Glifosato e cancro: nuovo studio, molti titoli… pochi fatti

di Enrico Bucci & Pellegrino Conte

Se c’è una cosa che la scienza dovrebbe insegnarci, è che non tutti gli studi hanno la stessa valenza e importanza. Alcuni sono ben progettati, trasparenti e ci aiutano a capire meglio il mondo; altri, invece, presentano fragilità nelle premesse, nel metodo o nell’interpretazione dei dati.

L’ultimo studio pubblicato nel 2025 su Environmental Health da un gruppo di ricerca dell’Istituto Ramazzini ha fatto molto discutere, sostenendo che anche dosi di glifosato ritenute sicure possano aumentare il rischio di tumori nei ratti. Da qui è nato il timore che, se aumenta la possibilità di avere tumori nei ratti, anche l’essere umano possa correre lo stesso rischio. Tuttavia, un’analisi attenta rivela numerosi limiti sull’effettiva rilevanza dei risultati.

Vediamo perché.

Dosi scelte e perché non sono realistiche

Lo studio ha previsto tre dosi di glifosato somministrate ai ratti:

  • 0.5 mg/kg al giorno (l’ADI, ovvero la dose giornaliera accettabile in Europa)
  • 5 mg/kg al giorno (10 volte l’ADI)
  • 50 mg/kg al giorno (NOAEL, che corrisponde alla dose massima senza effetti osservati).

A prima vista, trovare effetti anche alla dose più bassa potrebbe sembrare preoccupante. Ma c’è un dettaglio importante: l’ADI non è una soglia tossicologica, ma un limite iper-cautelativo. Come viene calcolata?

  1. Si prende la dose più alta che non ha causato effetti negli animali (es. 50 mg/kg).
  2. Si divide per 100: 10 per la variabilità interspecie (topo vs uomo) e 10 per la variabilità intraspecie (uomo vs uomo).
  3. Si ottiene l’ADI (0.5 mg/kg).

Quindi, se uno studio trova effetti giusto all’ADI, non è un fallimento del sistema: è la conferma che il sistema di sicurezza funziona.

E nella vita reale? L’EFSA ha stimato che l’esposizione reale della popolazione è centinaia di volte inferiore all’ADI. Per raggiungere 0.5 mg/kg, un adulto di 70 kg dovrebbe mangiare 10 kg di soia OGM al giorno, tutti i giorni. E anche gli agricoltori professionisti non si avvicinano a quei livelli.

Discrepanze tra dosi dichiarate e dosi realmente usate

Come si può facilmente immaginare, il lavoro che stiamo valutando non è passato inosservato. La comunità scientifica si è subito attivata per verificare se quanto riportato fosse attendibile, e questo è un aspetto cruciale. In un contesto saturo di informazioni, dove distinguere il falso dal vero o dal verosimile è sempre più difficile, avere dei riferimenti affidabili per valutare la solidità di uno studio è fondamentale. Dimostra anche che la scienza non resta chiusa in una torre d’avorio: controlla, discute e, se necessario, corregge.

Un’analisi particolarmente accurata pubblicata su PubPeer  ha evidenziato come gli autori dello studio mirassero a somministrare ai ratti tre livelli “target” di esposizione giornaliera al glifosato, corrispondenti, come già indicato nel paragrafo precedente, all’ADI europea di 0,5 mg per chilo di peso corporeo, a 5 mg/kg e infine al NOAEL di 50 mg/kg, calibrando la concentrazione del principio attivo nell’acqua da bere sulla base di un consumo medio di 40 mL e di un peso medio di 400 g. Tuttavia, nei grafici relativi al peso e al consumo d’acqua, visibili già a partire dalla quinta settimana di vita, si nota chiaramente che i ratti più giovani, ancora ben al di sotto dei 400 g, continuano a bere quantità di acqua vicine a quelle stimate per gli adulti. Questo significa che, anziché ricevere esattamente i dosaggi “target”, i cuccioli assumono in realtà molto più glifosato, spesso oltre il doppio di quanto previsto per l’ADI, proprio nel momento in cui la loro vulnerabilità ai possibili effetti tossici è maggiore.

Colpisce poi il fatto che i pannelli che riportano l’effettiva assunzione giornaliera di glifosato inizino soltanto alla tredicesima settimana, escludendo dalla visualizzazione le prime dieci settimane successive allo svezzamento, quando il sovradosaggio è più pronunciato. In questo modo il lettore non ha modo di rendersi conto di quanto i ratti più giovani abbiano effettivamente superato i livelli di riferimento, né di valutare eventuali conseguenze sulla salute in questa fase critica dello sviluppo.

La mancanza di qualsiasi discussione nel testo centrale su questa esposizione eccessiva nei cuccioli rappresenta una lacuna significativa, perché proprio nei primi mesi di vita gli organismi mostrano una sensibilità maggiore a sostanze tossiche. Sarebbe stato opportuno non soltanto estendere i grafici dell’assunzione fin dalla quinta settimana, ma anche accompagnarli con un’analisi dedicata a quei dati, per capire se fenomeni di tossicità precoce possano essere correlati proprio al superamento dei dosaggi prefissati. In assenza di questa trasparenza, resta un interrogativo aperto sul reale profilo di sicurezza del glifosato nei soggetti in accrescimento.

Statistiche creative: quando un “aumento significativo” è solo rumore

Uno dei problemi più comuni negli studi tossicologici è quando si prendono in considerazione troppi parametri. In queste circostanze, prima o poi, qualcosa risulterà “statisticamente significativo”… ma per puro caso.

Lo studio ha esaminato tumori in:

  • fegato
  • pelle
  • tiroide
  • sistema nervoso
  • reni
  • mammelle
  • ovaie
  • pancreas
  • ghiandole surrenali
  • milza
  • osso
  • vescica

Statisticamente parlando, più confronti si fanno, più aumenta il rischio di falsi positivi: è il noto problema dei confronti multipli. E in questo caso non è stata applicata nessuna correzione (come Bonferroni o FDR), nonostante le decine di test effettuati.

Per esempio:

  • Un solo caso di carcinoma follicolare tiroideo (1,96%) viene presentato come “aumento significativo”, nonostante un’incidenza storica dello 0,09%.
  • Leucemie rarissime (0 casi nei controlli) diventano improvvisamente “frequenti” se appaiono in uno o due animali.

E proprio perché si lavora con numeri minuscoli (gruppi da 51 ratti), anche un singolo caso in più può far sembrare enorme un effetto che in realtà è solo rumore statistico.

Non a caso, un commentatore su PubPeer ha fatto notare che, nella versione pubblicata rispetto al preprint è stato aggiunto un caso di leucemia monocitica in un ratto femmina trattato con 50 mg/kg/die, assente nella versione preprint. Nessuna spiegazione è stata data per questo cambiamento. Ma in gruppi così piccoli, un solo caso in più può bastare a far emergere o sparire un “aumento significativo”. E la mancanza di trasparenza su come sia stato deciso questo aggiornamento rende ancora più difficile fidarsi delle conclusioni.

Statistiche fragili: come un’analisi più corretta fa crollare i risultati

Gli autori dello studio dicono di aver usato il test di Cochrane-Armitage per verificare se aumentando le dosi di glifosato aumentasse anche il numero di tumori nei ratti: insomma, per valutare se esistesse un trend “dose-risposta” significativo.

Fin qui, tutto regolare. Ma leggendo le osservazioni pubblicate su PubPeer emerge un problema serio: gli autori hanno usato la versione asintotica del test, che diventa poco affidabile quando si analizzano eventi rari – come accade quasi sempre negli studi di cancerogenicità a lungo termine, dove molti tumori osservati sono davvero pochi.

Chi ha commentato ha quindi rifatto i calcoli usando la versione esatta del test (disponibile grazie al software del DKFZ) e il risultato è stato sorprendente: i p-value, che nello studio originale erano inferiori a 0.05 (e quindi dichiarati “significativi”), sono saliti ben oltre 0.25, diventando del tutto non significativi.

In pratica: gli stessi dati, analizzati in modo più corretto, perdono completamente la significatività statistica.

E questo non è un dettaglio secondario: lo stesso errore potrebbe riguardare anche altre analisi statistiche e tabelle pubblicate, mettendo seriamente in discussione la solidità complessiva delle conclusioni dello studio.

Glifosato puro vs formulazioni commerciali: un confronto incompleto

Lo studio testa anche due erbicidi commerciali (Roundup Bioflow e RangerPro), sostenendo che siano più tossici del glifosato puro. Ma:

È un po’ come dire:

“La vodka è tossica!”
Senza specificare se il problema è l’alcol o l’acqua in essa contenuta.

Trasparenza e potenziali conflitti d’interesse

Gli autori dello studio dichiarano esplicitamente di non avere conflitti di interesse. Tuttavia, come segnalato su PubPeer, emergono diverse criticità. L’Istituto Ramazzini che ha condotto la ricerca riceve fondi da organizzazioni e soggetti che hanno preso pubblicamente posizione contro l’uso del glifosato. Tra questi finanziatori troviamo:

  1. la Heartland Health Research Alliance, già criticata da diverse fonti per sostenere ricerche orientate contro i pesticidi;
  2. l’Institute for Preventive Health, fondato da Henry Rowlands, che è anche l’ideatore della certificazione “Glyphosate Residue Free”;
  3. Coop Reno, una cooperativa italiana che promuove attivamente la riduzione dei pesticidi nei propri prodotti;
  4. Coopfond, che ha dichiarato pubblicamente il proprio sostegno alla ricerca contro il glifosato.

Tutti questi elementi non sono banali, perché vanno in direzione opposta alla dichiarazione “no competing interests” fornita dagli autori.

Dichiarare questi legami non significa necessariamente che i risultati siano falsati, ma consente ai lettori di valutare meglio la possibile influenza dei finanziatori.

IARC, hazard e risk: una distinzione fondamentale

Lo studio si richiama alla classificazione dello IARC, che nel 2015 ha definito il glifosato “probabile cancerogeno” (Gruppo 2A). Ma attenzione: l’IARC valuta l’hazard, non il rischio.

  • Hazard: “Il glifosato può causare il cancro in certe condizioni ideali”.
  • Risk: “Il glifosato causa il cancro nelle condizioni reali di esposizione?”

Lo IARC ha incluso nel gruppo 2A anche:

  • la carne rossa,
  • il lavoro da parrucchiere,
  • il turno di notte.

Le principali agenzie che valutano il rischio reale non hanno trovato evidenze sufficienti per considerare il glifosato cancerogeno:

Agenzia Conclusione Anno
EFSA (UE) Non cancerogeno 2023
EPA (USA) Non cancerogeno 2020
JMPR (FAO/OMS) Non cancerogeno 2016
IARC Probabile cancerogeno 2015

Conclusione: il glifosato non è innocente, ma nemmeno un mostro

Il nuovo studio del 2025 mostra che, se si cercano abbastanza tumori rari in tanti tessuti, qualcosa prima o poi emerge. Ma:

  • Le dosi utilizzate sono lontanissime dalla realtà umana, e persino più alte del previsto nei ratti giovani;
  • I risultati sono fragili, non replicati, e statisticamente poco robusti;
  • I meccanismi di azione non sono spiegati;
  • La trasparenza sui dati e sui conflitti di interesse è carente;
  • Le conclusioni si basano su metodi statistici che vanno messi in discussione.

Non si tratta di negazionismo scientifico ma di scetticismo informato, che è il cuore del metodo scientifico. Sebbene questo studio sollevi questioni interessanti, trarre conclusioni definitive su un legame causale tra glifosato e cancro basandosi su dati così fragili e dosi irrealistiche è prematuro. La scienza richiede prove solide, replicabili e trasparenti.

Per questo, le agenzie regolatorie continuano a considerare il glifosato sicuro se usato nei limiti stabiliti. Restiamo aperti a nuove evidenze, ma diffidiamo dei titoli allarmistici che spesso accompagnano studi con così tante ombre.

EDIT

A dimostrazione del fatto che il metodo scientifico si basa sull’autocorrezione, sia Enrico Bucci che io desideriamo ringraziare l’Ing. Dario Passafiume per essersi accorto di un errore che abbiamo commesso nell’interpretare i dati di PubPeer. La sostanza non cambia: cambiano solo i valori assoluti dei numeri che avevamo preso in considerazione. Il testo che abbiamo rieditato per effetto dell’errore di cui ci siamo accorti grazie all’ingegnere è il seguente:

Un’analisi particolarmente accurata pubblicata su PubPeer ha evidenziato una discrepanza rilevante: le figure riportate nello studio non si riferiscono alle dosi dichiarate (quelle indicate nel primo paragrafo), ma a dosi circa dieci volte superiori. In pratica, mentre gli autori affermano di aver usato 0.5, 5 e 50 mg/kg/die, i grafici mostrano dati ottenuti con 5, 50 e 500 mg/kg/die. Si tratta – come già evidenziato – di concentrazioni del tutto inconcepibili nella vita reale dove per arrivare all’assunzione di soli 0.5 mg/kg/die bisogna ingurgitare circa 70 kg di soia OGM al giorno, tutti i giorni.

Microplastiche, lavastoviglie e fake news: come orientarsi tra dati e paure

Già in un mio precedente articolo avevo affrontato il tema delle microplastiche, cercando di distinguere tra rischi reali, ipotesi ancora in fase di studio e allarmismi infondati. Se volete rinfrescarvi la memoria o approfondire meglio il quadro generale, potete leggerlo qui:
👉 Microplastiche: i rischi che conosciamo, le sorprese che non ti aspetti

In questa sede voglio, invece, portare alla vostra attenzione il pericolo della divulgazione basata sull’allarmismo.

33 milioni di micro- e nanoplastiche? Cosa c’è davvero dietro le notizie virali

Negli ultimi giorni si è diffusa online una notizia allarmante: le lavastoviglie sarebbero una fonte importante di microplastiche, con milioni di particelle rilasciate ad ogni ciclo di lavaggio. Su siti come HDBlog (vedi screenshot qui sotto) si parla addirittura di 33 milioni di nanoplastiche generate da un solo ciclo di lavaggio, dipingendo un quadro piuttosto drammatico per l’ambiente domestico e urbano.

Immagine presa dal sito HDBlog

Tuttavia, analizzando con attenzione lo studio scientifico originale su cui si basa questa notizia, emergono diversi aspetti importanti e ben diversi da quelli riportati in modo semplicistico e sensazionalistico da molti siti di “pseudo divulgazione”.

Innanzitutto, lo studio mostra che sì, le lavastoviglie rilasciano micro- e nanoplastiche, ma la quantità è estremamente bassa: meno di 6 milligrammi di plastica all’anno per persona, cioè meno del peso di un chicco di riso. Paragonare questo dato numerico alla dichiarazione di milioni di particelle è fuorviante, perché il numero di particelle non dice nulla sulla massa o sull’impatto reale, che rimane trascurabile su base individuale.

Inoltre, la tipologia di plastica e la dimensione delle particelle variano in base al tipo di articolo lavato (polietilene, polipropilene, nylon, ecc.), e i materiali più “vecchi” o usurati rilasciano più frammenti. Lo studio suggerisce quindi che sia importante approfondire come l’invecchiamento della plastica influisca sulla generazione di microplastiche, cosa che non viene mai menzionata nei titoli allarmistici.

Dal punto di vista ambientale, sebbene i sistemi di trattamento delle acque reflue trattengano circa il 95% delle microplastiche, la quantità complessiva globale rilasciata nell’ambiente sta crescendo con l’aumento dell’uso della plastica. Tuttavia, le lavastoviglie domestiche rappresentano solo una piccola fonte rispetto ad altre.

Un articolo più attendibile e chiaro sull’argomento, che riporta fedelmente i risultati della ricerca, è quello di Phys.org, sito scientifico noto per l’accuratezza e la qualità della divulgazione. Vi consiglio di leggere anche lì per avere un quadro completo e serio della situazione.

Come riconoscere le fake news ambientali?

Molto spesso mi chiedono: “Se non sono esperto, come faccio a capire se una notizia è attendibile”? La risposta non è semplice, ma c’è una regola d’oro: non fermatevi mai alla prima fonte che conferma ciò che già pensate o che alimenta le vostre paure o convinzioni. Spesso chi cerca notizie sensazionalistiche cade nel cosiddetto cherry picking, ovvero sceglie solo quei dati o informazioni che supportano la propria idea, ignorando tutto il resto. Questo atteggiamento è comune a chi si sente “rivoluzionario” o “antisistema”, ma in realtà non ha le competenze scientifiche per comprendere a fondo la questione.

Per evitare di cadere in queste trappole, è fondamentale confrontare le informazioni con fonti diverse e affidabili, preferendo siti di divulgazione scientifica consolidata, che spiegano dati, metodi e limiti delle ricerche. Ma come riconoscere un sito davvero affidabile? Ecco alcuni indicatori:

  • Chiarezza e trasparenza delle fonti: i siti seri riportano sempre riferimenti precisi agli studi scientifici originali o a istituti riconosciuti, spesso con link diretti alle pubblicazioni o informazioni sugli autori.

  • Presentazione equilibrata dei dati: non si limitano a enfatizzare solo risultati sensazionalistici, ma spiegano anche i limiti delle ricerche e le diverse interpretazioni possibili.

  • Assenza di titoli esagerati o clickbait: i titoli sono informativi, senza allarmismi o esagerazioni mirate solo a catturare l’attenzione.

  • Autori qualificati e trasparenza: i contenuti sono scritti o revisionati da esperti o giornalisti scientifici con esperienza e il sito fornisce informazioni su chi li produce.

  • Aggiornamenti regolari e dialogo con i lettori: i siti affidabili aggiornano le informazioni con nuovi studi, correggono eventuali errori e talvolta rispondono alle domande o ai commenti.

  • Scopo divulgativo ed educativo: l’obiettivo è informare e spiegare con rigore, non vendere prodotti o promuovere agende ideologiche.

Le testate generaliste o i siti di pseudo divulgazione spesso puntano più al click facile e all’effetto emotivo che a un’informazione rigorosa e bilanciata. Il risultato è un circolo vizioso di paure ingiustificate, confusione e disinformazione, che non aiuta né il pubblico né la causa ambientale che vogliamo davvero sostenere.

Conclusioni

La lotta all’inquinamento da plastica passa innanzitutto dal controllo e dalla prevenzione all’origine, riducendo l’uso di plastica, migliorando il riciclo e introducendo filtri efficaci nelle apparecchiature domestiche come lavatrici e lavastoviglie. Non facciamoci ingannare da titoli e numeri sensazionalistici: l’informazione corretta è il primo passo per agire con consapevolezza.

Una buccia vi sfamerà

Dalla fame di guerra al valore nascosto negli scarti: viaggio scientifico e umano nella buccia di patata.

Mi sto avvicinando ai sessant’anni. È più il tempo che ho vissuto che quello che ancora mi resta e, con la vecchiaia, certe volte vengo sommerso dai ricordi di quando ero piccolo. Entrambi i miei genitori hanno vissuto la guerra. Mia madre come bambina. Nata nel 1938, aveva circa un anno quando Hitler invase la Polonia e circa due quando l’Italia entrò in guerra. Ora non c’è più. È scomparsa nel 2016 per le conseguenze di un tumore ai polmoni. Ma mi ricordo che di tanto in tanto le venivano dei flash grazie ai quali ricordava di quando i suoi fratelli (lei era l’ultima di quattro; ben 22 anni la separavano dal fratello più grande) la prendevano in braccio cercando di non terrorizzarla per accompagnarla nei rifugi anti aerei. Un po’ come nel film “La vita è bella” che ha valso a Roberto Benigni il premio Oscar.

Mio padre, invece, di sedici anni più anziano di mia madre, ha passato l’intera guerra come POW (prisoner of war) in Africa. Si era trasferito in Etiopia per lavorare assieme agli zii quando aveva circa 16 anni e si trovava ad Adis Abeba come impiegato civile quando gli inglesi sconfissero gli italiani. Fu imprigionato per cinque anni in vari campi di prigionia sparsi per il continente africano e ha sempre raccontato degli stenti che ha dovuto sopportare per poter sopravvivere: dagli incontri di pugilato contro pugili professionisti per poter racimolare qualche alimento per tenersi in vita, alle fosse scavate nella sabbia nelle quali si seppelliva per sopravvivere al caldo dei deserti africani. Anche mio padre non c’è più. È scomparso nel 1998 ed anche lui per le conseguenze di tumori ai polmoni.

Non sto scrivendo questa storia per intenerire, ma solo per creare il contesto di quanto mi accingo a raccontare.

Sia dai racconti dei miei genitori, sia da quelli che faceva mia nonna, la madre di mio padre – l’unica nonna che ho conosciuto, ho sempre saputo che la guerra è una brutta bestia. Lo sanno benissimo tutti quelli che ancora oggi sono sotto i bombardamenti: il cibo scarseggia, la fame, quella vera, non quella da “buco allo stomaco” di noi viziati che le guerre non le abbiamo mai vissute e viviamo, sostanzialmente, nell’opulenza, si fa sentire. E quando la fame si fa sentire si mangia qualunque cosa, altro che “questo non mi piace” o “ho una lieve intolleranza al glutine”. Quando la fame avanza, ci mangeremmo qualsiasi cosa. Ed è quello che accadeva durante la guerra: anche quelli che per noi oggi sono scarti, venivano usati per alimentarsi. E sapete quali scarti venivano usati, tra gli altri? Le bucce di patata.

Quando me lo raccontavano non riuscivo a immaginarlo. Le bucce? Quelle che si buttano via senza pensarci? Eppure, col tempo, e forse anche grazie al mio lavoro, ho imparato che il racconto di mia nonna e dei miei genitori era molto più che una memoria di sopravvivenza: era un piccolo spaccato di biochimica popolare.

Le bucce non sono rifiuti

Dal punto di vista nutrizionale, le bucce di patata non sono uno scarto. Al contrario: rappresentano una parte preziosa del tubero. Contengono una quantità significativa di fibre alimentari, vitamine e sali minerali, spesso superiore a quella della polpa stessa. In particolare, la vitamina C, le vitamine del gruppo B e il potassio si concentrano proprio vicino alla superficie esterna. Inoltre, la buccia ospita una varietà di polifenoli, composti antiossidanti come l’acido clorogenico, che oggi studiamo per il loro ruolo nella protezione cellulare.

Dal punto di vista energetico, le bucce non sono ricche quanto la polpa amidacea, ma in tempi di carestia potevano comunque offrire un contributo calorico importante. Se bollite o fritte, conservavano buona parte dei micronutrienti ed erano capaci di saziare. Non è un caso, infatti, che in molte parti d’Europa, dalla Germania alla Russia, le bucce siano state cucinate, essiccate o addirittura ridotte in farina nei periodi più difficili.

Un equilibrio delicato

C’è però un lato oscuro: le bucce di patata contengono anche glicoalcaloidi naturali, come la solanina e la chaconina, che le piante producono come difesa contro funghi e insetti. In piccole dosi non rappresentano un pericolo, ma in alte concentrazioni possono causare disturbi gastrointestinali e neurologici. Le bucce verdi, germogliate o esposte alla luce sono le più ricche di solanina, e vanno evitate. Ma le bucce sane, ben cotte, erano, e sono ancora, sicure, specie se trattate con il buon senso tramandato più che con la chimica.

Una lezione dal passato

Oggi, in un mondo che produce più rifiuti alimentari di quanto possa giustificare, quella vecchia storia di bucce mangiate per fame mi torna alla mente con una sfumatura diversa. Non solo come testimonianza di resilienza, ma come invito a riconsiderare il valore del cibo in ogni sua parte. In laboratorio, so bene quanto lavoro ci sia dietro l’estrazione di un antiossidante da una buccia. Ma forse il sapere contadino, quello di mia nonna o dei miei genitori, aveva già intuito tutto: che in una buccia c’è più nutrimento di quanto sembri, e che a volte, per sopravvivere bisogna imparare a guardare il cibo con occhi diversi.

E così, mentre il ricordo di quelle storie si fa ogni giorno più tenue, mi piace pensare che un pezzetto di chimica, di biologia e di dignità sia rimasto impigliato in quella buccia sottile. E che valga ancora la pena raccontarlo.

Riferimenti

Potato Skin: Nutrition Facts and Calories for 100 Grams

A comparative study on proximate and mineral composition of coloured potato peel and flesh

Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing

The Best & Edible Fruit and Vegetable Skins You Need to Try

Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato‐derived products

 

Parabrezza puliti e insetti scomparsi: ma davvero davvero?

Nel 2020, durante la pandemia, pubblicai una breve nota sul cosiddetto “windscreen phenomenon“. Per chi volesse rileggerla, ecco il link:

Sugli insetti e sui parabrezza – www.pellegrinoconte.com

Negli ultimi anni, questa teoria ha continuato a circolare. L’idea che il numero di insetti stia diminuendo drasticamente perché i parabrezza delle auto si sporcano meno rispetto al passato è oggi più attendibile di quanto non lo fosse cinque anni fa?

Osservazioni aneddotiche vs. evidenze scientifiche

È importante distinguere tra osservazioni personali e dati scientifici. Il fatto che oggi i parabrezza sembrino più puliti non costituisce una prova concreta del declino globale degli insetti. Le variabili in gioco sono molteplici: cambiamenti nei modelli di traffico, aerodinamica delle auto moderne, variazioni climatiche locali e stagionali, per citarne alcune.

Studi recenti sul declino degli insetti

Diversi studi scientifici hanno documentato un effettivo declino delle popolazioni di insetti:

Il problema del “windscreen phenomenon” come indicatore

Utilizzare il numero di insetti sul parabrezza come misura del declino globale presenta diverse problematiche:

  • Variabilità delle condizioni di guida: percorsi, velocità, condizioni climatiche e tipologie di veicoli influenzano significativamente il numero di insetti che colpiscono il parabrezza.
  • Effetti di bordo e distribuzione degli insetti: le strade creano discontinuità nel paesaggio, influenzando la distribuzione degli insetti e rendendo difficile generalizzare le osservazioni.
  • Bias di campionamento: le osservazioni sono spesso limitate a determinate aree e periodi, non rappresentando accuratamente la situazione globale.

Conclusione

Come scrivevo già nel 2020, anche oggi è necessario ribadire che, sebbene il declino degli insetti sia un fenomeno reale ed allarmante, le conclusioni devono basarsi su studi scientifici solidi, non su impressioni personali. Il “windscreen phenomenon” può forse stimolare la curiosità o fornire uno spunto iniziale, ma non rappresenta in alcun modo una prova scientifica.

L’aneddotica non è probante e il “lo dicono tutti” non è – né sarà mai – un metodo scientificamente valido.

Come disse un celebre divulgatore: la scienza non si fa per alzata di mano.

La democrazia scientifica non funziona come quella politica: non tutte le opinioni hanno lo stesso peso. E, a ben vedere, nemmeno in politica tutte le opinioni sono uguali – quelle che negano i diritti fondamentali dell’uomo non possono e non devono essere considerate accettabili.

In ambito scientifico, il confronto è possibile solo tra persone con un background adeguato, perché solo così si può parlare la stessa lingua: quella del metodo.

Chimica e intelligenza artificiale: un’alleanza per il futuro della scienza

Avrete sicuramente notato che oggi l’intelligenza artificiale (AI) sta diventando una presenza sempre più costante nelle nostre vite. Sono tantissimi gli ambiti in cui l’AI riesce a sostituire con successo l’essere umano. Si potrebbe dire che questa rivoluzione sia iniziata molto tempo fa, con i primi robot che hanno cominciato a svolgere compiti ripetitivi al posto dell’uomo, come nelle catene di montaggio o, più drammaticamente, nei contesti bellici, dove i droni sono diventati strumenti chiave per ridurre il numero di vittime umane.

Negli ultimi anni, lo sviluppo vertiginoso delle reti neurali artificiali ha portato alla nascita di veri e propri “cervelli digitali” che, presto, anche se non sappiamo quanto presto, potrebbero avvicinarsi, per certi aspetti, alle capacità del cervello umano.

Nel frattempo, però, l’intelligenza artificiale già funziona alla grande ed è sempre più presente in numerosi settori, tra cui la chimica, che rappresenta uno dei campi più promettenti.

All’inizio può sembrare curioso accostare molecole, reazioni chimiche e leggi della fisica a concetti come algoritmi e reti neurali. Eppure, l’unione di questi mondi sta rivoluzionando il modo in cui facciamo ricerca, progettiamo nuovi materiali, affrontiamo le sfide ambientali e persino come insegniamo la scienza.

Ma cosa significa, concretamente, applicare l’intelligenza artificiale alla chimica?

Scoprire nuove molecole (senza provare tutto in laboratorio)

Uno degli ambiti in cui l’intelligenza artificiale si è rivelata più utile è la scoperta di nuovi composti chimici. Fino a qualche tempo fa, per trovare una molecola utile, un farmaco, un catalizzatore, un materiale con proprietà particolari, bisognava fare molti tentativi sperimentali, spesso lunghi e costosi.

Negli ultimi decenni, la chimica computazionale ha cercato di alleggerire questo carico, permettendo ai ricercatori di simulare al computer il comportamento di molecole, reazioni e materiali. Tuttavia, anche le simulazioni più avanzate richiedono molto tempo di calcolo e competenze specialistiche, oltre ad avere dei limiti nella scala e nella complessità dei sistemi che si possono trattare.

Qui entra in gioco l’intelligenza artificiale: grazie a modelli di machine learning sempre più raffinati, è possibile prevedere rapidamente il comportamento di una molecola, come la sua stabilità, la reattività, o la capacità di legarsi a un bersaglio biologico, semplicemente a partire dalla sua struttura. Questi algoritmi apprendono da enormi quantità di dati sperimentali e teorici e sono in grado di fare previsioni accurate anche su molecole mai testate prima.

In altre parole, l’AI sta cominciando a superare i limiti della chimica computazionale tradizionale, offrendo strumenti più rapidi, scalabili e spesso più efficaci nel guidare la ricerca. Invece di provare tutto in laboratorio (o simulare tutto al computer), oggi possiamo usare modelli predittivi per concentrare gli sforzi solo sulle ipotesi più promettenti.

Cosa vuol dire “machine learning”?

Il machine learning, o apprendimento automatico, è una branca dell’intelligenza artificiale che permette a un computer di imparare dai dati. Invece di essere programmato con regole rigide, un algoritmo di machine learning analizza una grande quantità di esempi e impara da solo a riconoscere schemi, fare previsioni o prendere decisioni.

È un po’ come insegnare a un bambino a distinguere un cane da un gatto: non gli spieghi la definizione precisa, ma gli mostri tante immagini finché impara da solo a riconoscerli.

Nel caso della chimica, l’algoritmo può “guardare” migliaia di molecole e imparare, per esempio, quali caratteristiche rendono una sostanza più solubile, reattiva o stabile.

Simulare ciò che non possiamo osservare

In molti casi, la chimica richiede di capire cosa succede a livello atomico o molecolare, dove gli esperimenti diretti sono difficili, costosi o addirittura impossibili. Ad esempio, osservare in tempo reale la rottura di un legame chimico o l’interazione tra una superficie metallica e un gas può essere tecnicamente molto complicato.

Qui entrano in gioco la chimica computazionale e, sempre di più, l’intelligenza artificiale. I metodi classici di simulazione, come la density functional theory (DFT) o le dinamiche molecolari, permettono di studiare reazioni e proprietà microscopiche con una certa precisione, ma sono spesso limitati dalla potenza di calcolo e dal tempo necessario per ottenere risultati.

L’AI può affiancare o persino sostituire questi metodi in molti casi, offrendo simulazioni molto più rapide. Gli algoritmi, addestrati su grandi insiemi di dati teorici o sperimentali, riescono a prevedere energie di legame, geometrie molecolari, traiettorie di reazione e persino comportamenti collettivi di materiali complessi, con un livello di precisione sorprendente.

Questo approccio è particolarmente utile nella chimica dei materiali, nella catalisi e nella chimica ambientale, dove le condizioni reali sono dinamiche e complesse, e spesso è necessario esplorare molte variabili contemporaneamente (temperatura, pressione, pH, concentrazione, ecc.).

In sintesi, grazie all’AI, oggi possiamo “vedere” l’invisibile e testare ipotesi teoriche in modo veloce e mirato, risparmiando tempo, denaro e risorse. La simulazione assistita dall’intelligenza artificiale sta diventando una delle strategie più promettenti per affrontare problemi scientifici troppo complessi per essere risolti con i soli strumenti tradizionali.

Insegnare (e imparare) la chimica in modo nuovo

Anche il mondo dell’istruzione sta vivendo una trasformazione grazie all’intelligenza artificiale. La didattica della chimica, spesso considerata una delle materie più “dure” per studenti e studentesse, può oggi diventare più coinvolgente, personalizzata ed efficace proprio grazie all’uso di strumenti basati su AI.

Uno dei vantaggi principali è la possibilità di adattare il percorso di apprendimento alle esigenze del singolo studente. Grazie a sistemi intelligenti che analizzano le risposte e i progressi individuali, è possibile proporre esercizi mirati, spiegazioni alternative o materiali supplementari in base al livello di comprensione. Questo approccio personalizzato può aiutare chi è in difficoltà a colmare lacune e, allo stesso tempo, stimolare chi è più avanti ad approfondire.

L’AI può anche contribuire a rendere la chimica più visiva e interattiva. Alcune piattaforme, ad esempio, usano modelli predittivi per generare visualizzazioni 3D di molecole, reazioni chimiche o strutture cristalline, rendendo più intuitivi concetti spesso astratti. In più, i chatbot educativi (come quelli alimentati da modelli linguistici) possono rispondere a domande in tempo reale, spiegare termini complessi in modo semplice o simulare piccoli esperimenti virtuali.

Un’altra frontiera interessante è quella della valutazione automatica e intelligente: sistemi di AI possono correggere esercizi, test e report di laboratorio, offrendo feedback tempestivo e accurato. Questo libera tempo per l’insegnante, che può concentrarsi sulla guida e sul supporto più qualitativo.

Infine, l’intelligenza artificiale può aiutare anche chi insegna: suggerendo materiali didattici aggiornati, creando quiz su misura per ogni lezione, o analizzando l’andamento della classe per identificare i concetti che vanno ripresi o approfonditi.

In sintesi, l’AI non sostituisce il docente o il laboratorio, ma li potenzia, offrendo nuovi strumenti per rendere l’insegnamento della chimica più accessibile, efficace e stimolante.

Una rivoluzione che non sostituisce il chimico

Di fronte a questi progressi, è naturale chiedersi: quale sarà allora il ruolo del chimico nel futuro? La risposta è semplice: sarà sempre più centrale, ma in modo diverso.

L’intelligenza artificiale è uno strumento potente, ma resta pur sempre uno strumento. Può accelerare le ricerche, suggerire ipotesi, esplorare combinazioni complesse o evidenziare correlazioni nascoste. Ma non può, da sola, sostituire la competenza critica, l’intuizione, l’esperienza e la creatività che solo un/una chimico/a formato/a può offrire.

Un errore molto comune, oggi, è considerare l’AI come una sorta di enciclopedia moderna, da cui si possano estrarre risposte esatte, univoche, perfette. Ma la chimica non funziona così e neppure l’intelligenza artificiale. Entrambe si muovono su terreni complessi, fatti di ipotesi, interpretazioni, modelli e approssimazioni. Pretendere dall’AI risposte definitive senza saper valutare, filtrare o indirizzare i risultati è un rischio.

Proprio come un bambino brillante, l’AI va educata e guidata. Ha bisogno di esempi buoni, di dati corretti, di domande ben formulate.

E, soprattutto, ha bisogno di essere “letta” da occhi esperti, capaci di interpretare e contestualizzare quello che produce.

In chimica, come nella scienza in generale, la conoscenza non è mai solo questione di calcoli o statistiche: è anche, e soprattutto, comprensione profonda dei fenomeni.

Quindi, piuttosto che temere l’arrivo dell’intelligenza artificiale, dobbiamo imparare a collaborarci con intelligenza.

Il chimico del futuro non sarà un tecnico che esegue, ma un regista che sa orchestrare strumenti nuovi per rispondere a domande sempre più complesse. Ed è proprio questa, forse, la sfida più stimolante dei nostri tempi.

Riferimenti

Aldossary & al. (2024) In silico chemical experiments in the Age of AI: From quantum chemistry to machine learning and back. ChemRxiv. 2024; Doi: 10.26434/chemrxiv-2024-1v269. Disponibile al link: https://chemrxiv.org/engage/chemrxiv/article-details/65cdf1309138d231612baac8.

Anjaneyulu & al. (2024) Revolution of Artificial Intelligence in Computational Chemistry Breakthroughs. Chemistry Africa 7, 3443–3459. https://doi.org/10.1007/s42250-024-00976-5.

Blonder & Feldman-Maggor (2024) AI for chemistry teaching: responsible AI and ethical considerations. Chemistry Teacher International 6(4), 385–395. https://doi.org/10.1515/cti-2024-0014.

Dral (2024) AI in computational chemistry through the lens of a decade-long journey. Chemical Communications. 60, 3240-3258. https://doi.org/10.1039/D4CC00010B.

Dral, Bowman, Liu, Maseras (editors) (2024) Artificial intelligence in computational chemistry (special issue). Disponibile al link: https://www.sciencedirect.com/special-issue/105PZW0WJF7.

Kovner & Berkeley (2024) ‘AI-at-scale’ method accelerates atomistic simulations for scientists. Disponibile al link: https://techxplore.com/news/2024-12-ai-scale-method-atomistic-simulations.html.

Kovner & Berkeley (2025) Computational chemistry unlocked: A record-breaking dataset to train AI models has launched. Disponibile al link: https://phys.org/news/2025-05-chemistry-dataset-ai.html.

Nongnuch & al. (2021) Best practices in machine learning for chemistry. Nature Chemistry 13, 505–508. https://doi.org/10.1038/s41557-021-00716-z.

Yuriev & al. (2024) The Dawn of Generative Artificial Intelligence in Chemistry Education. Journal of Chemical Education 101, 2957-2929. https://doi.org/10.1021/acs.jchemed.4c00836.

Udourioh & al. (2025) Artificial Intelligence-Driven Innovations in Chemistry Education: Transforming Teaching and Learning Practices. In: Handbook on Artificial Intelligence and Quality Higher Education. Volume 1 (pp.379-388). Publisher: Sterling Publishers, Slough UK and Delhi, India. Disponibile al link: https://www.researchgate.net/publication/388675124_Artificial_Intelligence-Driven_Innovations_in_Chemistry_Education_Transforming_Teaching_and_Learning_Practices.

Zhang & al. (2025) Artificial intelligence for catalyst design and synthesis. Matter 8, 102138. https://doi.org/10.1016/j.matt.2025.102138.

Dal ppm al femtogrammo: i pesticidi c’erano anche prima ma non li vedevamo

Ogni tanto circolano articoli dai toni allarmistici che mostrano quanto spesso oggi si trovino tracce di pesticidi negli alimenti, nell’acqua, nel suolo. “Una volta queste cose non c’erano”, si legge. Ma è davvero così? La risposta è semplice: no, non è che una volta non ci fossero, è che non eravamo in grado di vederle.

La differenza sta negli occhi, non nelle cose

In chimica analitica, quando si parla di rilevare una sostanza, non si usa mai dire con leggerezza “non c’è”. Si dice invece “non determinabile” (N.D.): vuol dire che non è rilevabile con gli strumenti disponibili, non che la sostanza non sia presente. È come cercare di vedere le stelle con un binocolo da teatro: non le vedi, ma non vuol dire che non ci siano.

E proprio come un telescopio moderno rivela galassie invisibili a Galileo, gli strumenti di oggi vedono tracce infinitesimali di sostanze che gli strumenti di ieri non riuscivano minimamente a percepire.

Un po’ di storia: quanto si vedeva ieri?

  • Anni ’50-’60: i primi gascromatografi (GC) usavano rivelatori come il TCD (rilevava a partire da 1-10 ppm, cioè parti per milione) o il più sensibile FID (circa 0.1 ppm). I pesticidi? Difficili da vedere, se non in quantità elevate.
  • Anni ’70-’80: entra in scena l’Electron Capture Detector (ECD), molto sensibile per sostanze come i pesticidi: arriva a livelli di 0.1 picogrammi, cioè un miliardesimo di milligrammo! Anche il GC-MS (gascromatografia accoppiata a spettrometria di massa) comincia a essere usato per rilevare composti in tracce.
  • Anni ’90-2000: con strumenti più raffinati come il GC-MS/MS, si scende ancora: si arriva a livelli di femtogrammi (mille miliardesimi di grammo). La sensibilità è altissima e il rumore di fondo si riduce grazie a nuove tecnologie (Figura 1).

Dal 2010 in poi: l’uso di spettrometri ad alta risoluzione (HRMS), colonne capillari e nuovi algoritmi di elaborazione dei dati ci porta a una capacità di rilevazione fino a 0.001 picogrammi.

Figure 1. il grafico mostra l'evoluzione dei limiti di rilevazione (LOD) in picogrammi, su scala logaritmica, per alcune delle tecniche analitiche più usate nella chimica analitica dal 1960 a oggi. Negli anni ’60 si vedevano solo concentrazioni nell’ordine dei ppm, oggi possiamo rilevare sostanze anche a femtogrammi, cioè mille miliardesimi di grammo.

Figura 1. il grafico mostra l’evoluzione dei limiti di rilevazione (LOD) in picogrammi, su scala logaritmica, per alcune delle tecniche analitiche più usate nella chimica analitica dal 1960 a oggi. Negli anni ’60 si vedevano solo concentrazioni nell’ordine dei ppm, oggi possiamo rilevare sostanze anche a femtogrammi, cioè mille miliardesimi di grammo.

Quindi oggi i pesticidi sono più usati?

No, non è questo il punto. È che oggi possiamo vedere concentrazioni che una volta erano semplicemente invisibili. È come se avessimo acceso una torcia in una stanza buia. Le cose nella stanza c’erano anche prima. Solo, non potevamo vederle (Figura 2).

Figura 2. Come vediamo gli analiti oggi. Il miglioramento della sensibilità strumentale ci consente di vedere cose che cinque, dieci, venti e più anni fa non eravamo in grado di rilevare.

Un esempio pratico

Un pesticida presente in un campione d’acqua nel 1970 in quantità pari a 5 picogrammi per litro non sarebbe stato rilevato da nessuno strumento allora disponibile. Oggi sì. Ma non significa che quel pesticida non ci fosse allora.

Conclusione

Quando leggiamo “oggi si trovano più pesticidi”, chiediamoci prima se si tratta di un aumento reale o semplicemente di un salto nella capacità di osservazione. La chimica analitica, nel frattempo, ha fatto un balzo gigantesco: non siamo più immersi nei veleni, siamo immersi nei dati. E questo è un enorme passo avanti.

Riferimenti

“Bella e Potente” (L. Cerruti)

Basic Gas Chromatography (H.M. McNair, J.M. Miller)

Gohlke, R.S. (1959)Analytical Chemistry, 31, 535–541.

Karayannis, M.I.; Efstathiou, C.E. (2012). Talanta, 102, 7-15

Perché studiare chimica e fisica? L’innalzamento ebullioscopico

Avete presente la classica robetta sul mettere il sale prima o dopo che l’acqua ha cominciato a bollire? Questa cosa mi ha sempre lasciato perplesso perché ho sempre pensato che chiunque abbia frequentato con profitto le scuole superiori conosca le proprietà colligative e sa cosa significa innalzamento ebullioscopico. Traduco per i meno esperti: l’innalzamento ebullioscopico è l’innalzamento della temperatura di ebollizione di un solvente quando in esso vengano aggiunti dei soluti. Nel caso specifico, il solvente è l’acqua mentre il soluto è il cloruro di sodio (NaCl), popolarmente conosciuto come sale da cucina.

La solubilità in acqua del cloruro di sodio a 100 °C è di circa 400 g L-1.

L’innalzamento ebullioscopico si calcola usando la formuletta:

ΔT=keb · m · i                                                                                         (1)

dove ΔT è la variazione della temperatura di ebollizione tra il solvente che contiene il soluto e quella del solvente puro; keb è una costante che si chiama costante ebullioscopica. Essa è tabulata per ogni solvente. Per l’acqua, la keb assume il valore di 0.512 °C kg mol-1. Infine, m è la cosiddetta molalità, ovvero la concentrazione di soluto espressa in mol kg-1, dove il peso si riferisce al solvente usato, mentre i è il cosiddetto coefficiente di Vant’Hoff.

Adesso possiamo applicare la formuletta (1) per calcolare quale quantità di cloruro di sodio permette di alzare la temperatura di ebollizione dell’acqua di quantità note. Quelle che che ho preso in considerazione sono le seguenti:

ΔT = 0.01; 0.025; 0.05; 0.075; 0.1; 0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2; 2.25; 2.5; 2.75; 3; 3.25; 3.5

Dal grafico riportato nella figura qui sotto, ne viene che per aumentare di un solo grado centigrado la temperatura di ebollizione di un litro di acqua occorrono circa 114 g di NaCl. In realtà, noi non aggiungiamo mai oltre 100 g di sale nell’acqua che mettiamo a bollire per la pasta. Tutt’al più ne usiamo un decimo, ovvero circa una decina di grammi. Dallo stesso grafico si evince come l’aggiunta di una decina di grammi di NaCl ad un litro di acqua innalza il punto di ebollizione nell’intervallo 0.075 – 0.1 °C. In altre parole, la temperatura di ebollizione passa da 100 °C all’intervallo di temperature compreso tra 100.08 e 100.1 °C.

Ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

Edit: nel calcolo dell’innalzamento ebullioscopico non ho tenuto conto del coefficiente di Vant’Hoff che, per il cloruro di sodio, è pari a 2. Questo vuol dire che, introducendo questo fattore di correzione, l’aumento di temperatura dell’acqua a cui si aggiungono grosso modo una decina di grammi di NaCl è intorno a 0.1-0.2 °C. Insomma, da 100 °C si passa a 100.1-100.2 °C. Rimane sempre valida la domanda: ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

 

Fonte dell’immagine di copertina

Incontri con persone straordinarie: Cristina Fazzi

Preludio.

È da un po’ di tempo che non scrivo articoli nel blog. Non c’è un motivo particolare se non quello relativo al fatto che penso che troppo presenzialismo sia nocivo: trovo molto più utile scrivere quando ho qualcosa di curioso ed interessante da raccontare come in questo caso. Ho deciso di aprire una nuova rubrica dedicata alle persone straordinarie che ho avuto la fortuna di incontrare nella mia vita.

Da dove parto? Da Cristina Fazzi.

Brevi note biografiche.

Molti di voi si chiederanno chi sia mai Cristina Fazzi. È un medico. Si è laureata in chirurgia a Catania e, dopo alcune esperienze nella sua Sicilia, ha deciso, per puro caso, di trasferirsi in Zambia dove aiuta come medico le popolazioni locali. Ha dato vita ad una ONG che si occupa, tra le tante cose, di trovare fondi e gestire progetti per costruire ospedali ed ambulatori nelle zone più o meno accessibili dello Zambia. Ha adottato un bambino (oggi giovane uomo) in Zambia e, grazie alla sua determinazione, è stata capace di aprire la strada – in realtà ancora impervia – alle adozioni dei single in Italia. Infatti, per circa tre anni ha portato avanti una battaglia per far riconoscere l’adozione del suo Joseph – del tutto regolare in Zambia – anche in Italia; e ci è riuscita. Ad oggi ha in affido altri sette bambini Zambiani che sta crescendo con grande amore.

Ma non è delle sue avventure di mamma single che voglio parlarvi. Né voglio illustrarvi le peripezie che si è trovata a vivere e che tuttora vive in Zambia per la realizzazione dei suoi progetti umanitari. Tutto questo lo potete leggere nella sua biografia dal titolo “Karìbu. Lo Zambia, una donna, una grande avventura” scritto a quattro mani con Lidia Tilotta (qui).

I miei ricordi.

Ho avuto modo di incontrare la dottoressa Fazzi in occasione della presentazione del suo libro al Policlinico di Palermo. Ho partecipato a quell’incontro spinto da un mio collega che, sentendomi parlare del biochar, oggetto, come ben sapete, della mia attività di ricerca, ha pensato che fosse utile una mia partecipazione alla presentazione del libro di Cristina Fazzi e Lidia Tilotta. Non avevo eccessive aspettative, in realtà. Pensavo che sarebbe stata la solita presentazione noiosa con gli autori che fanno la solita passerella per promuovere il solito libro dalla tiratura limitata destinato ad essere la solita meteora nel panorama della letteratura divulgativa del nostro paese. Ed invece…

Invece è stata un’illuminazione. Non appena la Dottoressa Fazzi ha cominciato a raccontare perché si è trasferita in Zambia mi sono venuti in mente i racconti di mio padre che negli anni Trenta del secolo scorso (sì, mio padre nacque nel 1922 e quest’anno, fosse stato ancora in vita, avrebbe compiuto 100 anni. Un’età ragguardevole. Ma, per un figlio, un genitore non ha mai un’età ragguardevole e dovrebbe essere immortale…ma questo non c’entra con quanto voglio scrivere) si trasferì assieme ad alcuni zii nell’Eritrea italiana in cerca di opportunità di lavoro. Lì fu fatto prigioniero dagli inglesi (come il nonno della dottoressa Fazzi) e, campo di concentramento dopo campo di concentramento, sopravvisse, prigioniero, fino al 1946, anno in cui fu liberato e, pesando una quarantina di chili scarsi, tornò in Italia. Nonostante le sue traversie, egli ha sempre raccontato del suo mal d’Africa e della nostalgia che quel continente gli provocava. Ovviamente, la storia di mio padre non c’entra nulla con la dottoressa Fazzi. Il punto è che la dottoressa, col suo incipit, mi ha portato alla mente tante cose e mi ha commosso. Mi ha commosso non solo perché ha fatto emergere dalla profondità dei miei ricordi cose che erano sedimentate e messe da parte perché, nonostante la mia età, non ho ancora superato la perdita di mio padre, ma anche perché mi ha illuminato e reso veramente chiaro il concetto di “aiutiamoli a casa loro”.

Aiutiamoli a casa loro. Parte I

Vi ricorda qualcosa questa locuzione? Ormai va di moda. E pur di “aiutarli a casa loro” raccogliamo qualsiasi cosa e, sotto forma di aiuti umanitari, mandiamo tutto nei paesi in via di sviluppo, convinti che quanto “racimoliamo” possa davvero essere utile. In realtà, questa è un’operazione che serve solo a noi stessi. Serve per lenire i sensi di colpa che ci attanagliano perché sappiamo benissimo che, per usare tutte le comodità di cui disponiamo, deprediamo le risorse naturali di paesi lontanissimi da noi rendendoli sempre più poveri.

Come ha raccontato la dottoressa Fazzi, a cosa mai potranno servire gli omogeneizzati nelle zone povere dei paesi africani, tra cui lo Zambia? Perché sto citando gli omogeneizzati? Perché uno dei racconti della dottoressa Fazzi ha riguardato il rifiuto da parte sua di un carico di aiuti umanitari fatto da omogeneizzati.

Gli omogeneizzati.

Sappiamo tutti che cosa sono gli omogeneizzati. Sappiamo benissimo che sono utilissimi per lo svezzamento dei bambini e per ottimizzare la loro crescita. Eppure, in Zambia – ma anche negli altri paesi poveri – questa tipologia di prodotti è inutile: in questi paesi non è possibile produrre omogeneizzati. Quindi, una volta consumati, le popolazioni locali non avrebbero più cibo utile per lo svezzamento dei bambini. Ed allora? Dovrebbero attendere altri aiuti ed altri ancora in un loop infinito che non farebbe altro che implementare la loro dipendenza dai paesi più ricchi dell’emisfero.

Aiutiamoli a casa loro. Parte II

“Aiutiamoli a casa loro”, quindi, significa rimboccarsi le maniche e andare lì, nei paesi poveri, per insegnare a quelle popolazioni a usare al meglio le risorse disponibili in loco. Esattamente come sta facendo la dottoressa che ha costruito non so più quanti pozzi e quanti ambulatori/cliniche/ospedali per “aiutare a casa loro” persone che vivono ai margini del mondo moderno. Meglio ancora se, accanto alle opere fisiche, si provvede anche all’educazione, cioè alla corretta divulgazione scientifica per convincere le popolazioni locali della inutilità delle superstizioni utili solo formalmente ma non sostanzialmente alla sopravvivenza in zone veramente impervie del globo.

Come ha sapientemente evidenziato la dottoressa Fazzi, se “riesco ad istruire 10 persone delle popolazioni locali sulla utilità dei vaccini nella prevenzione delle malattie, queste 10 persone a loro volta potranno convincere, ognuna, altre 10 persone e così via di seguito, fino ad arrivare a una situazione in cui la conoscenza potrà ricacciare indietro le credenze tribali e fornire le basi per il reale sviluppo del paese” (ho virgolettato le parole che, però, riportano i concetti espressi dalla dottoressa Fazzi).

Educare.

Alla luce di quanto espresso, l’educazione deve giocare un ruolo primario per “aiutare a casa loro” le persone che vivono in condizioni estreme. L’educazione, però – e questa è una mia considerazione personale che viene dall’aver conosciuto la dottoressa Fazzi – deve riguardare non solo le popolazioni locali, ma anche noi. Dobbiamo imparare che non è sgravandoci la coscienza dai sensi di colpa mediante l’invio di qualsiasi cosa nei paesi in via di sviluppo che possiamo risolvere i loro problemi. Dobbiamo imparare ad ascoltare le persone come la dottoressa Fazzi per capire quali sono le reali esigenze delle popolazioni locali e quali sono le loro risorse naturali. Sono queste ultime a dover essere messe al centro dell’attenzione per poter consentire un vero sviluppo culturale e “fisico” di popoli poveri quali quello dello Zambia.

E la ricerca scientifica?

E questo è il punto, adesso. Cosa facciamo noi in concreto per aiutare i paesi come lo Zambia? L’Agraria di Palermo ha cercato e cerca di operare nei paesi in via di sviluppo per “aiutare a casa loro” le popolazioni locali.

Agli inizi degli anni ’10 di questo secolo è stato sviluppato il  progetto Burundi (qui) grazie al quale la professionalità dei docenti dell’attuale Dipartimento di Scienze Agrarie, Alimentari e Forestali è stata messa a disposizione per la realizzazione di opere concrete affinché le popolazioni locali potessero “crescere” da sole utilizzando le risorse locali.

Poco prima della pandemia del 2020, lo stesso Dipartimento ha realizzato una convenzione col vescovado di Mbulu in Tanzania per la realizzazione di un video divulgativo da diffondere tra le popolazioni del posto in modo da spiegare come risolvere i problemi più comuni legati alle tecniche agricole locali.

Io stesso faccio parte di un gruppo di ricerca internazionale che qualche anno fa ha condotto delle sperimentazioni in Nepal per valutare l’efficienza del biochar nell’aumentare la produzione agricola locale (qui). In particolare, abbiamo potuto verificare che il biochar (se volete sapere che cos’è basta cliccare qui) prodotto con residui vegetali locali (qui per sapere come si produce il biochar in zone in via di sviluppo) e funzionalizzato con urina di vacca, era in grado di incrementare di quattro volte la produzione di zucca.

Potremmo fare altro? Certo che sì. Potremmo fare molto di più che progetti estemporanei che si concretizzano con elaborati utili allo sviluppo di tesi di laurea o di pubblicazioni su riviste più o meno qualificate. Tuttavia, questo richiede non solo la volontà personale di ognuno di noi, ma anche una vera e propria coordinazione globale che coinvolga sia le autorità italiane che quelle dei paesi in via di sviluppo in modo da supportare le attività dei ricercatori ed evitare le esperienze negative molto ben descritte nel libro della dottoressa Fazzi.

Il formaggio non ha più segreti

Il titolo di questo articoletto è un po’ eccessivo, ma non l’ho scelto io. Si tratta del titolo apparso sulla rivista “Formaggi e Consumi” per una intervista all’Ing. Gianni Ferrante della Stelar che parla degli ultimi sviluppi della rilassometria NMR a ciclo di campo per le analisi dei prodotti lattiero-caseari. Si tratta di un progetto ambizioso in cui è coinvolta anche l’Università degli Studi di Palermo nelle figure dei Professori Paolo Lo Meo, Delia Chillura-Martino del Dipartimento STEBICEF, del Prof. Luciano Cinquanta e me del Dipartimento SAAF. L’articolo lo trovate a questo link, oppure cliccando sull’immagine qui sotto.

Fonte dell’immagine di copertina

Un esperimento sulla validità delle mascherine

Chi mi segue sa che ho già pubblicato un paio di articoli sulla validità delle mascherine che stiamo utilizzando per proteggerci dalla diffusione del Sars-Cov2.

Il primo di essi era una lettera aperta ad Enrico Montesano che, tempo fa, affermò in pubblico che le mascherine ci fanno respirare la nostra anidride carbonica e, quindi, sono pericolose. La mia lettera aperta è qui sotto:

Lettera aperta ad Enrico Montesano

Scrissi, poi, un secondo articolo per ribadire ancora una volta che le mascherine non sono in grado di trattenere l’anidride carbonica. Questo articolo fu scritto per rispondere a quelli che affermavano che la barriera posta davanti alla bocca non era in grado di far passare i miliardi di molecole di CO2 che espiriamo in ogni istante della nostra vita. Se siete curiosi, qui sotto c’è il link all’articolo:

Ancora su anidride carbonica e mascherine

Tuttavia, come sapete, le prove sperimentali regnano sovrane nel mondo scientifico. Qualche settimana fa, Daniel Puente ha pubblicato un interessantissimo video in cui ha provato che il livello di saturazione di ossigeno nel sangue non cambia quando si usa la mascherina (sia chirurgica che FFP2) in diverse condizioni fisiche: camminata normale e veloce. Qui sotto il filmato di una decina di minuti che vi consiglio di vedere.

https://www.youtube.com/watch?v=2xiiTNNXwfg

Fonte dell’immagine di copertina

Share