrone di Dirac?

Si tratta di un elettrone che è descritto dall’equazione di Dirac (Figura 1).

Figura 1. Equazione di Dirac

Semplice vero? Certo come no! Questa è la classica spiegazione a ciambella, ovvero un giro di parole che non spiega nulla se non si è un addetto ai lavori.

Cerchiamo di capire cos’è e perché è importante l’equazione di Dirac.

Ormai è noto a tutti che l’inizio del XX secolo è stato molto prolifico in termini scientifici. È nata, infatti, la meccanica quantistica (MQ) grazie alla quale oggi tutti hanno sentito parlare almeno una volta nella vita dell’equazione di Schoeredinger che, tra le tante cose, permette di descrivere il comportamento degli elettroni.

Una delle cose che viene insegnata a livello semplicistico a tutti gli studenti dei primi anni di corsi di studio scientifici è che l’equazione di Schoeredinger permette di definire gli orbitali come quella zona di spazio in cui esiste una buona probabilità di trovare gli elettroni. Come ho già scritto, questa è una supersemplificazione. Tuttavia fatemela passare per buona perché qui non si sta facendo una lezione di meccanica quantistica, bensì si cerca di fare un po’ di divulgazione per avvicinare concetti complessi a chi non è del settore.

Negli stessi anni in cui nasceva e si sviluppava la MQ, nasceva e si sviluppava anche la teoria della relatività ristretta (RR) di Albert Einstein. Questa si basa sostanzialmente su due postulati. Il primo postulato stabilisce che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, il secondo afferma che la luce si propaga nel vuoto ad una velocità ben definita pari a 2.99 x 108 m s-1.

”Bene. Bravo. Ed ora? Dove vuoi arrivare mettendo assieme MQ e RR?” vi starete chiedendo.

Abbiate un attimo di pazienza, per favore. Lasciatemi ancora poche parole per arrivare al punto.

Meccanica quantistica e relatività ristretta sono due facce della stessa medaglia.

Fin da quando le due teorie, della MQ e della RR, si sono affermate, gli studiosi hanno cercato di unificarle. Tuttavia, tra le tante difficoltà che essi hanno incontrato, una particolarmente “ostica” è stata quella relativa alla asimmetria tra spazio e tempo della teoria di Schoeredinger che mal si conciliava con la simmetria spazio-temporale di Einstein. In altre parole, mentre Schoeredinger trattava spazio e tempo come se fossero due cose distinte e separate, Einstein considerava le dimensioni spaziali alla stessa stregua della dimensione temporale (prego i miei amici fisici di non essere troppo severi con me se sto semplificando troppo. Anzi, vi invito a correggermi se ritenete che io stia andando fuori dal seminato).

Solo Dirac, grazie alla sua genialità, riuscì a risolvere il problema elaborando una equazione (quella dell’immagine di Figura 1) con la quale riuscì a trattare le particelle quantistiche (quindi anche gli elettroni) nel regime relativistico.

Ma allora, a cosa serve sapere cosa sono gli elettroni di Dirac?

L’equazione di Dirac descrive molto bene il comportamento degli elettroni nei semiconduttori ed in sistemi quali il grafene. Per associazione, anche se studi del genere non sono stati ancora condotti, l’equazione di Dirac dovrebbe descrivere bene anche il comportamento di sistemi simil-grafene quali il biochar. Tuttavia, bisogna aggiungere che il numero di tecniche analitiche capaci di confermare sperimentalmente il comportamento degli elettroni secondo Dirac si può contare sulla punta delle dita di una sola mano. Si tratta di tecniche che sono “maneggiate” con una certa familiarità dai fisici, ma che per un chimico sono alquanto “ostiche”.

La risonanza magnetica nucleare (NMR) e gli elettroni di Dirac.

È di pochi giorni fa la notizia che su Nature Communication è apparso uno studio attraverso cui, per la prima volta, sono stati osservati mediante NMR (una tecnica molto amata dai chimici, incluso me che faccio l’NMR-ista sin dal 1992) gli effetti che gli stati elettronici di Dirac (ovvero quelli descritti dall’equazione di Figura 1) hanno sul comportamento dei nuclei di una lega metallica fatta da Bismuto e Tellurio (Bi2Te3) che viene utilizzata come isolante.
Se avete voglia di leggere l’articolo originale basta cliccare sull’immagine qui sotto.

Figura 2. Immagine tratta dall’articolo di Nature Communications.
Ed allora?

Bella domanda. Intanto si aggiunge una nuova tecnica a quelle già usate per lo studio del comportamento degli elettroni e la verifica sperimentale dell’equazione di Dirac. Inoltre, si aprono nuovi scenari per la progettazione di nuovi materiali con proprietà sempre più sofisticate da poter utilizzare nei campi più disparati come la ricerca spaziale o quella medica.

Per approfondire

What the heck is a Dirac electron?

Dirac electrons

The metal-insulator transition depends on the mass of Dirac electrons

Relatività ristretta

Giorgio Chinnici, Assoluto e relativo, Hoepli ed. 

Giorgio Chinnici, La stella danzante, Hoepli ed. 

Fonte dell’immagine di copertina

 

 

 

 

 

Bustine di scienza. La popolarità

Inizio una nuova “rubrica” in questo blog dal titolo “Bustine di scienza”. L’idea nasce sulla falsariga delle “Bustine di Minerva” che Umberto Eco scriveva su L’Espresso. L’intento  delle “Bustine di scienza” è quello di fornire delle brevi e semplici informazioni sul metodo scientifico in modo da consentire a quante più persone possibile, principalmente studenti delle scuole inferiori e superiori, di avvicinarsi al fantastico mondo scientifico che ci consente di spiegare come avvengono i fenomeni intorno a noi.

Questa prima bustiona è dedicata alla fallacia secondo cui le teorie scientifiche sarebbero accettate dalla maggioranza della comunità scientifica in base alla loro popolarità.

Non è così.

Sebbene sia possibile leggere ovunque che “la maggioranza degli scienziati è d’accordo che…” non vuol dire che gli scienziati si riuniscano annualmente e decidano per alzata di mano quale debba essere il modello scientifico in voga per quell’anno.

I modelli scientifici non sono approvati in base alla loro popolarità, quanto piuttosto in base alle evidenze in grado di supportarli o di contraddirli.

Una teoria scientifica viene considerata valida dopo anni, talvolta anche dopo decine di anni, una volta che le diverse evidenze che la supportano hanno passato il vaglio critico dell’intera comunità scientifica.

Dire che una teoria è accettata dalla maggioranza degli scienziati, non vuol dire che esiste una comunità che a maggioranza accetta il modello teorico sulla base di gusti personali; vuol dire, al contrario, che la maggioranza degli scienziati ritiene che la teoria descriva accuratamente i fatti osservati.

E la minoranza della comunità scientifica? Semplicemente ritiene che le evidenze a supporto del modello teorico non siano sufficientemente accurate da poter suggerire quella determinata teoria.

Gli scienziati che appartengono a questa minoranza propongono teorie alternative ma sempre partendo dall’osservazione degli stessi fatti.

Vi dice qualcosa la contrapposizione tra i modelli cosmologici in voga qualche secolo fa?

Accanto al modello geocentrico fu sviluppato quello eliocentrico e quello elio-geo-centrico. Tutti i modelli avevano un impianto matematico di tutto rispetto e tutti descrivevano in egual modo gli stessi fatti osservati. Il modello geocentrico e quello elio-geo-centrico furono abbandonati quando nuove osservazioni (quelle di Galileo Galilei) consentirono di dimostrare che la Terra non era il centro di nulla.

Da tutto questo si conclude che i fantomatici ricercatori indipendenti, pseudo-emuli di Galileo Galilei, che propongono teorie alternative per spiegare fenomeni che vedono solo loro (lettura del pensiero, rabdomanzia, telecinesi, fantasmi, paranormale in genere) non sono altro che degli imbonitori che sfruttano l’ingenuità di persone che non hanno strumenti per distinguere fenomeni reali da pura fantasia.

Share