Le interviste impossibili: incontriamo Benjamin Franklin

Ed eccomi a volare con la fantasia nel nuovo mondo. Sono verso la fine del Settecento, e mi ritrovo in un ambiente completamente diverso dal laboratorio di Faraday. Qui tutto profuma di carta, inchiostro e… ozono. È il tipico studio settecentesco con scaffali pieni di libri, strumenti per esperimenti elettrici, penne d’oca e un calamaio ancora macchiato di lampi. Di fronte a me, un uomo dallo sguardo vivace, i capelli incorniciati da una parrucca bianca, gli occhi pieni di una curiosità che sembra non aver conosciuto stanchezza. È Benjamin Franklin.

– Dr. Franklin, grazie per avermi accolto. Come sa, sto facendo un reportage di interviste impossibili. Ho già incontrato i Professori Boyle, Lavoisier e Faraday. Immagino che lei abbia un’idea chiara del loro ruolo nello sviluppo della chimica.
– Eccome se ce l’ho! Boyle ha fatto ordine nel caos, Lavoisier ha messo la logica sopra i miti, Faraday ha liberato l’elettricità dalle catene del mistero. Io, modestamente, sono stato il più impaziente: mentre loro costruivano i palazzi della chimica, io mi divertivo a bussare alle porte della natura con un aquilone in mano. Non sarà accademico, ma ha funzionato.

– L’aquilone… ma come le è venuto in mente?
– Guardi, io non avevo un laboratorio attrezzato come i vostri scienziati moderni. Ma avevo occhi, mani e fantasia. L’aquilone era un gioco da bambini, e io lo usai come un filo teso fra cielo e terra: bastò un po’ di coraggio per trasformarlo in esperimento. In fondo la scienza è questo: prendere ciò che sembra un passatempo e scoprire che nasconde una legge dell’universo.

– Sa che oggi esperimenti del genere sarebbero liquidati come estremamente pericolosi e verosimilmente non verrebbero autorizzati?
– Ne sono certo! Se avessi chiesto un permesso ufficiale per far volare un aquilone sotto un temporale, mi avrebbero rinchiuso prima ancora di spiegare il progetto. Ma vede, la conoscenza non nasce dall’attesa di un timbro: nasce dall’osservazione e dal coraggio. Senza un po’ di rischio, non avremmo mai imparato che il fulmine e la scintilla erano fratelli.

– Cosa pensa, allora, delle normative attuali che impongono l’uso di strumenti sicuri, sia per l’ambiente che per gli umani per realizzare esperimenti?
– Penso che siano un segno di maturità. Io ho corso rischi che oggi giudico folli: la curiosità mi salvò, ma avrei potuto perderci la vita. E nessuna scoperta vale quanto una vita umana. Indiana Jones può far sorridere sullo schermo, ma nella realtà un uomo che gioca costantemente con la morte non è un eroe, è uno sciocco. La vera grandezza della scienza sta nel proteggere e migliorare la vita, non nel sacrificarla per un colpo di fortuna.

– Il parafulmine è stata una delle sue invenzioni più utili. È curioso che anche qui ci fu chi si oppose, accusandola quasi di voler interferire con la volontà divina.
– Già! Alcuni predicatori sostenevano che fermare il fulmine significasse ribellarsi a Dio. Io replicai che Dio ci aveva dato l’intelligenza proprio per proteggerci. Non vedo differenza fra un tetto che ripara dalla pioggia e un parafulmine che ripara dal fuoco celeste.

– Lei ha fatto chiarezza, molta chiarezza, nel “decodificare” i fulmini. Alla fine, lei ha capito che si trattava di fenomeni naturali legati all’elettricità. In qualche modo ha aperto un varco nella comprensione di fenomeni che venivano associati all’ira divina: una volta Zeus, poi il Dio dei cristiani.
– Esatto. E non mi pare che Dio si sia offeso perché abbiamo capito come funziona un fulmine. Se la pioggia non è più vista come il pianto degli dèi ma come il ciclo dell’acqua, nessuno si scandalizza. Io credo che l’Onnipotente ci abbia dato la ragione proprio per usarla: ignorare i fenomeni naturali in nome della paura non è fede, è superstizione. E una società che resta prigioniera della superstizione non cresce, resta in ginocchio davanti al tuono.

– Ma le sue scoperte hanno fatto comprendere che la religione interviene solo quando non riusciamo a spiegarci qualcosa. Noi abbiamo bisogno di comprendere e, se non ci riusciamo, invochiamo un dio…
– È vero: gli uomini hanno sempre chiamato “divino” ciò che non sapevano spiegare. Ogni tuono era Zeus, ogni fulmine l’ira del Cielo. Il guaio è che, a forza di scoprire, gli dèi si sono ritrovati con meno lavoro: ecco perché dico che la scienza, in fondo, li mette in pensione anticipata. Ma questo non toglie dignità alla fede: anzi, la libera dalla superstizione. Un Dio ridotto a tappabuchi della nostra ignoranza è un Dio fragile; un Dio che ci ha dato intelletto e curiosità, invece, si aspetta che li usiamo. Perché la vera bestemmia non è capire il fulmine: è restare in ginocchio davanti al tuono senza mai volerlo capire.

– La capisco, Dr. Franklin. Io però sono ateo, e non riesco a vedere Dio neppure come ipotesi di lavoro. Mi tornano in mente le parole di Margherita Hack: “Dio è un’ipotesi non necessaria”.
– Non mi scandalizza affatto. Io vivevo in un tempo in cui la religione era il linguaggio comune: negarla avrebbe significato isolarsi dal dialogo civile. Ma vede, il bello della scienza è proprio questo: non impone a nessuno la fede o l’ateismo, chiede solo la voglia di capire. Che uno veda in quell’ordine la mano di Dio, o che lo chiami semplicemente Natura, poco importa: la verità resta verità, e il fulmine non obbedisce né al prete né all’ateo.

– Dr. Franklin, lei è passato alla storia come un individuo molto versatile: scienziato, inventore, diplomatico, politico, editore. Chi è lei, in realtà?
– Sono stato tutte queste cose e, al tempo stesso, nessuna soltanto. Non ho mai sopportato le etichette: erano i problemi concreti a chiamarmi, e io rispondevo come potevo. Se serviva un esperimento, facevo lo scienziato; se serviva un accordo, il diplomatico; se serviva chiarezza, scrivevo da editore. Ironia della sorte, mi sentivo più un apprendista della Natura che un maestro, un uomo con troppi mestieri e troppe poche tasche per contenerli. Se dovessi scegliere una definizione, direi che sono stato questo: un curioso ostinato, convinto che la vera identità dell’uomo non stia nel titolo che porta, ma nella scintilla che lo spinge a capire e migliorare il mondo.

– Lei dice giustamente: “la vera identità dell’uomo non è nel titolo che porta, ma nella scintilla che lo spinge a capire e migliorare il mondo”. Allora le rivolgo la medesima domanda che ho fatto al Professor Faraday: sa che una frase del genere nella mia epoca potrebbe essere usata dai complottisti di ogni risma? Questi interpreterebbero la sua dichiarazione come uno sdoganamento dell’ignoranza.
– E allora che lo facciano pure: non sarà certo il loro gracchiare a spegnere il fulmine. Ma sia chiaro: la scintilla che muove l’uomo non è la superbia di credere alle proprie fantasie, è l’umiltà di inchinarsi davanti ai fatti. I complottisti, invece, si fermano al lampo: gridano di aver visto la luce, ma non scaldano nessuno. Non sono ribelli coraggiosi: sono pigri travestiti da profeti, che scambiano il sospetto per pensiero critico e l’ignoranza per libertà. La curiosità autentica smonta i dogmi, anche quelli comodi: chi rifiuta prove e ragione non è un cercatore di verità, è un ciarlatano che preferisce restare al buio.

– Lei non fu solo scienziato. Fu anche diplomatico a Parigi e padre fondatore degli Stati Uniti. Crede che la scienza debba sempre dialogare con la politica?
La politica senza scienza è cieca, la scienza senza politica è muta. Ma attenzione: quando un governante chiude gli occhi davanti ai fatti, non è soltanto cieco, è pericoloso. Governa con l’illusione, e l’illusione uccide più del ferro e del fuoco. Un politico che ignora la scienza è come un capitano che butta la bussola in mare e pretende di guidare la nave “a sentimento”: può anche ingannare i passeggeri per un po’, ma alla fine li porterà sugli scogli. La scienza, se resta chiusa nei laboratori, non salva nessuno; ma la politica che la calpesta condanna un popolo all’ignoranza, alla malattia e alla fame. La verità non si vota e non si compra: un virus non chiede il permesso a un ministro, il clima non attende il consenso di un parlamento. Chi governa contro la scienza governa contro la vita stessa, e questo non è solo un errore politico: è un tradimento morale.

– Negli ultimi anni, anche negli Stati Uniti che lei ha contribuito a fondare, ci sono state politiche definite “antiscientifiche”. L’amministrazione Trump, in particolare, è stata accusata di negare l’evidenza del cambiamento climatico e di ostacolare la ricerca ambientale. Come vede tutto questo?
– Con sgomento. Vede, un politico che rinnega la scienza non è solo ignorante, è colpevole. Trump tratta i fatti come se fossero merce da mercato: accettabili quando tornano comodi, rifiutati quando disturbano i suoi affari. Questo non è governo, è ciarlataneria. Negare il cambiamento climatico non ferma lo scioglimento dei ghiacci, come negare una malattia non guarisce un malato. La politica che finge di non vedere i dati condanna il proprio popolo a pagare il prezzo della menzogna. Io dico che un leader che calpesta la scienza non tradisce solo i suoi contemporanei: tradisce anche le generazioni future, perché lascia in eredità un mondo più fragile, più povero e più ingiusto.

– Quindi la negazione del cambiamento climatico le sembra un grave errore politico?
– Non è un errore: è un atto di irresponsabilità criminale. Perché negare l’evidenza non rallenta il riscaldamento globale, ma lo accelera. Un governante che finge che il problema non esista non solo inganna il suo popolo: lo espone consapevolmente a catastrofi che si potevano prevenire. E questo non è politica, è complicità con il disastro.

– Oggi un tema che divide molto l’opinione pubblica è quello dei vaccini. Alcuni li vedono come una conquista di civiltà, altri come una minaccia alla libertà personale. Lei da che parte starebbe?
– Dalla parte della ragione. La libertà individuale non è mai licenza di danneggiare gli altri. Io stesso mi sono battuto per la libertà politica e religiosa, ma non avrei mai confuso la libertà con il diritto di mettere in pericolo la comunità. Un vaccino protegge non solo chi lo riceve, ma chi gli sta accanto. Rifiutarlo senza motivo è come gettare scintille in una polveriera e chiamarlo “atto di coraggio”: non è coraggio, è incoscienza.

– E come si combatte la disinformazione che avvelena il dibattito pubblico?
– Con la stessa arma che usavo io: rendendo la verità semplice e utile. Io pubblicavo almanacchi pieni di proverbi e osservazioni quotidiane, perché sapevo che la gente non leggeva i trattati, ma capiva benissimo un consiglio chiaro. Oggi dovreste fare lo stesso: spiegare la scienza in modo diretto, farne vedere l’utilità concreta. Una bugia urlata può sedurre, ma una verità spiegata bene è inespugnabile. Chi continua a diffondere fake news non è un ribelle della verità: è un avvelenatore del pozzo comune.

– Una curiosità: se fosse vivo oggi, su cosa avrebbe lavorato?
– Avrei un laboratorio pieno di pannelli solari e aquiloni per misurare l’inquinamento atmosferico! Mi divertirei a trasformare il vento e il sole in energia pulita: perché solo un folle preferirebbe restare schiavo del carbone quando il cielo offre elettricità gratis.

– Sì, ma oggi oltre al sole e al vento abbiamo a disposizione anche il nucleare
– E allora usatelo con intelligenza. Non c’è nulla di “immorale” nell’atomo, immorale è sprecarne il potere o trasformarlo in arma. Io non ho mai avuto paura dell’elettricità: l’ho studiata, imbrigliata, resa utile. Con il nucleare dovreste fare lo stesso. Chi rifiuta l’atomo per pregiudizio è miope quanto chi lo idolatra come panacea. Se il vostro obiettivo è liberare il mondo dalla dipendenza dai combustibili fossili, non potete permettervi dogmi: ogni fonte sicura e sostenibile è un alleato. E ricordatevi che l’ignoranza uccide più di qualsiasi radiazione.

– Prima di salutarla, Dr. Franklin, una battuta finale per chi oggi lotta contro politiche antiscientifiche, magari con la sua ironia pungente.
Dite ai vostri contemporanei che gli ignoranti sono come aquiloni senza filo: volano un attimo, poi si perdono. Ma noi dobbiamo essere parafulmini: attrarre la verità e scaricarla sulla paura. Quanto a chi rifiuta i fatti, lasciatelo gridare al vento: cadrà da solo. Voi intanto costruite scuole, vaccini, energie pulite. Perché il futuro non lo fanno i ciarlatani: lo fanno i coraggiosi che hanno scelto di restare dalla parte della ragione.

E con un sorriso complice, Franklin solleva la penna e lascia un tratto di fulmine tra le righe: non un addio, ma un invito a custodire la scintilla della scienza, sempre.

E mentre il lampo si spegne sulla carta, capisco che la conoscenza non vive soltanto nei laboratori e negli strumenti, ma anche nei libri, nei versi, negli sguardi di chi cerca la verità nel cuore dell’uomo e nella natura. È lì che mi attende il mio prossimo viaggio…

Note Bibliografiche

B. Franklin (2022). Autobiography of Benjamin Franklin. Philadelphia

B. Franklin (1751). Experiments and Observations on Electricity. London: E. Cave

B. Franklin (1751). Observations Concerning the Increase of Mankind, Peopling of Countries, etc. Philadelphia

B.  Franklin (2023). Poor Richard’s Almanack. Philadelphia

 

 

Biodinamica e scienza: smontare i miti non è mai facile

Negli ultimi anni la biodinamica è tornata con forza nel dibattito pubblico, presentata come un’agricoltura “più naturale”, capace di riconnettere l’uomo con la terra attraverso antichi rituali e influssi cosmici. Ma quando si scava nei lavori scientifici che dovrebbero darle credibilità, il castello crolla.

In un precedente articolo, Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci, avevo già mostrato come l’apparente incontro tra ricerca e pratiche steineriane sia in realtà un dialogo ingannevole. Oggi raccolgo e sintetizzo delle analisi critiche di studi pubblicati su riviste scientifiche, spesso citati a sostegno della biodinamica. Il risultato è un quadro chiaro: tanta tecnologia, poca scienza, e un mare di suggestioni travestite da rigore.

Il mito del Preparato 500

Al centro della biodinamica c’è il Preparato 500, letame fermentato in corna di vacca, elevato a elisir magico. Uno studio del 2013 su Journal of Microbiology and Biotechnology ha tentato di dargli dignità scientifica. Il risultato? Una sequenza di prove deboli: assenza di controlli, attività biologiche senza legame con benefici concreti, repliche non documentate.

Gli stessi autori, del resto, offrono materiale sufficiente per smontare ogni pretesa di scientificità. Non hanno inserito veri controlli: “Different commercial samples of BD Preparation 500… were studied” (p. 645). In pratica, hanno confrontato solo diversi lotti dello stesso preparato, senza mai verificare se i risultati differissero da un letame ordinario.

Le attività enzimatiche riportate sono descritte come promettenti, ma senza legame con effetti pratici: “Preparation 500 displays high specific levels of activity… A high alkaline phosphatase activity indicates its potential” (p. 648). Potenziale, non prova.

Una volta estratto dalle corna, il Preparato viene applicato in campo dopo diluizioni omeopatiche: 200 grammi in decine di litri d’acqua per ettaro. Gli autori non si limitano a descriverne le caratteristiche microbiologiche e chimiche, ma cercano anche di giustificare questa pratica con un ragionamento per analogia: “…they will already be delivered at a 10¹⁰ M concentration… well within their expected windows of biological activity (p. 649). Ma si tratta di pura speculazione: nessuna prova sperimentale mostra che quelle diluizioni abbiano davvero un effetto.

Il linguaggio stesso tradisce l’incertezza. Ovunque compaiono formule ipotetiche: “could possibly contribute” (p. 648), “may account for the biostimulations” (p. 649), “it cannot be excluded that it might act” (p. 650). Non dimostrazioni, ma tentativi di rivestire di retorica ciò che rimane un rituale agronomico.

Qui la scienza si ferma e subentra il wishful thinking. Non c’è alcun dato che dimostri l’efficacia di quelle diluizioni: è una speculazione posticcia, un tentativo di dare un’aura scientifica a un rituale. In sostanza, la giustificazione proposta non è ricerca: è retorica. Nessun esperimento serio ha mai mostrato che spruzzare tracce infinitesimali di letame fermentato possa produrre effetti concreti su un sistema agricolo complesso.

Corna, letame e spettrometri: la scienza usata per dare lustro al mito

Nel paragrafo precedente è stato introdotto il Preparato 500, gioia degli attivisti della biodinamica. Ebbene, esso è stato analizzato mediante risonanza magnetica nucleare (NMR) e gas-cromatografia con pirolisi (pyrolysis-TMAH-GC-MS) in un lavoro pubblicato su Environmental Science and Pollution Research nel 2012. Questo studio si presenta come la “prima caratterizzazione molecolare” del Preparato 500: una vetrina tecnologica impressionante, che tuttavia poggia su fondamenta fragilissime. Una sfilata di strumenti sofisticati al servizio non della conoscenza, ma della legittimazione di un mito. Vediamo perché.

Gli autori hanno analizzato tre lotti di Preparato 500 (“three samples of horn manure… were collected from different European farms”, p. 2558). Tutto qui. Nessun confronto con compost ordinario o letame tradizionale. Senza un vero controllo, attribuire “peculiarità biodinamiche” diventa arbitrario: come distinguere l’effetto del corno interrato da quello della normale fermentazione del letame?

Le analisi rivelano componenti come lignina, carboidrati, lipidi vegetali e marcatori microbici. Gli stessi autori ammettono che “the chemical composition of HM was consistent with that of natural organic materials” (p. 2564). In altre parole, il Preparato 500 non mostra alcuna unicità sorprendente: è esattamente ciò che ci si aspetta da una biomassa organica parzialmente decomposta.

Il paper suggerisce che la presenza di frazioni labili e lignina parzialmente decomposta possa conferire al Preparato 500 una particolare bioattività: “HM was characterized by a relatively high content of labile compounds that might account for its claimed biostimulant properties” (p. 2565). Ma questa è pura congettura: nessun dato in campo supporta l’idea che tali caratteristiche abbiano effetti agronomici specifici.

Le conclusioni parlano di “a higher bioactivity with respect to mature composts” (p. 2565). Ma il solo risultato tangibile è che il Preparato 500 risulta meno stabilizzato e più ricco di composti facilmente degradabili rispetto a un compost maturo. Un’osservazione banale, trasformata in presunta “prova” di efficacia biodinamica.

In altre parole, il lavoro appena analizzato non dimostra alcuna unicità del Preparato 500. Mostra soltanto che un letame lasciato fermentare in condizioni anossiche dentro un corno ha una composizione chimica simile a quella di altri ammendanti poco maturi. L’uso di strumenti spettroscopici di alto livello serve più a conferire prestigio alla pratica biodinamica che a produrre nuova conoscenza. È un’operazione di maquillage scientifico: dati corretti, ma interpretazione piegata all’ideologia.

Strumenti sofisticati, interpretazioni esoteriche

In uno studio apparso su Chemical and Biological Technologies in Agriculture, gli autori hanno applicato tecniche avanzatissime – MRI (risonanza magnetica per immagini) per la struttura interna delle bacche e HR-MAS NMR per il metaboloma – a uve Fiano e Pallagrello trattate con il celebre Preparato 500. Dal punto di vista tecnico nulla da eccepire: “MRI and HR-MAS NMR provided detailed information on berry structure and metabolite profiles” (p. 3).

Il problema nasce subito dopo. Gli autori collegano direttamente i risultati“a significant decrease in sugars and an increase in total phenolics and antioxidant activity in biodynamically treated grapes” (p. 5) – all’applicazione del Preparato 500. Ma senza un adeguato controllo placebo questo salto logico è insostenibile: come distinguere l’effetto della “pozione biodinamica” da quello di fattori molto più concreti e plausibili come microclima, esposizione solare, variabilità del suolo o semplici disomogeneità nell’irrigazione?

Gli stessi autori ammettono che la variabilità ambientale è enorme: “soil heterogeneity and microclimatic differences strongly influenced metabolite composition” (p. 6). Eppure, attribuiscono al trattamento biodinamico differenze che potrebbero essere spiegate benissimo da questi fattori.

Ecco il nodo: la biodinamica viene trattata come variabile determinante quando, in realtà, manca la dimostrazione del nesso causale. Si confonde la correlazione con la causa, sostituendo la fatica della verifica sperimentale con il fascino della narrazione esoterica. In altre parole, strumenti scientifici tra i più potenti oggi disponibili vengono usati correttamente per produrre dati robusti, ma poi piegati a interpretazioni che appartengono più al mito che alla scienza. È come se un telescopio di ultima generazione fosse puntato verso il cielo non per studiare le galassie, ma per cercare gli influssi astrali di cui parlano gli oroscopi.

Quando i numeri non tornano

Tra i lavori più citati a sostegno della biodinamica c’è l’articolo di Zaller e Köpke pubblicato su Biology and Fertility of Soils nel 2004, che confronta letame compostato tradizionale e letame compostato con “preparati” biodinamici in un esperimento pluriennale. Sulla carta, il disegno sperimentale sembra solido: rotazioni colturali, repliche, parametri chimici e biologici del suolo.

Ma basta entrare nei dettagli per accorgersi delle crepe. Innanzitutto, gli autori parlano di quattro trattamenti, ma l’unico vero confronto rilevante – biodinamico vs tradizionale – è reso ambiguo dal fatto che manca un controllo cruciale: il letame senza alcuna applicazione (no FYM) è incluso, ma non permette di distinguere se le differenze dipendano dalle preparazioni biodinamiche o, banalmente, dalla sostanza organica. In altre parole, non è possibile stabilire se l’“effetto” sia biodinamico o semplicemente concimante.

In secondo luogo, molte delle differenze riportate sono minime, al limite della significatività statistica, e oscillano addirittura in direzioni opposte tra i diversi strati di suolo (es. la respirazione microbica più bassa con tutti i preparati a 0–10 cm, ma più alta col solo Achillea a 10–20 cm: Fig. 1). Questo non è un segnale di coerenza biologica, ma di rumore sperimentale.

E poi ci sono le rese: tabella 3 mostra chiaramente che le differenze tra preparati e non-preparati non sono mai significative. In pratica, dopo nove anni di sperimentazione, la produttività dei sistemi resta identica, indipendentemente dall’uso o meno dei preparati.

Il colpo finale arriva dall’interpretazione: gli autori ammettono che “how those very low-dose preparations can affect soil processes is still not clear” (p. 228), ma subito dopo ipotizzano meccanismi fumosi come “microbial efficiency” o “stress reduction” senza fornire prove solide. Non sorprende che l’articolo sia diventato un riferimento per i sostenitori della biodinamica: fornisce grafici, tabelle e un lessico tecnico, ma dietro la facciata la sostanza è debole.

In sintesi, questo lavoro non dimostra affatto l’efficacia dei preparati biodinamici: mostra soltanto che il letame fa bene al suolo, una banalità agronomica travestita da scoperta.

Mappatura, non validazione

Giusto per concludere questa breve revisione critica di qualche lavoro sulla biodinamica, prendo in considerazione una review pubblicata su Organic Agriculture che ha analizzato 68 studi sull’agricoltura biodinamica. Gli autori segnalano effetti positivi su suolo e biodiversità, soprattutto in aree temperate, sostenendo che “most studies reported improvements in soil quality parameters, biodiversity, and crop quality under biodynamic management” (p. 3).

Il problema è che si tratta di una rassegna descrittiva, non critica. Gli stessi autori ammettono che “we did not perform a formal quality assessment of the included studies” (p. 2). In altre parole, nessuna valutazione della robustezza metodologica, della significatività statistica o della replicabilità dei risultati. Non hanno fatto, insomma, quello che ho fatto io con le critiche riportate nei paragrafi precedenti.

Non solo: la review mette nello stesso calderone pratiche agricole consolidate (rotazioni, compost, minore uso di chimica) e l’uso dei preparati biodinamici, facendo apparire i benefici come frutto della biodinamica tout court. Un artificio retorico che sposta l’attenzione dall’agronomia alla magia.

Il risultato è esattamente quello che Enrico Bucci definì su Il Foglio una “eterna review”: un elenco di lavori, non una loro valutazione critica. Utile come catalogo, ma totalmente inutile come prova di validazione scientifica. Insomma, un inventario ordinato, non una prova di efficacia: la scienza qui rimane alla porta, mentre la retorica magica occupa la scena.

La fatica della demistificazione scientifica

Arrivati a questo punto, vale la pena sottolineare un aspetto che spesso sfugge a chi guarda la scienza dall’esterno. Smontare lavori che si travestono da scienza non è un passatempo da tastiera né un esercizio da poltrona. È un percorso lungo, faticoso e a tratti logorante. Perché?

Per prima cosa bisogna leggere gli articoli nella loro interezza, riga dopo riga, spesso decifrando un linguaggio tecnico volutamente denso. Poi serve una conoscenza approfondita delle metodologie: saper distinguere un NMR da una cromatografia, sapere cosa può misurare davvero un test enzimatico e cosa invece viene gonfiato nell’interpretazione. Infine, è indispensabile una robusta esperienza nella progettazione sperimentale: senza questa non ci si accorge dei bias nascosti, dei controlli mancanti, delle conclusioni che vanno ben oltre i dati.

E tutto ciò richiede tempo, pazienza e un certo spirito combattivo.  La scienza procede per tentativi ed errori. Un lavoro pubblicato non necessariamente è validoLa pubblicazione è solo il primo gradino. La vera prova arriva dopo, quando la comunità scientifica lo sottopone a un esame collettivo, minuzioso, implacabile: esperti che “fanno le pulci” a ogni cifra, a ogni tabella, a ogni esperimento. Se il lavoro è solido, resiste e diventa pietra miliare. Se è fragile, si sgretola in fretta e viene dimenticato.

Ecco perché la demistificazione è così importante e così dura: perché si combatte con armi scientifiche contro narrazioni che usano il fascino del mito. E i lavori sulla biodinamica, quando passano sotto questo setaccio, puntualmente crollano.

Conclusione: un fallimento annunciato

Il quadro che emerge è inequivocabile. Studi ben confezionati ma concettualmente vuoti, prove senza controlli, numeri sbagliati, review che confondono agronomia con magia. Tutto ciò che funziona nelle aziende biodinamiche non è esclusivo della biodinamica: è semplice agronomia, già consolidata nel biologico e perfezionata nell’integrato.

Il resto – corna interrate, cicli cosmici, preparati miracolosi – non resiste alla prova della scienza. La biodinamica cerca da oltre un secolo legittimazione, ma ogni volta che la ricerca prova a verificarla seriamente, la sua fragilità diventa evidente. Non è agricoltura del futuro, ma un mito che il tempo ha già smentito.

A questo punto, un lettore non addetto potrebbe chiedersi: “Ma se è così fragile, come mai questi studi vengono pubblicati? Possibile che i revisori non se ne accorgano? E come faccio io, dall’esterno, a non fidarmi di ciò che appare su riviste qualificate, persino con un buon Impact Factor?”

La risposta è meno misteriosa di quanto sembri. Come ho già scritto nel paragrafo precedente, la pubblicazione è solo il primo passo: significa che un articolo ha superato un filtro minimo di qualità, non che sia una verità scolpita nel marmo. La peer review non è un tribunale infallibile: è fatta da esseri umani, spesso con tempi stretti e competenze specifiche. Alcuni errori sfuggono, altre volte ci si concentra più sulla tecnica che sulla sostanza. Succede che un lavoro ben scritto e infarcito di strumentazioni sofisticate riesca a passare, anche se le conclusioni sono deboli.

La differenza la fa il tempo e la comunità scientifica. È il vaglio collettivo, fatto di discussioni, repliche, critiche, tentativi di replica sperimentale, che separa ciò che rimane da ciò che evapora. Ed è un processo lento e faticoso, che richiede esperienza, attenzione e anche una certa dose di ostinazione.

Ecco perché non basta fidarsi di un titolo altisonante o di una rivista con un buon IF. Bisogna guardare dentro i lavori, leggerli, pesarli, verificarli. Lo facciamo noi scienziati, ed è una parte del nostro mestiere che non fa notizia, ma è essenziale: distinguere i dati solidi dai castelli di carta.

E ogni volta che la biodinamica entra in questo setaccio, il risultato è lo stesso: crolla.

Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci

Ci risiamo! Più volte ho parlato di biodinamica, ma, come sempre accade, questa pratica sembra risorgere dalle ceneri come la fenice, un essere mitologico che ben rappresenta l’impianto fantastico da cui trae origine. Stavolta a riproporla in chiave “scientifica” è un articolo apparso su Terra & Vita l’11 agosto 2025 a firma di Carlo Triarico, presidente dell’Associazione per l’Agricoltura Biodinamica:
? Agricoltura biodinamica e ricerca scientifica, il dialogo continua

Come al solito, ci troviamo di fronte a un testo che cerca di accreditare la biodinamica usando il linguaggio della scienza e richiamando collaborazioni con enti di ricerca. Vale la pena analizzare punto per punto le affermazioni contenute nell’articolo, per capire cosa c’è di sostanza e cosa invece è pura retorica.

La premessa retorica

“La crisi ambientale impone nuove pratiche rigenerative, accompagnate da un solido impianto di validazione scientifica.”

Che la crisi ambientale e climatica sia una realtà innegabile è fuori discussione. Nessuno scienziato serio la nega. Ma proprio perché la crisi è reale, il richiamo a essa non può essere usato come cavallo di Troia per giustificare qualunque pratica, tanto meno quelle nate da premesse esoteriche. È un classico espediente retorico: evocare un problema grave e condiviso per darsi legittimità, senza però dimostrare che la soluzione proposta sia davvero efficace.

Il termine “pratiche rigenerative” è suggestivo ma vago. Rigenerare cosa? In che modo? Con quali meccanismi verificabili? Senza una definizione chiara, si resta nell’ambito dello slogan. La biodinamica viene così presentata come medicina miracolosa, ma senza che siano forniti protocolli scientifici in grado di dimostrare causalità tra pratiche e risultati.

Infine, parlare di “validazione scientifica” è improprio. La scienza non “valida” come fosse un ente certificatore che mette bollini di approvazione. La scienza funziona per ipotesi sottoposte a prove, dati che devono essere replicabili, esperimenti che altri ricercatori possono confermare o smentire. Se un modello agronomico ha basi solide, non c’è bisogno di rivestirlo di retorica: i dati parlano da soli.

La verità è che quando si tratta di biodinamica, si invoca la scienza come un orpello decorativo, ma si evita accuratamente di sottoporre al vaglio critico proprio i capisaldi del metodo — i preparati, le diluizioni omeopatiche, i cicli cosmici. Su questi aspetti, che costituiscono l’anima della biodinamica, non esiste alcuna evidenza.

In altre parole: usare la crisi climatica come giustificazione per promuovere pratiche prive di fondamento non è un’operazione scientifica, ma retorica.

La “visione sistemica”

“La biodinamica, con la sua visione sistemica e la cura della terra, ha molto da offrire in termini di sostenibilità.”

Visione sistemica” è un’espressione ad alto impatto emotivo, che sembra evocare profondità e modernità di pensiero. Ma è un concetto che, applicato così, resta puramente decorativo. In agronomia la gestione integrata dei sistemi agricoli è già una realtà da decenni: rotazioni colturali, pratiche conservative, uso oculato delle risorse idriche, incremento della sostanza organica del suolo. Tutti questi approcci rientrano già da tempo nell’agricoltura biologica, nella lotta integrata e nei sistemi sostenibili, senza bisogno di ricorrere a cosmologie esoteriche.

Attribuire alla biodinamica una presunta “visione sistemica” è dunque un’operazione di maquillage: si prende un concetto scientificamente serio, lo si ammanta di suggestioni e lo si appiccica a pratiche che con la scienza hanno poco a che fare. In realtà, la biodinamica non porta alcuna innovazione metodologica: si limita a riproporre tecniche già note in agricoltura ecocompatibile, aggiungendo però un corredo rituale che nulla aggiunge né alla produttività né alla sostenibilità.

È come se qualcuno prendesse l’omeopatia e la presentasse come “medicina olistica sistemica”: un modo elegante per mascherare l’assenza di meccanismi verificabili dietro un linguaggio affascinante. Allo stesso modo, dire che la biodinamica ha “molto da offrire” in termini di sostenibilità è fuorviante: ciò che funziona non è la biodinamica, ma le stesse pratiche agronomiche già validate che essa incorpora al suo interno.

In sintesi, la “visione sistemica” non è un portato della biodinamica: è un concetto scientifico e agronomico che le viene arbitrariamente attribuito per conferirle un’aura di credibilità.

Le collaborazioni scientifiche

“Abbiamo collaborato con CREA, Università di Firenze, Università di Salerno, CERMANU, SISB…”

E qui scatta il gioco delle citazioni, un artificio retorico ben collaudato: nominare enti di ricerca e università serve a costruire una patina di autorevolezza, come se la sola menzione bastasse a trasferire credibilità scientifica. Ma la realtà è più complessa.

Che università e centri di ricerca abbiano svolto studi sulla fertilità del suolo, sulla biodiversità o sull’impatto ambientale delle pratiche agricole è un dato di fatto. Questo, però, non equivale ad aver avallato i principi fondanti della biodinamica, che restano di natura esoterica. Bisogna distinguere nettamente:

  • quando si studiano pratiche agronomiche comuni, come la riduzione dei fertilizzanti di sintesi (cioè sistemi inorganici), l’incremento della sostanza organica o la gestione integrata del terreno, si sta facendo agronomia.
  • quando invece si invocano corna di vacca interrate, preparati dinamizzati in acqua agitata ritualmente, o influssi cosmici legati alla posizione della Luna, si entra nell’ambito del rituale, non della ricerca scientifica.

Mescolare i due livelli, come avviene sistematicamente nei comunicati del mondo biodinamico, è un’operazione retorica: si confonde il rigore della scienza con il linguaggio mistico, sperando che la rispettabilità della prima copra le fragilità della seconda.

In altre parole: se un’università conduce uno studio sulla biodiversità in un’azienda biodinamica, il dato che ottiene riguarda la biodiversità in quell’azienda, non la validazione delle teorie di Steiner. Dire il contrario equivale a dire che se un medico misura la pressione a un paziente che porta un amuleto al collo, allora lo studio conferma l’efficacia dell’amuleto.

Il problema, dunque, non è la collaborazione in sé, ma il suo uso strumentale: un modo per presentare come “scientificamente supportato” ciò che resta, nei suoi fondamenti, privo di basi scientifiche.

L’azienda modello e la certificazione Demeter

“Le aziende certificate Demeter come Lacalamita Rosa mostrano risultati significativi e attraggono nuovi produttori.”

Portare ad esempio aziende di successo è una strategia comunicativa potente: un nome evocativo, qualche dato positivo e il lettore medio è portato a pensare che il merito sia tutto della biodinamica. Ma il ragionamento è fuorviante.

Il successo commerciale o l’apprezzamento dei consumatori non dimostrano di per sé la validità scientifica di un metodo. Un’azienda può prosperare per molte ragioni: la qualità intrinseca del suolo, la competenza agronomica di chi la conduce, le condizioni climatiche favorevoli, oppure semplicemente un buon posizionamento di mercato. Attribuire automaticamente questi risultati alla biodinamica equivale a confondere i fattori: è il tipico errore di scambiare correlazione per causalità.

Quanto alla certificazione Demeter, non si tratta di un riconoscimento indipendente né neutrale. È un marchio privato, gestito dal movimento biodinamico stesso, che valuta la conformità delle aziende a un disciplinare interno. E questo disciplinare, lungi dall’essere scientifico, prescrive pratiche rituali che includono i famosi preparati e le procedure esoteriche steineriane. Parlare quindi di “standard oggettivi” è improprio: non si tratta di oggettività scientifica, ma di coerenza con un regolamento autoreferenziale.

Per chiarire con un paragone: dire che un’azienda è “validata scientificamente” perché certificata Demeter è come dire che un club di astrologi garantisce l’accuratezza dell’oroscopo dei suoi membri. Vale come appartenenza a una comunità che condivide gli stessi rituali, ma non come dimostrazione di efficacia.

In definitiva, l’esempio delle aziende modello e della certificazione Demeter serve a costruire un racconto accattivante, ma non sposta di un millimetro la questione centrale: i principi fondanti della biodinamica restano privi di fondamento scientifico.

Lo studio con NMR sull’uva da tavola

“Gli studi con spettroscopia H-NMR hanno mostrato parametri qualitativi superiori nell’azienda biodinamica.”

Qui si tocca un aspetto che, letto in fretta, sembra confermare in pieno la narrazione biodinamica: un’analisi sofisticata, condotta con uno strumento scientifico avanzato, avrebbe mostrato differenze qualitative a favore dell’azienda biodinamica. Ma la realtà, ancora una volta, è diversa.

Innanzitutto, va chiarito cosa significhi “parametri qualitativi superiori”. Una differenza nei profili metabolomici non equivale automaticamente a un miglioramento. In metabolomica, infatti, i dati descrivono variazioni nella concentrazione di certi composti, ma la loro interpretazione dipende dal contesto e da ulteriori correlazioni con parametri sensoriali, nutrizionali o tecnologici. Dire che un prodotto è “migliore” perché diverso non ha alcun senso scientifico.

In secondo luogo, anche ammesso che un’azienda biodinamica mostri parametri più favorevoli, ciò non dimostra affatto che la causa sia la biodinamica in sé. Gli studi comparativi, per essere robusti, devono isolare le variabili: stesse condizioni pedoclimatiche, stesso vitigno, stessa gestione agronomica, stesso livello di esperienza dell’agricoltore. Nella realtà, però, un’azienda non è un laboratorio sterile: il suolo, il microclima, l’età delle piante, persino la cura quotidiana nella gestione possono influenzare i risultati.

Attribuire quindi le differenze osservate ai preparati steineriani o all’influenza dei cicli cosmici è un salto logico arbitrario. Sarebbe come dire che, se una squadra di calcio vince una partita, il merito è della maglia portafortuna indossata dall’allenatore. Correlazione e causalità, ancora una volta, vengono confuse deliberatamente.

Infine, l’uso stesso di tecniche avanzate come la spettroscopia NMR rischia di funzionare da “effetto scenico”: uno strumento complesso viene chiamato in causa per impressionare il lettore, non per fornire prove decisive. Ma la scienza non si misura dalla sofisticazione dello strumento, bensì dalla solidità del disegno sperimentale e dalla replicabilità dei risultati.

In sintesi: se anche uno studio rileva differenze, non è corretto attribuirle tout court alla biodinamica. La vera prova mancherebbe proprio là dove servirebbe: dimostrare che i precetti esoterici abbiano un effetto misurabile e riproducibile. E questa prova, ad oggi, non esiste.

Agroecologia e dieta mediterranea

“La biodinamica si integra con i principi dell’agroecologia e della Dieta Mediterranea sostenibile.”

Questo passaggio è un esempio chiaro di appropriazione semantica: si accostano concetti scientificamente fondati (agroecologia e Dieta Mediterranea) a un paradigma privo di basi razionali come la biodinamica, nel tentativo di trasferire prestigio dall’uno all’altro.

L’agroecologia è un approccio interdisciplinare che combina scienze agrarie, ecologia, economia e sociologia per rendere sostenibili i sistemi agricoli. La Dieta Mediterranea, invece, non è affatto un modello antico e immutato: è una costruzione recente, nata negli Stati Uniti negli anni ’50-’60 grazie agli studi di Ancel Keys, che osservò la maggiore longevità di alcune popolazioni del bacino mediterraneo. Da quelle osservazioni derivò un modello alimentare “idealizzato”, promosso poi a livello internazionale. Nonostante le sue origini moderne e in parte commerciali, la Dieta Mediterranea si è guadagnata un solido supporto scientifico: numerosi studi hanno confermato la correlazione con benefici per la salute, e l’UNESCO l’ha riconosciuta come patrimonio culturale immateriale per il suo valore sociale e culturale.

La biodinamica, al contrario, nasce da premesse esoteriche di Rudolf Steiner e non ha alcuna validazione scientifica. Metterla sullo stesso piano dell’agroecologia e della Dieta Mediterranea è quindi fuorviante: mentre le prime si fondano su dati, osservazioni e modelli riproducibili, la biodinamica resta ancorata a rituali cosmici e pratiche prive di riscontro sperimentale.

Il meccanismo comunicativo è evidente: evocare concetti positivi e consolidati per “nobilitare” la biodinamica. Ma, in realtà, tutto ciò che appare compatibile con l’agroecologia o con il modello mediterraneo (rotazioni, compostaggio, riduzione degli input chimici) non è esclusivamente biodinamico: appartiene già all’agricoltura biologica e sostenibile. L’unico elemento davvero caratterizzante della biodinamica — i preparati e i rituali steineriani — non ha alcun fondamento scientifico.

In definitiva, questo accostamento non rafforza la biodinamica: ne evidenzia piuttosto la debolezza, perché dimostra il suo costante bisogno di appoggiarsi ad altro per sembrare credibile.

Standard e protocolli “oggettivi”

“La biodinamica è identificata da standard e protocolli oggettivi e soggetti a verifica.”

Questa affermazione suona rassicurante, ma è profondamente ambigua. Nel linguaggio della scienza, “standard oggettivi” significa procedure condivise, ripetibili, verificabili da chiunque e soprattutto indipendenti da appartenenze ideologiche. Nel caso della biodinamica, invece, gli “standard” non sono altro che le regole fissate dal marchio Demeter, ovvero dall’organizzazione stessa che promuove la biodinamica.

Questi protocolli prevedono sì pratiche agronomiche comuni e sensate (rotazioni, compostaggio, attenzione alla fertilità del suolo), ma includono anche prescrizioni rituali come i preparati dinamizzati o le corna interrate seguendo cicli lunari e planetari. Non c’è nulla di scientifico in questo: sono norme interne a una comunità, autoreferenziali, che si verificano in base alla loro stessa coerenza interna, non sulla base di prove oggettive.

È come dire che l’astrologia è “oggettiva” perché esistono regole precise per calcolare un oroscopo. Certo, il calcolo segue un protocollo, ma ciò non significa che il risultato abbia validità scientifica. Allo stesso modo, rispettare il disciplinare Demeter dimostra solo che un’azienda aderisce a un regolamento, non che i principi steineriani abbiano efficacia reale.

Il vero paradosso è che il richiamo alla “verifica” finisce per essere un gioco di specchi: chi controlla la conformità non valuta i risultati scientifici delle pratiche, ma solo la fedeltà a un rituale codificato. È un sistema chiuso, che si autolegittima senza mai confrontarsi con il metodo scientifico.

In sintesi: parlare di “protocolli oggettivi” in biodinamica è un abuso del linguaggio scientifico. Non si tratta di oggettività, ma di appartenenza. Non si tratta di verifiche, ma di rituali. E questa differenza non è un dettaglio semantico: è il punto che segna la distanza tra scienza e pseudoscienza.

Conclusione

Ancora una volta la biodinamica si presenta con abiti nuovi, evocando crisi ambientali, citando enti di ricerca, richiamando agroecologia e dieta mediterranea, esibendo certificazioni e dati metabolomici. Ma al di là della patina, la sostanza resta immutata: i capisaldi steineriani non hanno alcuna validazione scientifica.

Tutto ciò che funziona nelle aziende biodinamiche non è esclusivo della biodinamica: è semplice agronomia, già consolidata nel biologico e perfezionata oggi nell’agricoltura integrata. La differenza è che qui si parla di conoscenze scientifiche, non di rituali esoterici. Ciò che resta tipicamente biodinamico non ha alcuna evidenza e non può essere considerato scienza.

La conclusione è inevitabile: la biodinamica non rappresenta un modello innovativo di sostenibilità, ma un insieme di pratiche esoteriche rivestite di retorica scientifica. E confondere scienza e rituale non aiuta l’agricoltura a diventare più sostenibile: la espone, semmai, al rischio di perdere credibilità proprio quando la società ha più bisogno di rigore, trasparenza e soluzioni reali.

Come la fenice, la biodinamica sembra risorgere dalle proprie ceneri: ma, a differenza del mito, dalle sue ceneri non nasce mai scienza.

Le interviste impossibili: incontriamo Michael Faraday

Lasciata Parigi, dove ho avuto l’onore di dialogare con Antoine Lavoisier, faccio rotta verso l’Inghilterra. È il 1831 — almeno, così mi piace pensare — e la bruma londinese avvolge i sobborghi di Newington Butts. Qui, in una piccola casa modesta, mi attende Michael Faraday: chimico, fisico, autodidatta, uomo dalla curiosità inesauribile. Dai suoi esperimenti nascono concetti e scoperte che hanno plasmato la chimico-fisica moderna: l’elettromagnetismo, le leggi dell’elettrolisi, l’introduzione di termini come “anodo” e “catodo”, e quell’inimitabile ciclo di lezioni che raccolse in The Chemical History of a Candle. Un uomo che, pur privo di studi matematici formali, ha saputo leggere nel linguaggio segreto della natura e tradurlo in esperimenti chiari e affascinanti.

— Buongiorno, Professor Faraday. Sono onorato che lei abbia voluto incontrarmi.
— Buongiorno a lei, e benvenuto a Londra. Sono lieto di parlare con chi mostra curiosità per la scienza, perché la curiosità è la fiamma che accende ogni scoperta.

— Professor Faraday, il suo nome è legato a scoperte epocali in campi diversi. Partiamo dall’elettrochimica: come nacquero le sue famose leggi dell’elettrolisi?
— Tutto è cominciato facendo esperimenti, con tanta pazienza e un po’ di ostinazione. L’elettrolisi, per dirla semplice, è quando si fa passare corrente elettrica in un liquido — come una soluzione salina — e agli elettrodi avvengono reazioni chimiche: si formano gas, si depositano metalli, o si liberano altre sostanze. Mi resi conto che la quantità di sostanza prodotta non era mai a caso: più elettricità facevo passare, più materia ottenevo. Questo è il cuore della mia prima legge. Poi, cambiando sostanza — oro, rame, idrogeno, ossigeno… — vidi che, se facevo passare sempre la stessa “dose” di elettricità, ottenevo quantità diverse di materiale, ma sempre in proporzione a un valore caratteristico di quella sostanza, il cosiddetto “peso equivalente”. In fondo, quelle regole erano già lì, scritte nella natura: io ho solo avuto la pazienza di osservarle e metterle nero su bianco.

— Questo è quanto hanno affermato, tra le righe, anche il Professor Boyle e Monsieur Lavoisier che, immagino, lei conosca.
— Eccome se li conosco! Boyle, con il suo modo rigoroso di sperimentare, ha aperto la strada a tutti noi: era convinto che le leggi della natura fossero lì da scoprire, non da inventare. E Lavoisier… be’, lui ha saputo dare un ordine e un linguaggio alla chimica. Ha dimostrato che nulla si crea e nulla si distrugge, e che il compito dello scienziato è trovare il filo che lega ogni trasformazione. Io ho solo continuato quel lavoro, seguendo il filo della corrente elettrica.

— Quindi, lei ha seguito le orme di monsieur Lavoisier, dimostrando in modo indipendente che aveva ragione.
— Direi piuttosto che ho camminato su un sentiero che lui aveva già tracciato, ma guardando dettagli che, ai suoi tempi, erano nascosti. Lavoisier aveva ragione nel dire che la materia si conserva e che le reazioni seguono leggi precise. Io ho potuto vedere quelle stesse leggi in azione nei processi elettrici, e mostrarne il funzionamento quantitativo. In un certo senso, la mia elettrochimica è stata la prova sperimentale di un’idea che lui aveva reso universale.

— E come ha detto monsieur Lavoisier, la scienza è un gioco corale…
— …esattamente. Non c’è un singolo musicista che possa suonare tutta la sinfonia da solo. Ognuno aggiunge una nota, un tema, un’armonia. Boyle ha messo le fondamenta del metodo sperimentale, Lavoisier ha dato ordine e linguaggio alla chimica, e io ho avuto la fortuna di inserirvi l’elettricità come nuova voce. La scienza avanza così: un’idea ispira un’altra, un esperimento ne provoca cento nuovi. È un lavoro che attraversa generazioni, senza gelosie — o almeno, così dovrebbe essere.

— E in questo coro, lei ha introdotto un tema che ha cambiato per sempre la fisica: l’induzione elettromagnetica.
— Fu una delle mie scoperte più care. E nacque da una domanda molto semplice: se una corrente elettrica può generare un campo magnetico, come aveva mostrato Oersted, non sarà possibile anche il contrario? Mi misi al banco di lavoro con fili di rame, bobine, magneti e molta pazienza. Scoprii che muovendo un magnete vicino a un circuito, o variando il campo magnetico che lo attraversa, in quel circuito compare una corrente. Una corrente “indotta”. Non serviva contatto diretto: il cambiamento del campo era sufficiente.

— Un principio che oggi è alla base dei generatori e dei trasformatori elettrici…
— All’epoca non pensavo certo alle centrali elettriche: vedevo solo un nuovo modo in cui natura e movimento dialogano. Ma la bellezza della scienza è che ciò che nasce da curiosità pura, un giorno, può cambiare il mondo.

— Questa è l’idea della ricerca di base, un tipo di ricerca che, come avrà sicuramente saputo, oggi viene ritenuta inutile. Oggi, nella stesura dei progetti per ottenere finanziamenti, occorre anche descrivere i risultati attesi e le possibili applicazioni…
— Ah, capisco. Ma vede, la ricerca di base è come seminare in un terreno fertile: non si può sempre sapere in anticipo quale frutto crescerà, né quando. Se nel 1831 mi avessero chiesto quali applicazioni pratiche avrei tratto dall’induzione elettromagnetica, avrei potuto solo dire: “Ancora non lo so, ma è un fenomeno reale e va compreso”. Eppure, da quella curiosità oggi nascono la produzione e la distribuzione dell’elettricità. La scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.

— Bellissimo ciò che ha detto… la scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.
— E glielo posso raccontare con un piccolo episodio personale. Quando iniziai a parlare dei miei esperimenti sull’elettricità, alcuni colleghi mi chiesero: “Ma a cosa serve tutto questo? Cosa produrrà di utile?” Io risposi semplicemente: “Non lo so ancora… ma quando lo scoprirò, sarà più utile di qualsiasi risposta affrettata”. Ridono ancora, quando lo racconto, perché nessuno allora poteva immaginare che quei giochi con fili e magneti un giorno avrebbero illuminato case, fabbriche e città intere. La curiosità pura è stata il mio unico motore. Non ho mai pensato che l’utilità pratica dovesse precedere la comprensione; credo fermamente che le leggi della natura si rivelino meglio a chi le osserva con meraviglia e senza fretta.

— È davvero straordinario come la curiosità pura abbia portato a scoperte così rivoluzionarie… eppure, lei non si è fermato all’elettricità: ha anche esplorato la luce.
— Sì, e anche qui è stata la stessa curiosità a guidarmi. Nel 1845, mentre studiavo l’influenza dei campi magnetici sulla materia, mi venne in mente di verificare se la luce potesse essere influenzata da un campo magnetico. Preparai un esperimento semplice: un raggio di luce che passava attraverso una sostanza trasparente immersa in un campo magnetico. Con grande stupore, notai che il piano di polarizzazione della luce ruotava leggermente.

— Questo è ciò che oggi chiamiamo effetto Faraday
— È il primo esempio noto di interazione tra luce e magnetismo, e dimostrò che la luce e il magnetismo non sono fenomeni separati, ma legati da un principio comune. All’epoca non conoscevo l’equazione di Maxwell — che sarebbe arrivata solo qualche decennio dopo — ma intuivo che elettricità, magnetismo e luce fossero fili di uno stesso tessuto. Il mio compito era solo tirare uno di quei fili per vedere come vibrava l’intero intreccio.

— Professor Faraday, lei ha dimostrato di saper fare scoperte enormi senza una formazione matematica formale. Come ci è riuscito?
— Non ho mai considerato la matematica un ostacolo insormontabile, ma uno strumento che, se necessario, avrei potuto imparare. La mia forza era nel laboratorio, nell’osservazione meticolosa, nell’immaginare esperimenti semplici che potessero dare risposte chiare. Credevo — e credo ancora — che il pensiero sperimentale sia universale: se la natura ti mostra un fenomeno, puoi comprenderlo anche senza formule complesse, purché tu abbia pazienza, rigore e umiltà.

— A proposito di umiltà, lei ha spesso rifiutato titoli e onori…
— Sì, perché il vero riconoscimento per uno scienziato non è una medaglia, ma vedere che le sue scoperte entrano a far parte della vita di tutti. Ho sempre pensato che la scienza debba restare al servizio dell’uomo, non dell’ego dello scienziato.

— …che non è esattamente quello che accade oggi, quando molti di noi — me compreso — provano un certo piacere a stare sotto i riflettori. E glielo confesso: quando lo dico ai colleghi, vengo anche preso per pazzo.
— Forse perché oggi la visibilità non porta solo applausi, ma anche finanziamenti. E questi, lo so bene, possono arrivare da ogni direzione, compresa quella di chi vende illusioni ben confezionate: omeopatia, biodinamica e altre amenità. Ai miei tempi, la fama non apriva così facilmente le casse di mecenati o aziende; e comunque, il rischio di piegare la scienza a interessi di parte era sempre in agguato. Il punto è ricordare che il palcoscenico passa, mentre la verità scientifica resta — e che oggi, troppo spesso, la dignità e l’autorevolezza scientifica vengono barattate per un piatto di lenticchie.

— Professor Faraday, molti la ricordano anche per le sue celebri Christmas Lectures alla Royal Institution. Come nacque l’idea de La storia chimica di una candela?
— Ogni anno, a Natale, tenevo delle lezioni per i ragazzi. Volevo offrire loro un’esperienza che fosse insieme semplice e affascinante. Scelsi la candela perché è un oggetto comune, familiare a tutti, ma dietro la sua fiamma si nasconde un mondo di fenomeni fisici e chimici.

— Qual era il suo obiettivo nel parlare di una cosa così quotidiana?
— Dimostrare che la scienza non è confinata nei laboratori: è dappertutto. Una candela, accendendosi, mette in scena combustione, convezione, cambiamenti di stato, reazioni chimiche complesse. Volevo che i giovani capissero che anche un gesto banale può essere una porta verso grandi scoperte.

— Qual è il primo segreto che una candela rivela?
— Che la fiamma non è materia, ma energia in azione. La cera, riscaldata, diventa liquida, poi gassosa; il gas brucia liberando calore e luce. È un ciclo continuo di trasformazioni: solido, liquido, gas, e di nuovo energia.

— Lei parlava spesso di osservare prima di spiegare. Come lo applicò in queste lezioni?
Invitavo i ragazzi a guardare: il colore della fiamma, il fumo che si sprigiona quando si spegne la candela, la forma della goccia di cera che si scioglie. Solo dopo passavamo a spiegare il perché di ciò che avevano visto. La curiosità nasce dall’osservazione diretta.

— In fondo, è un po’ la stessa filosofia della sua ricerca…
Sia che studi l’elettromagnetismo, sia che guardi una candela, l’approccio è lo stesso: osservare con attenzione, porre domande, non dare nulla per scontato.

— Cosa pensa che La chimica di una candela possa insegnare ancora oggi?
— Che la scienza è nelle mani di chi sa guardare. Non importa se il laboratorio è una stanza piena di strumenti o il tavolo di cucina: ciò che conta è la capacità di meravigliarsi e di cercare risposte.

— Sa che queste sue parole potrebbero essere usate oggi, nella mia epoca, da complottisti di ogni risma? Gente che si riempie la bocca di “pensiero indipendente”, “Galilei era uno contro tutti” e così via cantando…
— Oh, conosco bene il rischio. Ma vede, c’è una differenza sostanziale: il vero pensiero indipendente nasce dallo studio rigoroso e dall’osservazione onesta della realtà; quello dei complottisti nasce spesso dal rifiuto pregiudiziale delle prove. Galilei non era “uno contro tutti” perché amava contraddire: era uno che portava dati, misure, esperimenti ripetibili. Se oggi qualcuno brandisce il suo nome per giustificare opinioni infondate, sta confondendo la curiosità con l’arroganza e il metodo scientifico con la chiacchiera da taverna. E guardi che lo stesso vale per una candela. Posso raccontare che la fiamma è alimentata da minuscole fate luminose che ballano nell’aria: suona poetico, e qualcuno potrebbe pure crederci. Ma basta un semplice esperimento per dimostrare che la luce e il calore vengono dalla combustione di vapori di cera. La scienza non è negare la fantasia — è verificarla.

— Professor Faraday, se dovesse riassumere in poche parole il senso del suo lavoro, cosa direbbe?
— Direi che ho passato la vita a inseguire scintille: alcune erano letterali, altre metaforiche. Ma ogni scintilla, se seguita con attenzione, può accendere una fiamma di conoscenza.

Mentre lascio la sua casa, il cielo di Londra è ancora avvolto nella bruma, ma nella mia mente resta accesa una piccola luce: quella di una candela che, sotto lo sguardo paziente di Michael Faraday, si trasforma da semplice oggetto quotidiano in una lezione eterna di curiosità, rigore e meraviglia.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra fili di rame e campi invisibili, scopriremo che la scienza può unire fenomeni che sembravano mondi separati, guidata dalla stessa curiosità che accende una fiamma e illumina una mente.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L.  Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Michael Faraday (1845) Experimental Researches in Electricity. Philosophical Transactions of the Royal Society

Michael Faraday (1866) Storia Chimica di una candela. Editori della Biblioteca Utile

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Le interviste impossibili: incontriamo Robert Boyle

Come i miei quattro lettori sanno, sono un appassionato di chimica. Ne ho fatto la mia professione, unendo la passione per la ricerca – il mio giocattolo preferito, con cui smonto la realtà, ne indago i segreti e poi la rimonto – a quella per la didattica che, nel tempo, mi ha rivelato un lato inatteso: la voglia di rendere “digeribili” agli studenti concetti chimici anche molto complessi.

C’è poi un’altra passione: la storia della chimica. Sono convinto che solo conoscendo ciò che è accaduto in passato si possa capire come e perché una disciplina si sia sviluppata in una direzione piuttosto che in un’altra.

Da queste premesse nasce questa rubrica dal titolo: Le interviste impossibili. Si tratta una serie di incontri – ovviamente immaginari – con grandi scienziati del passato, principalmente chimici, con i quali intavolerò discussioni che potranno spaziare dalla scienza alla politica, dall’etica ad altre questioni che il dialogo potrà far emergere. Saranno conversazioni interamente frutto della mia immaginazione, ispirate alla filosofia scientifica e al pensiero della persona intervistata.

E per cominciare, chi meglio di Robert Boyle? Un uomo che, nel 1661, con Il chimico scettico, ha segnato la nascita della chimica moderna, abbandonando le nebbie dell’alchimia per abbracciare la luce della sperimentazione. Sarà lui il primo ospite di questa serie, e vi assicuro che, nonostante i suoi 400 anni portati con una certa eleganza, ha ancora parecchie cose da dire.

_______________________

Buongiorno, professor Boyle.
— Buongiorno a lei, signore. Mi perdoni se non mi alzo: questa pompa pneumatica è un po’ capricciosa e non vorrei perdere il vuoto proprio adesso.
— Vedo che la tratta con grande cura.
— Cura? Direi venerazione. È stata la mia chiave per scardinare vecchie idee. Con essa ho mostrato che l’aria non è un concetto filosofico, ma una sostanza reale, con peso, volume, pressione. Ai miei tempi, molti pensavano che la natura fosse governata da qualità misteriose, imponderabili. Io ho voluto misurare, pesare, verificare.

— E questo cambiò la chimica?
— Cambiò il modo di guardare alla materia. Prima si parlava di “aria”, “fuoco”, “acqua” e “terra” come entità quasi mistiche. Io ho voluto trattarle come sostanze concrete. Senza questa svolta, dubito che la chimica avrebbe potuto diventare lo strumento potente – e pericoloso – che è oggi.

— Pericoloso?
— Oh, sì. Ai miei tempi, il pericolo era limitato dal ritmo lento della ricerca: poche persone, pochi strumenti, pochi esperimenti. Oggi vedo una velocità inaudita: sintetizzate composti che non esistono in natura e li disperdete nell’ambiente prima ancora di comprenderne a fondo le conseguenze. Pensate alla plastica: una meraviglia della chimica moderna, ma anche un nuovo sistema chimico, onnipresente nei mari e nei corpi degli animali. Noi scienziati dobbiamo ricordare che ogni “creazione” lascia un’impronta.

— Quindi anche nel XVII secolo si poteva parlare di impatto ambientale?
— Certo, ma in forme diverse. I metallurgi avvelenavano i fiumi con le scorie, nelle città si bruciava carbone liberando fumi tossici. Noi non usavamo la parola “inquinamento”, ma ne sentivamo gli effetti: miniere abbandonate, aria irrespirabile nelle botteghe, malattie croniche tra i lavoratori. Solo che nessuno collegava questi effetti alle cause chimiche: mancava il concetto stesso di “responsabilità scientifica verso l’ambiente”.
— E come ci si è arrivati?
— È stato un percorso lento, nato dall’osservazione e dall’accumulo di prove. Con l’Ottocento e la rivoluzione industriale, l’aumento di fumi e scorie divenne innegabile; nel Novecento, con la chimica capace di produrre composti mai visti in natura, si cominciò a capire che ogni reazione ha conseguenze non solo in laboratorio, ma anche nei fiumi, nei campi e nei corpi. Gli esempi non mancano: le piogge acide dovute alle emissioni industriali, il DDT che si accumulava nelle catene alimentari, il buco nello strato di ozono causato dai clorofluorocarburi. Fu allora che l’umanità iniziò a capire che l’ambiente non era un contenitore infinito, ma un sistema delicato, capace di spezzarsi sotto il peso delle nostre stesse invenzioni. Oggi chiamate questo approccio “valutazione dell’impatto ambientale”: è la naturale estensione del metodo scientifico. Osservare, misurare e trarre conclusioni, ma applicato non solo all’esperimento, bensì alle sue conseguenze sul mondo reale. E, cosa ancora più importante, farlo prima di introdurre su larga scala una nuova sostanza o tecnologia. Tanto che in molti Paesi questo esame preventivo è diventato un obbligo di legge: un modo per ricordare che la prudenza non è un freno al progresso, ma la sua assicurazione.

— Come vede il rapporto tra scienza e politica oggi?
— Non troppo diverso da allora: la politica ama la scienza quando porta vantaggi immediati, ma la ignora – o la ostacola – quando chiede pazienza e prudenza. Ai miei tempi, un re o un mecenate finanziava un esperimento se prometteva ricchezza o prestigio; oggi, un governo o un’azienda lo finanziano se promette profitto o consenso. La differenza è che oggi gli effetti sono globali, non locali.

— E anche la scienza stessa è cambiata.
— Oh, sì. Mi avete parlato di questa massima: publish or perish, pubblica o scompari. Ai miei tempi pubblicare era un atto ponderato, spesso il lavoro di una vita. Ora vedo un’esplosione di articoli, ma molti sono come bolle di sapone: luccicanti per un attimo, poi svaniscono. Alcuni dicono poco o niente, altri celano errori gravi, e vi sono perfino casi di falsità intenzionali. Mi avete raccontato di un certo Jan Hendrik Schön, che riempì riviste prestigiose di risultati entusiasmanti sui transistor molecolari… peccato che fossero artefatti. Grafici identici per esperimenti diversi, dati “cancellati” per mancanza di spazio…
— E la comunità scientifica?
— Ha fatto ciò che doveva: ha verificato, smascherato e ritirato quegli studi. Ma il danno d’immagine resta: basta un imbroglione per far credere a molti che tutta la scienza sia marcia.

— E non è solo un problema di chi scrive articoli. Anche chi siede nei comitati scientifici ha responsabilità enormi.
— Certamente. Mettere in un comitato tecnico persone che rifiutano le basi stesse della disciplina che dovrebbero consigliare è come nominare un astrologo direttore di un osservatorio astronomico, o un alchimista a capo di un laboratorio chimico. Ai miei tempi, la Royal Society aveva un motto: Nullius in verba, “non fidarti della parola di nessuno”. Oggi dovreste aggiungere: “ma fidati dei dati”.
— E invece?
— Invece vedo che talvolta si preferisce dare spazio a voci che piacciono al pubblico, o che creano polemica, piuttosto che a quelle fondate sulla prova. È un cortocircuito pericoloso: si confonde il dibattito scientifico, che nasce dall’evidenza, con l’opinione personale, che nasce dal pregiudizio.

— Torniamo un attimo al suo Chimico scettico: il suo invito era a dubitare, a verificare.
— Sì. Lo scetticismo è la virtù cardinale dello scienziato. Senza di esso, si scivola nell’illusione. Oggi, a quanto vedo, convivono scoperte straordinarie e credenze assurde: si creano vaccini in pochi mesi e allo stesso tempo si vendono boccette di acqua “miracolosa” che pretendono di curare tutto.
— Omeopatia.
— Già. La chiamerei “chimica dell’assenza”: meno sostanza c’è, più miracoli si promettono. È un concetto che mi lascia perplesso: ho passato la vita a misurare e qui si celebra ciò che non si può misurare.

— Se potesse dare un consiglio agli scienziati di oggi?
— Non dimenticate che ogni molecola che “create” entrerà in qualche ciclo della natura. E ricordatevi che la scienza non è una collezione di verità scolpite nella pietra, ma un cantiere aperto, dove ogni scoperta deve essere messa alla prova, anche – e soprattutto – quando sembra troppo bella per essere vera.

— Ultima domanda, professore: se le offrissi un bicchiere di acqua “omeopatica” per la salute?
— (Sorride) Lo accetterei… ma solo se avessi sete.

_______________________

Saluto il professor Boyle e mi avvio verso il prossimo appuntamento impossibile. Il mio interlocutore, ghigliottinato nel 1794, aveva una convinzione incrollabile: nulla si crea, nulla si distrugge. Ma, come scopriremo presto, non tutto si conserva…

Note Bibliografiche

R. Boyle (ed. 2013) The skeptical chymist. Dover Publications

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L. Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

A. Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica. Edises

 

Nomine e cortocircuiti: quando l’antiscienza entra nei comitati scientifici

È di queste ore la notizia che il ministro della salute, Orazio Schillaci, ha nominato nel Gruppo Tecnico Consultivo Nazionale sulle Vaccinazioni (NITAG) due tecnici, Paolo Bellavite ed Eugenio Serravalle, dalle posizioni, in più occasioni espresse pubblicamente, in contrasto con quanto riportato nella letteratura scientifica più accreditata (quest’ultima può essere rappresentata dagli articoli riportati qui, qui, qui e qui).

Che cos’è il NITAG?

Dal sito del Ministero della Salute apprendiamo che: Il NITAG è un Organo indipendente col compito di supportare, dietro specifica richiesta e su problematiche specifiche, il Ministero della Salute nella formulazione di raccomandazioni “evidence-based” sulle questioni relative alle vaccinazioni e alle politiche vaccinali, raccogliendo, analizzando e valutando prove scientifiche.

In altre parole, si tratta di un comitato scientifico che, sulla base di prove scientifiche inoppugnabili, consente al Ministero della Salute e, quindi, al Governo di prendere decisioni importantissime in merito a problematiche relative alla salute pubblica.

Chi è Paolo Bellavite

Bellavite è un medico che fino a qualche anno fa ha ricoperto il ruolo di Professore Associato in Patologia Generale presso l’Università di Verona. Le sue posizioni in merito ai vaccini sono riportate sia in interviste che nei libri che ha scritto e pubblicato. In particolare, egli dice di non essere contrario ai vaccini in quanto tali, ma critica duramente quella che definisce una “ideologia vaccinista”. A suo avviso, la narrazione dominante che presenta i vaccini come soluzione unica e infallibile si configura come un dogma che soffoca il dibattito scientifico e il pensiero critico. “Non ha nulla a che fare con la scienza”, ha affermato in un’intervista, parlando di un clima in cui “l’odio vaccinale è la tomba della medicina”.

Autore del libro “Vaccini sì, obblighi no”, Bellavite contesta soprattutto l’obbligatorietà della vaccinazione, sostenendo che il consenso informato debba restare alla base di ogni trattamento sanitario. Il professore ha anche espresso dubbi sull’efficacia a lungo termine dei vaccini anti-Covid e sulla loro capacità di limitare la diffusione del virus, ricordando che “i vaccinati possono infettarsi e trasmettere il virus, a volte anche più dei non vaccinati”.

Dal punto di vista immunologico, Bellavite mette in guardia contro le possibili conseguenze di una stimolazione eccessiva del sistema immunitario attraverso dosi ripetute. E sull’aspetto etico sottolinea: “Siamo ancora nella fase sperimentale. Ha ragione chi ha paura”.

Naturalmente, egli è anche un forte sostenitore della pratica omeopatica. Infatti, Paolo Bellavite sostiene che l’omeopatia non sia una moda passeggera, ma l’espressione di un profondo cambiamento culturale e scientifico che mette in discussione i limiti dell’attuale paradigma medico meccanicistico e molecolare. Questo approccio tradizionale, pur avendo ottenuto importanti risultati, non ha saputo affrontare efficacemente la complessità biologica e clinica, spesso riducendo la medicina a una frammentazione iperspecialistica. L’omeopatia, al contrario, propone una visione sistemica del paziente, centrata sull’individualità, sulla totalità dei sintomi e sulla stimolazione dei processi endogeni di guarigione, concetti che si allineano con la scienza della complessità. Bellavite rivendica per l’omeopatia una dignità scientifica, sostenendo che essa possa essere studiata con metodi sperimentali avanzati e integrata razionalmente nella medicina moderna. Si oppone con forza a ciò che definisce una campagna denigratoria nei confronti dell’omeopatia da parte dei media e di alcuni esponenti del mondo accademico, accusandoli di diffondere affermazioni false senza consentire un contraddittorio serio e competente. Pur riconoscendo il valore di farmaci convenzionali e vaccini in determinate circostanze, Bellavite li considera soluzioni alternative da adottare solo dopo aver tentato approcci più naturali e fisiologici, come omeopatia, fitoterapia, agopuntura, corretta alimentazione e igiene. In questa visione, l’omeopatia non è solo una medicina possibile, ma una medicina vera e prioritaria, da contrapporre a un uso troppo disinvolto e sintomatico della farmacologia convenzionale.

Chi è Eugenio Serravalle

Serravalle è laureato in Medicina e Chirurgia e specializzato in Pediatria Preventiva, Puericultura e Patologia Neonatale. Egli ha più volte preso posizione contro la vaccinazione di massa dei bambini, soprattutto in relazione al Covid-19. Secondo lui, l’infezione da SARS-CoV-2 non rappresenta un’emergenza sanitaria tra i più piccoli e i potenziali rischi della vaccinazione superano i benefici. “Tutti gli studi scientifici affermano che non vi è alcuna emergenza Covid tra i bambini”, ha dichiarato in un’intervista.

Serravalle contesta anche l’efficacia dei vaccini nel prevenire il contagio, soprattutto con l’avvento delle varianti come Omicron. Secondo la sua analisi, in alcuni casi i vaccinati si infettano più dei non vaccinati e l’immunità acquisita naturalmente sarebbe più duratura. Per questo, a suo dire, non sussistono i presupposti per raggiungere l’immunità di gregge né per giustificare obblighi o pressioni vaccinali.

Oltre ad essere un medico, Eugenio Serravalle risulta diplomato in Omeopatia Classica presso la Scuola Omeopatica di Livorno e svolge attività didattica come professore presso l’Accademia di Omeopatia Classica Hahnemanniana di Firenze.

Come Bellavite, quindi, anche Serravalle è un forte sostenitore dell’omeopatia.

In un articolo intitolato “Il Dr. Eugenio Serravalle risponde a Maurizio Crozza sull’Omeopatia”, Serravalle replica alle battute ironiche del comico Crozza sostenendo con fermezza l’efficacia e la correttezza della pratica omeopatica. Scrive:

“Abbiamo una regolare laurea in medicina… e se abbiamo adottato la terapia omeopatica è perché, evidentemente, ne abbiamo sperimentato l’efficacia.”

“Non si può essere venditori di fumo quando si curano pazienti… e tra questi pazienti sono numerosi i bambini e gli animali che non sono influenzabili dall’effetto placebo.”

Con questa risposta, Serravalle rigetta la critica secondo cui l’omeopatia sarebbe solo “fumo” o priva di efficacia, affermando invece di aver osservato personalmente risultati tangibili, anche in soggetti difficilmente influenzabili da placebo.

Quando i conti non tornano

A leggere le dichiarazioni dei due nominati, si potrebbe pensare di essere davanti a voci “fuori dal coro” che invitano alla cautela. Ma basta andare oltre la superficie per capire che non si tratta di sano scetticismo scientifico: siamo, piuttosto, di fronte a posizioni che, alla luce delle evidenze scientifiche disponibili, risultano in contrasto con il consenso della comunità scientifica. Ed è qui che inizia il vero problema.

Il punto centrale è che un organismo tecnico chiamato a esprimere pareri qualificati in materia di salute pubblica deve basarsi su conoscenze aggiornate e scientificamente inoppugnabili. Non può diventare il ricettacolo di discussioni inutili fatte in nome di una presunta “pluralità di opinioni”. Il concetto di democrazia politica è completamente diverso  – e molto lontano – da quello di democrazia scientifica. In una democrazia politica è legittimo avere opinioni diverse su come affrontare un problema di gestione della res publica. In ambito tecnico-scientifico, invece, un’opinione non qualificata non ha lo stesso peso di quella di chi possiede competenze specifiche e fondate sull’evidenza.

Ecco perché, per esempio, ci fu la levata di scudi del mondo accademico agrario quando si paventò l’ingresso di esponenti della biodinamica in tavoli tecnici per l’assegnazione di fondi all’agricoltura.

A mio avviso, il Ministro ha preso decisioni discutibili, in nome di una pluralità di opinioni che, in ambito scientifico, non ha alcun senso. Sta ora tentando di mettere delle pezze a questa scelta, dimenticando che anche lui è un medico e ha responsabilità che vanno ben oltre la sua funzione politica.

Se mai un responsabile istituzionale si trovasse nella condizione di dover cedere a compromessi, la scelta più coerente con la difesa della scienza sarebbe quella di rassegnare le dimissioni. Servirebbe, come nel caso della biodinamica, una sollevazione compatta del mondo scientifico e medico. Nel frattempo, nel mio piccolo, continuo a far sentire la mia voce e auspico che tutti gli organismi professionali – dagli ordini alle società scientifiche – facciano sentire la loro, in difesa della medicina basata sulle prove e della salute pubblica.

Il cortocircuito dell’antiscienza

Le posizioni di Paolo Bellavite ed Eugenio Serravalle non sono semplicemente “opinioni alternative” in un dibattito tra pari. Non si tratta di ricercatori che presentano dati nuovi, pronti a essere vagliati e discussi dalla comunità scientifica: qui non c’è nessun dato nuovo. C’è, piuttosto, un riciclo di tesi contestate e smentite dalla letteratura scientifica, che riaffiorano come vecchie erbacce tra le crepe del discorso pubblico.

Con l’omeopatia il copione lo conosciamo bene: una pratica nata oltre due secoli fa, costruita su concetti come “similia similibus curentur” e “dinamizzazione”, mai dimostrati in modo riproducibile. Nei miei articoli – dalla presunta memoria dell’acqua (link) alle più recenti fantasie agronomiche (link) – ho mostrato come la letteratura scientifica di qualità non abbia mai trovato un effetto dell’omeopatia superiore al placebo. Chi la difende, spesso, non lo fa su basi sperimentali, ma su convinzioni personali, esperienze aneddotiche o richiami a un presunto “cambiamento di paradigma” che non trova riscontro in alcun dato.

Sul fronte dei vaccini, il meccanismo è simile: si selezionano singoli studi, si estrapolano dati fuori contesto, si enfatizzano le incertezze inevitabili di ogni processo scientifico per far passare l’idea che “non sappiamo abbastanza” o che “i rischi superano i benefici”. Nei miei pezzi – da antivaccinisti ed immunità di gregge a vaccini e corretta informazione scientifica – ho spiegato come l’evidenza accumulata su milioni di dosi mostri una riduzione netta di ospedalizzazioni e decessi.

Quando Bellavite parla di “fase sperimentale” per i vaccini anti-Covid, non sta facendo un’osservazione prudente: formula un’affermazione che non trova riscontro nei dati scientifici, perché quei vaccini hanno completato tutte le fasi di sperimentazione necessarie per l’autorizzazione. Quando Serravalle afferma che “i vaccinati si infettano più dei non vaccinati”, non menziona i dati che mostrano come, pur con una protezione dall’infezione che diminuisce nel tempo, la vaccinazione resti una barriera fondamentale contro le forme patologiche gravi e le loro complicanze.

La contraddizione diventa lampante quando entrambi propongono l’omeopatia come alternativa o complemento “prioritario” alla farmacologia. Il mandato del NITAG è basato sull’evidence-based medicine, e l’omeopatia non rientra in alcuna linea guida internazionale sul trattamento o la prevenzione di malattie infettive. È paragonabile, per incoerenza, a nominare un negazionista del cambiamento climatico in un comitato per la transizione ecologica: il risultato è solo quello di minare la credibilità dell’organo stesso.

Il problema, però, non è solo tecnico. È culturale. Dare spazio istituzionale a posizioni non supportate da dati scientifici significa legittimare un messaggio pericoloso: che le evidenze scientifiche siano opinioni e che la sanità pubblica possa essere guidata da convinzioni personali. È il cortocircuito dell’antiscienza: quando la politica apre la porta a teorie già confutate, la fiducia nelle istituzioni si sgretola e i cittadini restano più esposti a bufale e disinformazione. Come ho scritto altrove  – qui e qui – quando la pseudoscienza entra dalla porta principale, la salute pubblica rischia di uscire dalla finestra.

Clima e pseudoscienza: anatomia di una discussione

Qualche giorno fa ho pubblicato il terzo e, speravo, ultimo articolo di un reportage sui cambiamenti climatici. In questo articolo, intitolato I cambiamenti climatici? Sì, siamo noi i responsabili, ho discusso delle prove oggettive – corredate da riferimenti puntuali – che hanno portato l’intera comunità scientifica alla conclusione che i responsabili di quanto sta accadendo attualmente sulla superficie terrestre, ovvero l’aumento delle temperature globali e la conseguente alterazione degli ecosistemi, siamo noi esseri umani.

In quel testo ho cercato di mostrare, in modo accessibile ma rigoroso, perché la tesi dell’origine antropica dell’attuale riscaldamento globale non sia più un’ipotesi, ma una conclusione supportata da una mole imponente di dati.

Ho parlato del ruolo dei gas serra, in particolare della CO₂ prodotta dalla combustione di combustibili fossili, la cui impronta isotopica è ben riconoscibile in atmosfera. Ho discusso anche delle fonti indipendenti che confermano il trend in atto – dalle carote glaciali agli anelli degli alberi, dai sedimenti oceanici alle misurazioni satellitari – e delle ragioni per cui né l’attività solare né le eruzioni vulcaniche possono spiegare ciò che osserviamo oggi.

Infine, ho evidenziato come la rapidità del riscaldamento attuale – oltre un grado in appena un secolo – sia senza precedenti nella storia recente del pianeta, e come l’intero corpo scientifico internazionale, sintetizzato nei report dell’IPCC, abbia ormai raggiunto un consenso solido e ben documentato su questo punto.

Non è necessario riproporre qui tutti i riferimenti bibliografici: si trovano nell’articolo appena riassunto (qui il link).

Eppure, eccomi di nuovo a scrivere sull’apporto antropico all’effetto serra. Non per aggiungere nuove evidenze, ma per riflettere sul modo estremamente fallace – e sempre più diffuso – di ragionare dei negazionisti del cambiamento climatico. Non si tratta, in questo caso, di negazionisti tout court: anche loro, ormai, devono riconoscere l’evidenza dell’aumento delle temperature globali. Si tratta piuttosto dei negazionisti dell’origine antropica, coloro che rifiutano di accettare che la causa principale del riscaldamento sia l’attività umana.

In un gruppo Facebook che aiuto a gestire – Bufale e dintorni gruppo – sono comparsi i primi commenti al mio post con cui pubblicizzavo l’articolo (potete farvene un’idea a questo link).
Poiché si tratta di un gruppo privato – quindi i post non sono visibili pubblicamente – e considerando che non tutti hanno un account Facebook attivo, riporto di seguito gli screenshot della discussione.

La Figura 1 riporta la condivisione dalla mia pagina Facebook “Rino Conte”.

Figura 1. Screenshot relativo alla condivisione del mio articolo sull’effetto antropico nei cambiamenti climatici. Questo thread ha dato la stura a una discussione con un negazionista di tale effetto.

La Figura 2 riporta (spero in modo leggibile, altrimenti è necessario da parte dei volenterosi scaricare l’immagine ed effettuarne uno zoom) la discussione in corso tra me ed il negazionista dell’effetto antropico sul clima.

Figura 2. Discussione in corso tra me ed il negazionista dell’effetto antropico sul clima.

E proprio mentre sto scrivendo questo articolo la discussione continua (Figura 3).

Figura 3. Proseguimento della discussione mentre scrivo questo articolo.

Come si evince dagli screenshot, il tutto ha inizio dall’inserimento di un link a un articolo giornalistico in cui si riporta un filmato che mostra il comportamento di certi ghiacciai negli ultimi 800 000 anni. Questo filmato è tratto da un lavoro scientifico dal titolo “Modelling last glacial cycle ice dynamics in the Alps” pubblicato nel 2018 sulla rivista The Cryosphere della European Geoscience Union, associazione per la quale anche io ho organizzato in passato dei miniconvegni nell’ambito delle attività congressuali più generali che si fanno ogni anno a Vienna in Austria (per esempio, uno è qui).

Chi ha condiviso questo studio nella discussione lo ha fatto con l’intento – più o meno esplicito – di suggerire che, dal momento che i ghiacciai alpini si sono espansi e ritirati ciclicamente nel passato, il cambiamento climatico attuale potrebbe essere semplicemente parte di una lunga variabilità naturale. È un’inferenza del tutto errata, che nasce da un fraintendimento delle finalità e dei contenuti del lavoro scientifico citato.

Infatti, lo studio in questione (Seguinot et al., 2018) non parla di cambiamenti climatici attuali né tantomeno ne discute le cause. Si tratta di un lavoro di modellizzazione numerica della dinamica glaciale delle Alpi durante l’ultimo ciclo glaciale (da 120.000 a 0 anni fa), che ha lo scopo di testare la coerenza tra ricostruzioni geologiche e simulazioni del comportamento dei ghiacciai su scala millenaria. Non c’è nel testo alcuna analisi delle cause del riscaldamento moderno, né alcun confronto con l’evoluzione recente del clima terrestre.

Quello che il mio interlocutore ha fatto è un tipico esempio di bias di conferma: ha estrapolato da un articolo tecnico una conclusione che non c’è, perché questa coincide con la propria convinzione preesistente. È un meccanismo comune tra i cosiddetti “negazionisti soft” – persone che, pur riconoscendo che il clima sta cambiando, rifiutano l’idea che l’essere umano ne sia il principale responsabile.

La dinamica della discussione su Facebook lo conferma: ogni volta che si porta un dato, una misura, una ricostruzione paleoclimatica, l’interlocutore non contesta la validità della fonte, ma sposta il piano, relativizza, introduce “dubbi” storici o filosofici. E infine si rifugia nel mito del “Galileo solitario”, come se ogni minoranza fosse destinata a diventare verità solo perché è minoranza. Ma Galileo non aveva ragione perché era solo: aveva ragione perché aveva i dati e un metodo.

Ecco il punto: il problema non è tanto avere un’opinione diversa, quanto non saper distinguere tra opinione personale e conoscenza scientifica. E non è un caso che questo tipo di retorica si ritrovi spesso in altri ambiti della disinformazione scientifica: chi si sente “eretico” rispetto al sapere ufficiale tende a sopravvalutare le proprie intuizioni e a sottovalutare il lavoro, faticoso e rigoroso, di chi fa scienza sul serio.

Discutere con chi rifiuta le conclusioni della scienza può essere faticoso, ma è anche necessario. Non per convincere chi ha già deciso di non ascoltare, ma per fornire strumenti a chi legge in silenzio, a chi cerca chiarezza in mezzo al rumore. La scienza non ha bisogno di essere difesa come un dogma: si difende da sé, con i dati, con la trasparenza dei metodi, con la disponibilità al confronto critico. Ma proprio per questo va protetta dalle distorsioni, dalle semplificazioni, e soprattutto dal relativismo delle opinioni travestite da verità.
Il cambiamento climatico attuale è un fenomeno reale, misurabile e in larga parte causato dalle attività umane. Continuare a negarlo non è esercizio di pensiero critico, ma una forma di resistenza ideologica che rischia di ritardare l’unica cosa che oggi dovremmo fare: affrontare il problema con serietà, competenza e senso di responsabilità.

EDIT

Mentre mi accingevo a pubblicare questo articolo, il mio interlocutore ha pubblicato un’ultima risposta che ho deciso di riportare integralmente per completezza. Qui sotto trovate anche la mia replica con cui ho deciso di concludere la discussione pubblica.

Interlocutore:

Pellegrino

  1. Lei stesso parla di “stime solide”; che sono appunto stime, non misurazioni dirette.
  2. “Sappiamo perché”, è un’altra forzatura. In realtà abbiamo delle interpretazioni plausibili per molte di esse, ma ciò non equivale a una certezza assoluta. Anche nelle osservazioni attuali, ci si imbatte in anomalie impreviste, tipo l’impatto dello scioglimento del permafrost, temperature previste che poi non si sono verificate… E parliamo di osservazioni dirette; figuriamoci sulle “stime” di fenomeni non osservati direttamente. Per non parlare dell’infinito dibattito su quanto influiscano o meno le macchie solari…

Stesso discorso sul fatto che le oscillazioni in passato non avvenissero in decenni, trascurando che non possiamo sapere se gli strumenti che abbiamo a disposizione siano davvero affidabili con tale precisione. Mancando l’osservazione diretta, non possiamo verificarlo.

Dire che “potrebbero esserci state” significa semplicemente dire che il modello generale è ancora soddisfatto; per dimostrare l’anomalia bisogna dimostrare che davvero non ci siano precedenti. È un discorso di presunzione d’innocenza: per dare la colpa all’uomo bisogna dimostrarla; il “ragionevole dubbio” è a favore dell’imputato. Foss’anche solo per mancanza di prove.

  1. Il moto dei pianeti era noto da sempre (“planities” significa appunto “errante”), ma lui (anzi, Copernico) fornì solo un modello di calcolo semplificato. Infatti, a dirla tutta, il sole non è affatto al centro dell’universo ma si muove pure lui… In questo ha ragione l’insegnante del prof. Barbero che diceva che il card. Bellarmino era più moderno di Galileo.
  2. A “negazionista” si potrebbe contrapporre “fideista”, ovvero uno che sposa senz’altro ciò che dice la maggioranza stigmatizzando il dubbio. Ma io continio a ricordare che la stessa comunità scientifica oggi certa del riscaldamento globale appena quarant’anni fa era ugualmente certa dell’imminenza di un’era glaciale. Un cambio di rotta di 180 gradi in meno di mezzo secolo, e si dovrebbe prendere per oro colato anche l’attribuzione di responsabilità? Anche a fronte di numerose previsioni rivelatesi poi errate?
  3. Su un punto, concordo senz’altro: sulla separazione netta tra dissertazione scientifica e azione concreta (e non potrei dire diversamente, dato che come ho già detto opero nella Protezione Civile).

Il punto certo è che vi sia in atto un cambiamento climatico che attualmente va verso un aumento delle temperature, che il problema è serio e che la cosa va affrontata. Ridurre il più possibile (e possibilmente azzerare) l’impatto antropico non ha controindicazioni, e quindi va benissimo farlo; e infatti ne sono da sempre un convinto sostenitore.

A mio modesto parere, non servirà a granché, perché se Madre Natura ha deciso che è tempo di un nuovo Eocene, Eocene sarà; che ci piaccia o no.

Quindi, oltre ad azzerare le emissioni, miglioriamo l’efficienza dei condizionatori, perché ne avremo comunque bisogno. Tutto qui.

Io:
grazie per aver chiarito ulteriormente il suo punto di vista. Le rispondo un’ultima volta, per chi ci legge e non per la soddisfazione di “avere l’ultima parola”, che non mi interessa.

Sì, le proxy sono stime, ma sono stime calibrate, validate e incrociate da molte fonti indipendenti. Nessun climatologo confonde una proxy con una misura diretta, ma la scienza lavora ogni giorno per rendere sempre più affidabili quelle stime. E il fatto che convergano tutte sul medesimo trend dà forza alla ricostruzione. Questo è il normale funzionamento della scienza, non una debolezza.

Nessuno pretende certezze assolute, né le scienze naturali le promettono. Lei invece sembra richiedere una prova “oltre ogni dubbio”, come se fossimo in un’aula di tribunale. Ma la scienza si basa sulla probabilità, sul peso delle evidenze, sulla capacità predittiva dei modelli. Oggi, la quantità di prove che puntano all’origine antropica del riscaldamento è così ampia da rendere l’ipotesi alternativa – quella esclusivamente naturale – altamente improbabile. Ed è su questo che si fondano le politiche, non sull’attesa della perfezione epistemologica.

Il paragone con Galileo e Bellarmino è affascinante ma fuori luogo. Galileo non aveva solo un modello “più semplice”: aveva anche l’evidenza delle fasi di Venere e delle lune di Giove. Il suo valore non sta nel ribellarsi alla maggioranza, ma nell’aver offerto dati e osservazioni migliori. Lei invece continua a proporre “dubbi” senza portare nessun dato nuovo, solo generalizzazioni.

La comunità scientifica non era “certa” dell’era glaciale negli anni ’70. Questa è una leggenda urbana, smentita dai dati storici: all’epoca la maggior parte degli articoli già indicava un riscaldamento, non un raffreddamento. Se guarda i paper dell’epoca, lo vede chiaramente.

Quanto agli errori previsionali: il fatto che un modello venga corretto o raffinato è normale in ogni scienza. Non è un fallimento, è progresso. Non confondiamo fallibilità con inattendibilità.

Mi fa piacere leggere che riconosce l’urgenza del problema e sostiene l’azione per ridurre le emissioni. Su questo ci troviamo d’accordo. Tuttavia, dire “tanto non servirà a nulla” è una rinuncia mascherata da fatalismo. La scienza climatica non dice che siamo condannati, ma che abbiamo una finestra temporale per ridurre gli impatti futuri. La differenza tra +1,5 °C e +4 °C non è affatto irrilevante. E anche se non possiamo evitare ogni effetto, possiamo evitare quelli peggiori. Questa è responsabilità, non fideismo.

Chiudo qui il mio intervento, perché i fatti, i dati e il consenso scientifico sono pubblici e verificabili. Il resto è opinione personale – legittima – ma non equiparabile alla conoscenza prodotta dalla scienza.

Nota finale: ho riportato per esteso questo scambio non per dare visibilità a una posizione pseudoscientifica, ma per mostrare, in modo documentato, come ragiona chi nega l’origine antropica del cambiamento climatico, e perché queste argomentazioni non reggano al vaglio della scienza.

I cambiamenti climatici? Sì, siamo noi i responsabili.

Vi siete mai trovati di fronte a un negazionista climatico? Io sì!

C’è chi dice che i cambiamenti climatici non esistono, perché “oggi piove” o “ieri faceva freddo”. A questi ho già risposto nei primi due articoli della serie, parlando del riscaldamento globale e dei suoi effetti locali – temporali compresi – e del grande rimescolamento che avviene negli oceani.

Ma poi ci sono quelli che ammettono sì, il clima sta cambiando, però non è colpa nostra. “È il Sole!”, “Sono i vulcani!”, “È sempre successo!”.

Ecco, è a loro che è dedicato questo articolo.

Perché sì, il clima è sempre cambiato: durante le ere glaciali e le fasi interglaciali, le grandi estinzioni, le migrazioni dei continenti, ma mai così, e mai così in fretta.

La temperatura media globale è aumentata di oltre un grado in poco più di un secolo. La concentrazione di CO2 nell’atmosfera ha superato le 420 parti per milione, un valore che non si era mai visto negli ultimi 800.000 anni e probabilmente nemmeno negli ultimi tre milioni.

E questo non lo dicono gli opinionisti, ma le carote di ghiaccio estratte dall’Antartide e dalla Groenlandia, dove ogni bolla d’aria intrappolata è una macchina del tempo (Staffelbach et al., 1991; Berends et al., 2021; Bauska, 2024).

La traccia dell’uomo

Quando osserviamo il passato del clima, vediamo che le sue variazioni sono state guidate da forzanti naturali: cicli orbitali (i cosiddetti cicli di Milanković), variazioni dell’attività solare, grandi eruzioni vulcaniche. Questi meccanismi hanno regolato per millenni l’alternarsi di periodi glaciali e interglaciali. Tuttavia, nessuna di queste spiegazioni è sufficiente a giustificare l’aumento repentino e marcato della temperatura media globale registrato negli ultimi 150 anni.

Solo includendo nei modelli climatici le forzanti antropiche – in particolare le emissioni di gas serra derivanti dalla combustione di combustibili fossili, la deforestazione su larga scala, l’allevamento intensivo e l’uso massiccio di fertilizzanti – è possibile riprodurre fedelmente l’andamento osservato del riscaldamento globale (Stott et al., 2000; Meehl et al., 2004; Lee et al., 2016; Abatzoglou et al., 2018; Schlunegger et al., 2019; He et al., 2023; Tjiputra et al., 2023; Abera et al., 2024; Gong et al. 2024).

Questa evidenza è stata raccolta e consolidata da decenni di ricerca, culminando nella sintesi fornita dall’Intergovernmental Panel on Climate Change (IPCC) nel suo Sesto Rapporto di Valutazione (AR6, 2021), dove si legge:

“It is unequivocal that human influence has warmed the atmosphere, ocean and land.”

È la prima volta che l’IPCC utilizza il termine “inequivocabile” per descrivere l’influenza umana sul sistema climatico. Questo non è frutto di una singola analisi o di un’interpretazione soggettiva, ma il risultato di milioni di osservazioni, migliaia di simulazioni indipendenti e centinaia di studi scientifici pubblicati su riviste peer-reviewed. Un risultato convergente, robusto e statisticamente solido, ottenuto da comunità scientifiche di tutto il mondo.

In altre parole, senza introdurre l’uomo nelle equazioni, il riscaldamento osservato non si spiega.

La firma fossile

Anche la chimica ci aiuta a riconoscere con chiarezza il responsabile. Il carbonio che proviene dai combustibili fossili ha una composizione isotopica distinta rispetto a quello attivamente scambiato tra atmosfera, biosfera e oceani. In particolare, il rapporto tra gli isotopi stabili del carbonio (13C/12C) è un indicatore chiave: i combustibili fossili, derivati dalla sostanza organica vegetale antica, sono naturalmente poveri in 13C. Quando bruciamo carbone, petrolio o gas naturale, questo carbonio “leggero” si riversa nell’atmosfera, abbassando il δ13C atmosferico in modo misurabile (Keeling et al., 1979; Francey et al., 1999).

Questo segnale isotopico rappresenta una vera e propria firma chimica dell’origine fossile della CO2 in eccesso. È come se la Terra ci stesse restituendo lo scontrino della nostra attività industriale.

Un’ulteriore conferma arriva dal monitoraggio del radiocarbonio (14C): essendo un isotopo radioattivo con un’emivita di circa 5.700 anni, è completamente assente nei combustibili fossili, che hanno milioni di anni. L’immissione massiccia di CO2 fossile diluisce il contenuto di 14C nell’atmosfera, un fenomeno noto come Suess effect (Suess, 1955; Graven et al., 2012).

Ma la CO2 non è l’unico gas climalterante in aumento. A questo si aggiungono due gas serra minori ma molto più potenti per unità di massa: il metano (CH4) e il protossido di azoto (N2O). Il metano è rilasciato da fonti naturali, ma in misura crescente anche da allevamenti intensivi, risaie e attività estrattive (Kirschke et al., 2013), mentre il protossido di azoto deriva principalmente dall’uso agricolo di fertilizzanti azotati (Syakila & Kroeze, 2011). Entrambi i gas contribuiscono in modo sostanziale al riscaldamento globale, con un potere climalterante rispettivamente 28–34 volte (CH4) e circa 265 volte (N2O) superiore a quello della CO2 su scala centennale (IPCC AR6, 2021).

La loro crescita, documentata in registrazioni atmosferiche e bolle d’aria nei ghiacci, segue l’espansione delle attività agricole e industriali umane, non eventi naturali. Anche qui, la firma è inequivocabile.

Gli alibi non reggono

C’è chi punta il dito contro i vulcani, sostenendo che siano loro a rilasciare enormi quantità di CO₂. Ma questa affermazione è smentita dai dati: le emissioni vulcaniche annue di anidride carbonica sono stimate intorno ai 0,26 gigatonnellate, contro le oltre 36 gigatonnellate prodotte ogni anno dalle attività umane (Andres et al., 2012; Burton et al., 2013). In altre parole, le emissioni antropiche superano quelle vulcaniche di almeno 100 volte. I vulcani, inoltre, spesso hanno effetti raffreddanti temporanei sul clima, a causa degli aerosol solforici che riflettono la luce solare (come accadde dopo l’eruzione del Pinatubo nel 1991; Soden et al., 2002).

Altri tirano in ballo il Sole. Ma le osservazioni satellitari dal 1978 in poi mostrano che l’irraggiamento solare totale (TSI) è rimasto sostanzialmente stabile o ha addirittura subito una lieve diminuzione. Se il Sole fosse il responsabile del riscaldamento, ci aspetteremmo un riscaldamento uniforme in tutta l’atmosfera. Invece, ciò che si osserva è un riscaldamento netto nella troposfera e un raffreddamento nella stratosfera — una firma tipica dell’effetto serra (Santer et al., 2013).

Altri ancora evocano vaghi “cicli naturali”, ma senza mai specificare quali. I cicli oceanici come El Niño o la PDO (Pacific Decadal Oscillation) possono modulare il clima a livello regionale e su scala interannuale o decadale, ma non spiegano la tendenza globale e persistente all’aumento delle temperature. Sono fluttuazioni attorno a una curva che, negli ultimi decenni, ha una pendenza chiaramente positiva.

La verità è che ogni singolo grande ente scientifico mondiale — dalla NASA alla NOAA, dal Met Office britannico fino al Centro Europeo Copernicus, e naturalmente l’IPCC — concorda su questo punto:

la causa principale del riscaldamento globale osservato dal 1850 a oggi è l’attività umana.

Non è tutta colpa nostra?

Certo, i sistemi climatici sono complessi. Una componente naturale è sempre presente.
Ma i modelli climatici sono in grado di isolare le diverse forzanti: senza introdurre le emissioni antropiche, non si riesce a riprodurre l’aumento delle temperature globali osservato nel XX e XXI secolo (Weart, 2009; IPCC AR5, 2013; Rosenzweig & Neofotis, 2013; White, 2025).
Senza l’uomo, questo riscaldamento non ci sarebbe stato. E senza l’uomo, non sarà possibile fermarlo.

Una responsabilità storica

Siamo la prima generazione a vedere, misurare e comprendere gli effetti del cambiamento climatico su scala planetaria. Ma siamo anche — con ogni probabilità — l’ultima che ha ancora tempo per intervenire e limitare i danni più gravi.
Non parliamo di proiezioni astratte o scenari lontani: le ondate di calore, gli incendi fuori scala, la fusione dei ghiacci, le migrazioni forzate per siccità o inondazioni sono già realtà, e sono il frutto diretto di decenni di emissioni accumulate.

A causare il cambiamento climatico è stata l’attività dell’uomo moderno, non l’uomo in quanto specie.
Abbiamo costruito un modello economico basato sull’uso massiccio di combustibili fossili, sull’espansione urbana, sull’agricoltura intensiva, sull’estrazione incessante di risorse. Questo sistema ci ha dato energia, mobilità, benessere. Ma ha anche rotto l’equilibrio termico del pianeta.

Il clima sta cambiando per colpa nostra. Ma proprio per questo, possiamo ancora cambiarlo noi.

Non basta più ridurre “un po’” le emissioni o piantare qualche albero. Serve una trasformazione sistemica:

  • Decarbonizzare i trasporti, l’energia e l’industria, puntando su fonti rinnovabili come l’eolico e il solare, ma senza pregiudizi ideologici nei confronti del nucleare, che – come ho già discusso nell’articolo L’atomo della pace – resta una delle poche fonti capaci di fornire energia a basse emissioni su larga scala.
  • rivedere le pratiche agricole e alimentari, riducendo l’impatto ambientale della produzione primaria attraverso un uso più razionale di risorse come acqua, fertilizzanti e suolo, e promuovendo sistemi colturali e zootecnici improntati alla sostenibilità. L’agricoltura integrata, che prevede un equilibrio tra coltivazioni e allevamenti, può contribuire a mantenere la fertilità dei suoli, ridurre le emissioni climalteranti e garantire una produzione alimentare efficiente e resiliente. Anche la lotta agli sprechi resta fondamentale lungo tutta la filiera.
  • proteggere e ripristinare gli ecosistemi naturali, perché foreste, zone umide e suoli ricchi di sostanza organica svolgono un ruolo chiave come serbatoi di carbonio. Intervenire su scala paesaggistica significa rafforzare la capacità del pianeta di tamponare gli effetti del riscaldamento globale, rallentando i feedback più pericolosi.
  • adattare città e territori agli eventi estremi già in corso, ripensando la gestione del rischio, l’urbanizzazione selvaggia e l’impermeabilizzazione del suolo. L’aumento delle temperature e la frequenza di fenomeni meteorologici estremi impongono infrastrutture più resilienti, spazi verdi urbani, reti idriche e sistemi di allerta progettati per il clima che verrà – non per quello che avevamo.

E accanto alle scelte politiche e industriali, anche le azioni individuali contano: ridurre gli sprechi, consumare meno e meglio, informarsi, partecipare, votare con consapevolezza.

Non è una colpa da espiare.
Non serve sentirsi inadeguati o sopraffatti.
È una responsabilità storica che possiamo ancora scegliere di assumerci.
Perché, se il problema è stato causato dall’uomo, la soluzione può venire solo da noi.

Il grande mescolamento: il ruolo vitale degli oceani e le conseguenze del riscaldamento globale

Per capire davvero cosa significhi “riscaldamento globale”, dobbiamo prima capire come funziona il sistema che, da sempre, modera il clima della Terra: gli oceani. Sono loro, infatti, il gigantesco ingranaggio nascosto che regola la distribuzione del calore, l’equilibrio dell’umidità e la circolazione dell’energia termica sul nostro pianeta.

Le acque oceaniche non stanno mai ferme. Si muovono in superficie, spinte dai venti; si muovono in profondità, guidate da variazioni di temperatura e salinità. In questo continuo rimescolamento – silenzioso, ma potentissimo – si nasconde il segreto della nostra stabilità climatica. Ogni corrente trasporta calore dai tropici verso i poli e viceversa, mitiga le temperature, distribuisce nutrienti e sostiene la vita marina.

È un equilibrio delicato, raffinato, essenziale. E proprio per questo vulnerabile.

Se le acque si muovono meno, se non si mescolano più come dovrebbero, l’intero sistema comincia a rallentare, a scompensarsi. Il clima si fa più estremo, le piogge più irregolari, le stagioni meno distinguibili.

Ecco perché non possiamo davvero comprendere il cambiamento climatico senza prima esplorare i meccanismi che governano il movimento delle acque nei grandi corpi idrici: oceani, mari, fiumi, laghi.

A partire da qui, cercherò di spiegare – con l’aiuto della fisica e della chimica – come funzionano i movimenti orizzontali e verticali delle acque e perché sono così importanti per la regolazione del clima. Solo dopo, potremo affrontare il nodo centrale: cosa succede quando, a causa dell’aumento delle temperature globali, questi meccanismi si inceppano.

Le grandi correnti: il vento comanda

Partiamo dalla superficie. Le acque degli oceani sono spinte dai venti, ma non in modo casuale. Intorno all’equatore, ad esempio, gli Alisei soffiano da est verso ovest e trascinano con sé le acque superficiali. Alle latitudini medie (tra 30° e 60°), i venti occidentali spingono invece le correnti verso est.

Quando queste correnti incontrano i continenti, vengono deviate. Ed è qui che entra in gioco la forza di Coriolis: un effetto legato alla rotazione terrestre che curva i flussi d’acqua verso destra nell’emisfero nord e verso sinistra in quello sud. Il risultato? Enormi vortici oceanici che formano veri e propri “nastri trasportatori” d’acqua calda e fredda.

Uno degli esempi più noti è la Corrente del Golfo, che trasporta acque tropicali lungo la costa orientale del Nord America fino all’Europa occidentale, regalando inverni miti a paesi come il Regno Unito e la Norvegia.

Come illustrato in Figura 1, le acque superficiali degli oceani (fino a circa 100 metri di profondità) si muovono orizzontalmente, spinte soprattutto dai venti. La presenza dei continenti ne modifica il percorso, generando ampie correnti che si piegano e si avvolgono in vortici permanenti, visibili in tutti i principali bacini oceanici.

Figura 1. Rappresentazione delle principali correnti oceaniche superficiali. A causa della presenza dei continenti, le correnti deviano dal loro percorso originale, generando grandi vortici oceanici. Immagine scaricata liberamente da: https://www.freepik.com/free-photos-vectors/ocean-currents-map.

Le correnti profonde: il ruolo del sale e della temperatura

Ma c’è un altro motore, più lento, silenzioso e profondo: il rimescolamento verticale. È un processo meno visibile rispetto alle correnti superficiali, ma non meno importante. In alcune regioni del pianeta, come le zone tropicali aride o le aree polari, l’acqua in superficie subisce trasformazioni che ne modificano profondamente la densità.

Nelle aree calde, per esempio, l’evaporazione intensa concentra i sali nell’acqua residua. Più sale significa maggiore densità: e un’acqua più densa tende naturalmente ad affondare verso gli strati profondi dell’oceano.
Al contrario, in altre zone l’acqua può essere diluita da piogge abbondanti o dallo scioglimento dei ghiacci, diventando più dolce e meno densa, e quindi destinata a risalire.

Anche la temperatura gioca un ruolo cruciale. Quando l’acqua marina si raffredda intensamente – come accade ai poli – tende a ghiacciarsi. Durante il congelamento, però, il ghiaccio espelle i sali: ciò che resta intorno ai blocchi di ghiaccio è un’acqua estremamente salina e fredda. Questo liquido denso sprofonda verso il fondo oceanico, innescando così un flusso verticale che alimenta la circolazione delle acque a grandi profondità.

Questo meccanismo prende il nome di circolazione termoalina: un termine che unisce l’effetto della temperatura (“termo”) a quello del sale (“alina”, dal greco halos). È grazie a questa lenta ma continua danza tra acque fredde, salate e profonde, e acque più calde e superficiali, che l’oceano riesce a rimescolarsi in profondità, mantenendo in equilibrio il trasporto di calore, nutrienti e anidride carbonica tra gli strati più esterni e quelli abissali.

Il grande nastro trasportatore globale

Combinando i movimenti orizzontali delle acque – spinti dai venti – con quelli verticali – governati da differenze di temperatura e salinità – si ottiene un colossale circuito planetario che i climatologi chiamano Global Conveyor Belt, ovvero nastro trasportatore oceanico globale.

È un sistema mastodontico, profondo e lentissimo. Le acque che oggi affondano nel Nord Atlantico, gelide e ricche di sale, possono impiegare fino a mille anni per completare il loro viaggio nei fondali oceanici e riaffiorare in superficie dall’altra parte del mondo. Una corrente profonda che scorre a pochi centimetri al secondo, eppure fondamentale per la vita sul pianeta.

Quello che si viene a creare è un ciclo continuo: le correnti calde e superficiali (come la Corrente del Golfo) trasportano calore dai tropici verso i poli; lì, l’acqua si raffredda e sprofonda, diventando corrente fredda e profonda che scivola silenziosamente nei meandri degli oceani, fino a riemergere in zone tropicali o subtropicali, dove riprende il viaggio in superficie.
Questo meccanismo globale è illustrato nella Figura 2.

Figura 2. Rappresentazione semplificata della circolazione termoalina, nota anche come Global Conveyor Belt. Le correnti calde e superficiali (in rosso) scorrono verso le regioni polari, dove l’acqua raffreddata e più salina sprofonda, originando correnti fredde profonde (in blu) che si muovono attraverso gli oceani fino a riemergere nelle regioni tropicali, completando il ciclo. Immagine liberamente disponibile su https://www.freepik.com/free-photos-vectors/ocean-currents-map.

Quando il nastro si inceppa

Tutto questo sistema – perfetto, lento, ma vitale – può essere compromesso. Il riscaldamento globale sta alterando proprio quei meccanismi che regolano la circolazione termoalina, interferendo con la densità delle acque superficiali nelle zone chiave del pianeta.

Nelle regioni dove si formano le acque profonde, come il Nord Atlantico, il processo dipende dalla capacità dell’acqua superficiale di diventare abbastanza densa da affondare. Ma con l’aumento delle temperature globali, entrano in gioco due fattori destabilizzanti:

  • lo scioglimento dei ghiacci artici immette enormi quantità di acqua dolce nei mari;
  • l’intensificarsi delle precipitazioni diluisce ulteriormente le acque superficiali.

Il risultato? L’acqua resta più dolce, più calda, e quindi meno densa. Non affonda più come dovrebbe. E se non affonda, il motore si spegne.

Questo porta a un fenomeno ben noto in oceanografia: la stratificazione delle acque. Gli strati superficiali diventano sempre più stabili, separati da quelli profondi da un gradiente di densità così marcato da impedire ogni rimescolamento. È come se l’oceano fosse “bloccato a strati”, con uno strato leggero e caldo che galleggia sopra uno freddo e denso, ma senza più scambi attivi tra i due (Figura 3).

Le conseguenze sono profonde:

  • Il nastro trasportatore globale rallenta o si indebolisce, fino al rischio – non solo teorico – di un blocco parziale o totale.
  • Il calore non viene più redistribuito: i tropici si surriscaldano, le regioni temperate (come l’Europa nord-occidentale) rischiano un paradossale raffreddamento.
  • L’acqua profonda non riceve più ossigeno né nutrienti, danneggiando la vita marina.
  • In superficie, mancano i nutrienti che sostengono il plancton: cala la produttività biologica degli oceani.
  • E soprattutto: l’oceano assorbe meno anidride carbonica per due motivi. Da un lato, l’aumento della temperatura riduce la solubilità della CO₂ in acqua; dall’altro, la stratificazione blocca il rimescolamento, impedendo il trasporto della CO₂ in profondità. Il risultato è che più CO₂ resta nell’atmosfera, accelerando ulteriormente il riscaldamento globale.

È una spirale pericolosa, un meccanismo di retroazione in cui l’effetto rafforza la causa: più caldo → più stratificazione → meno rimescolamento → meno assorbimento di CO₂ → ancora più caldo.
Un classico cane che si morde la coda, ma su scala planetaria.

Figura 3. Meccanismo della stratificazione degli oceani. Il riscaldamento globale, lo scioglimento dei ghiacci e l’aumento delle precipitazioni rendono l’acqua superficiale più calda e dolce, quindi meno densa. Questo riduce il rimescolamento verticale con gli strati profondi, limitando lo scambio di calore, nutrienti e la capacità dell’oceano di assorbire CO₂.

Conclusioni

Gli oceani non sono solo grandi riserve d’acqua: sono ingranaggi dinamici e complessi che regolano il clima terrestre, trasportano calore, rimescolano nutrienti e assorbono anidride carbonica. La loro capacità di farlo dipende dal delicato equilibrio tra venti, salinità e temperatura. Quando questo equilibrio si spezza — a causa dell’aumento delle temperature globali — il sistema si inceppa: le acque si stratificano, il rimescolamento si blocca, la circolazione rallenta.

Le conseguenze, anche se lente a manifestarsi, sono profonde: clima più estremo, ecosistemi marini impoveriti e maggiore accumulo di CO₂ in atmosfera. È una crisi silenziosa, ma già in atto.
Per capire e affrontare il cambiamento climatico, non basta guardare al cielo: dobbiamo guardare al mare, e comprendere come funziona — e come sta cambiando — il grande mescolamento degli oceani.

Questo articolo è parte di un percorso dedicato al riscaldamento climatico.
Nel primo appuntamento ci siamo chiesti perché, in un mondo sempre più caldo, possano verificarsi fenomeni estremi come piogge torrenziali e temporali improvvisi (leggi qui).
Oggi abbiamo esplorato il ruolo nascosto ma fondamentale degli oceani nella regolazione del clima.

Nel prossimo articolo parleremo invece di come l’attività umana stia alterando questi equilibri, e perché il riscaldamento globale non può più essere considerato un semplice fenomeno naturale.

 

Caldo globale, temporali locali: l’apparente paradosso

Introduzione

Negli ultimi anni, gli eventi meteorologici estremi sono diventati sempre più frequenti, sia in Italia che nel resto del mondo.
Una mappa interattiva dell’ISPRA, consultabile online, mostra chiaramente dove questi eventi si sono verificati in Italia tra il 2020 e il 2024. Si osservano piogge torrenziali, grandinate eccezionali, ondate di calore anomale e prolungate. Tutti segnali di un sistema climatico sempre più instabile.

Come conseguenza di queste anomalie, è sempre più comune imbattersi – soprattutto sui social – in discussioni o thread in cui si afferma che fenomeni come le alluvioni, seguite da bruschi cali di temperatura, smentirebbero l’esistenza del riscaldamento globale.
Una frase ricorrente è:

“Altro che riscaldamento globale: ieri grandinava e oggi ci sono 18 gradi!”

Chi vive in zone come Palermo – dove, negli ultimi anni, si sono registrati picchi termici estremi e livelli di umidità superiori all’80%, anche in pieno giorno – tende invece a riconoscere, in modo molto concreto, la realtà del cambiamento climatico.

“Orpo… che caldo. Veramente stiamo andando verso qualcosa che non abbiamo mai vissuto.”

Ma come si concilia tutto questo?

Come può il riscaldamento globale provocare temporali violenti, grandinate e persino abbassamenti improvvisi della temperatura?

Dobbiamo innanzitutto ricordare che la logica scientifica è controintuitiva. Non possiamo applicare al metodo scientifico la logica che usiamo tutti i giorni per collegare ciò che vediamo con ciò che pensiamo sia vero: la realtà fisica spesso sorprende e non si lascia interpretare con impressioni o sensazioni.

Sulla base di queste premesse, chiediamoci cosa accade sulla superficie terrestre quando la temperatura aumenta di un solo grado Celsius. Un grado può sembrare poco. Se tocchiamo una pentola a 70 °C proviamo lo stesso bruciore che a 71 °C. E non distinguiamo tra il freddo di 0 °C e quello di -1 °C.

Ma il pianeta non è il nostro palmo, né il nostro naso.

Nel sistema Terra, un solo grado può fare una differenza gigantesca: significa più energia, più evaporazione, più acqua nell’atmosfera. E più acqua nell’aria significa, potenzialmente, più pioggia, più violenza, più squilibrio.

Per capire quanto sia concreta questa affermazione, facciamo un semplice calcolo: stimiamo quanta acqua in più evapora dagli oceani quando la loro temperatura superficiale sale di un solo grado come, per esempio, da 25 °C a 26 °C.

Effetti della temperatura sull’equilibrio H2Oliquido = H2Ovapore

Per semplicità, consideriamo solo una porzione di oceano estesa per 100 milioni di metri quadrati (pari a 100 km²) e limitiamoci al primo metro d’aria immediatamente sovrastante. Vogliamo capire quanta acqua in più finisce nell’aria subito sopra l’oceano quando la sua temperatura sale di un solo grado, da 25 °C a 26 °C.

  1. L’equazione di Antoine

Per stimare la pressione di vapore dell’acqua alle due temperature, usiamo la formula empirica di Antoine, valida tra 1 e 100 °C:

log₁₀(P) = A − B / (C + T)

dove:

  • P è la pressione di vapore in mmHg,
  • T è la temperatura in gradi Celsius,
  • A, B, C sono coefficienti specifici per ciascuna sostanza (ad esempio, acqua, etanolo, acetone…) e validi solo entro certi intervalli di temperatura. Nel caso specifico dell’acqua: A = 8.07131; B = 1730.63; C = 233.426 (valori specifici per l’acqua in questo intervallo). Il riferimento per i valori numerici di A, B e C è qui.

Convertiamo poi la pressione in Pascal (1 mmHg = 133.322 Pa).

  1. I risultati

Applicando i valori:

  • a 25 °C si ottiene P ≈ 23.76 mmHg, cioè circa 3158 Pa;
  • a 26 °C si ottiene P ≈ 25.13 mmHg, cioè circa 3351 Pa.
  1. Calcolo della densità del vapore

Convertiamo ora la pressione parziale in densità di vapore acqueo (ρ), usando l’equazione dei gas ideali:

ρ = (P × M) / (R × T)

dove:

  • P è la pressione in pascal,
  • M è la massa molare dell’acqua (18.015 g/mol),
  • R è la costante dei gas (8.314 J/mol·K),
  • T è la temperatura assoluta in Kelvin.

Calcolando:

  • a 25 °C (298.15 K) si ottiene ρ ≈ 0.02295 kg/m³;
  • a 26 °C (299.15 K) si ottiene ρ ≈ 0.02431 kg/m³.
  1. L’aumento netto di vapore

La differenza di densità è:

0.02431 − 0.02295 = 0.00136 kg/m³

Moltiplichiamo per il volume d’aria (100 000 000 m³):

0.00136 × 100 000 000 = 136.000 kg

In altre parole, un aumento di temperatura di 1 °C (da 25 a 26 °C) genera 136 tonnellate di vapore in più, solo su una superficie di 100 km² e solo nello strato d’aria immediatamente sopra l’oceano.

E se fosse tutto l’Atlantico?

Se estendiamo il calcolo all’intera superficie dell’Oceano Atlantico – circa 116 milioni di km² – otteniamo:

157 800 000 000 kg, ovvero 158 milioni di tonnellate di vapore acqueo in più.

E questo, lo ripeto, solo nello strato d’aria immediatamente sopra la superficie, per un singolo grado in più.

Ma quei numeri non restano sulla carta. Entrano in circolo nell’atmosfera, e da lì comincia il loro impatto reale.

Dall’oceano alla pioggia: il viaggio del vapore

Ma cosa succede a tutta quest’acqua una volta entrata in atmosfera?

Viene trasportata dalle correnti. Quando incontra masse d’aria più fredde, condensa formando nubi e poi pioggia. Se la quantità di vapore è anomala, lo saranno anche le precipitazioni: brevi, violente, improvvise.

Inoltre, il vapore acqueo è attivo nell’infrarosso: è un gas serra molto più potente della CO₂, anche se molto più effimero. In climatologia si parla di feedback positivo: l’aumento della temperatura fa evaporare più acqua → il vapore trattiene più calore → aumenta ancora la temperatura → e così via.

Quella pioggia non è “contro” il riscaldamento: è il riscaldamento

Piogge torrenziali, grandinate e cali locali della temperatura non smentiscono il riscaldamento globale. Al contrario, ne sono una conseguenza. Il sistema Terra si scalda in media, ma localmente può produrre raffreddamenti temporanei proprio in risposta a squilibri energetici più ampi.

Conclusioni

Il calcolo che ho presentato è, ovviamente, una semplificazione. Non tiene conto del vento, della turbolenza, della salinità, né della reale dinamica verticale dell’atmosfera. Non pretende di descrivere con esattezza tutto ciò che accade nell’interazione tra oceano e cielo. Ma ha un obiettivo chiaro: rendere visibile, con i numeri, una verità che l’intuizione fatica a cogliere.

Perché la logica scientifica non coincide con il senso comune.

Come ho già scritto, nel nostro vissuto quotidiano, un solo grado in più non è nulla. Non percepiamo differenze tra 0 °C e -1 °C, tra 70 °C e 71 °C. Ma il sistema Terra non funziona secondo ciò che sentiamo sulla pelle: funziona secondo leggi fisiche. E in fisica, un solo grado può significare miliardi di tonnellate d’acqua in più nell’atmosfera. Significa più energia, più instabilità, più violenza meteorologica.

Paradossalmente, quello che percepiamo come una smentita del riscaldamento globale – la grandine, il temporale, il crollo improvviso delle temperature – ne è invece una manifestazione diretta.

Il clima risponde con intensità e disordine proprio perché è fuori equilibrio. E lo è, in parte, per colpa di quell’apparente “piccolo” grado in più.

La scienza ci dà gli strumenti per misurare, per capire, per anticipare.

Sta a noi scegliere se vogliamo continuare a confondere il temporale con una tregua, o iniziare a leggere in quelle piogge il segnale di un sistema che sta cambiando – e lo sta facendo sotto i nostri occhi.

Quella pioggia che ti ha fatto dire “ma quale riscaldamento globale?” è esattamente il motivo per cui dovremmo iniziare a preoccuparci.

Share