Così parlò Bellavite: quando la retorica si traveste da scienza

Introduzione

Di recente Paolo Bellavite, professore associato presso l’Università di Verona, in pensione dal 2017 e noto per le sue posizioni critiche verso le vaccinazioni e per la promozione dell’omeopatia, ha pubblicato un post sui social (Figura 1) in cui denuncia presunte “censure” e un rifiuto del confronto scientifico da parte delle istituzioni sanitarie. Il pretesto è lo scioglimento del comitato NITAG (National Immunization Technical Advisory Group) da parte del Ministero della Salute.

Il NITAG fornisce indicazioni basate su prove per le strategie vaccinali a livello nazionale, valutando costantemente rischi e benefici in relazione a età, condizioni di salute e contesto epidemiologico. Di questo tema ho già parlato in un mio precedente articolo (Nomine e cortocircuiti: quando l’antiscienza entra nei comitati scientifici).

Al di là della cronaca, però, il post di Bellavite si rivela soprattutto un insieme di slogan e artifici retorici non supportati da evidenze scientifiche solide, costruito sui più classici argomenti cari ai critici delle vaccinazioni. Ed è proprio qui che torna utile un altro parallelismo: le stesse strategie comunicative – indipendentemente dal campo, che si tratti di vaccini o di agricoltura – le ritroviamo nell’universo della “scienza alternativa”. Ne ho dato esempio in un altro articolo, Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci.

I toni retorici possono apparire convincenti a chi non ha dimestichezza con il metodo scientifico ma non reggono alla prova dei fatti. Proviamo dunque a smontare, punto per punto, le argomentazioni dell’ex professore Paolo Bellavite.

Figura 1. Screenshot dalla pagina facebook del Dr. Bellavite.

Il mito della “censura”

Uno degli argomenti più frequenti nella retorica tipica dei critici dei vaccini è l’idea che la comunità scientifica “censuri” le voci “fuori dal coro” per paura o per difendere interessi di un qualche tipo.

Per rafforzare questa immagine, viene spesso evocata la vicenda di Ignác Semmelweis, il medico che nell’Ottocento intuì l’importanza dell’igiene delle mani per ridurre la febbre puerperale. Il paragone, però, è fuorviante. Semmelweis non fu osteggiato perché considerato “eretico” ma perché il contesto scientifico dell’epoca non disponeva ancora degli strumenti teorici e sperimentali necessari a comprendere e verificare le sue osservazioni. La teoria dei germi non era stata ancora formulata e l’idea che “qualcosa di invisibile” potesse trasmettere la malattia appariva inconcepibile. Nonostante ciò, i dati raccolti da Semmelweis erano solidi e difficilmente confutabili: nelle cliniche in cui introdusse il lavaggio delle mani la mortalità scese in maniera drastica. Quei numeri, alla lunga, hanno avuto la meglio.

Oggi, il confronto scientifico avviene tramite peer-review, conferenze specialistiche e comitati di valutazione sistematica delle evidenze (ne ho parlato qualche tempo fa in un articolo semiserio dal titolo Fortuna o bravura? osservazioni inusuali sul metodo scientifico). In definitiva, la scienza non mette a tacere: filtra. Ogni idea può essere proposta e discussa, ma per sopravvivere deve poggiare su dati riproducibili, verificabili e coerenti con l’insieme delle conoscenze disponibili. In mancanza di queste condizioni, non viene esclusa per censura, bensì perché non regge al vaglio delle prove.

Trasformare questo processo di selezione in un racconto di “persecuzione” significa confondere il metodo scientifico con un tribunale ideologico, quando in realtà è solo il meccanismo che permette alla conoscenza di avanzare.

La falsa richiesta di “prove definitive”

Un espediente retorico molto diffuso tra chi vuole mettere in discussione i vaccini è quello di pretendere “prove definitive” – come se esistesse una singola evidenza in grado di dimostrare in modo assoluto l’utilità di un vaccino. La verità è che nessuna terapia medica è vantaggiosa sempre e comunque, ma le raccomandazioni vaccinali si basano su analisi robuste e ben documentate di rapporto rischio/beneficio.
Ecco alcuni esempi concreti e supportati da fonti autorevoli:

Chiedere quindi una singola prova assoluta significa distogliere l’attenzione da un ampio corpus di evidenze solide e riproducibili, e puntare invece su un vuoto nella narrazione che non corrisponde alla realtà scientifica.

“I bambini vaccinati non sono più sani”

Alcuni insinuano che non esistano prove che i bambini vaccinati siano “più sani” o addirittura suggeriscono l’opposto. Ma qui il trucco retorico sta nella vaghezza del concetto di “salute” che può essere interpretato in molti modi.
I dati concreti parlano chiaro: i bambini vaccinati hanno un rischio nettamente ridotto di contrarre malattie infettive gravi e le evidenze epidemiologiche mostrano riduzioni significative della mortalità, delle complicanze e degli accessi ospedalieri.

Questi dati si legano strettamente al paragrafo precedente in cui si evidenziava che vaccinare i bambini – come con il caso del vaccino anti-COVID e la prevenzione del morbillo – non solo limita le infezioni specifiche, ma contribuisce a migliorare la salute complessiva della popolazione infantile.

La retorica dei “vaccini meno tossici”

Un argomento ricorrente tra chi mette in dubbio le vaccinazioni è l’appello a “vaccini meno tossici, monovalenti e senza alluminio”. In realtà, gli adiuvanti a base di alluminio – utilizzati da oltre 90 anni per potenziare la risposta immunitaria – sono presenti in quantità molto inferiori a quelle assunte quotidianamente con l’alimentazione: tra 7 e 117 mg nei primi 6 mesi di vita, a seconda dell’alimentazione, mentre un singolo vaccino ne contiene tra 0.125 e 0.85 mg. In particolare, numerosi studi e monitoraggi hanno evidenziato che, sebbene possano causare arrossamento, dolore o un piccolo nodulo nel sito di iniezione, non esistono evidenze di tossicità grave o effetti duraturi legati ai sali di alluminio. Anche la Fondazione Veronesi conferma: non c’è motivo di dubitare della sicurezza degli adiuvanti, che hanno superato con successo gli studi di sicurezza.

Va, inoltre, sottolineato che proporre vaccini monovalenti (cioè che proteggono da una sola malattia) in alternativa a quelli combinati riduce l’efficacia complessiva delle campagne vaccinali. Le formulazioni polivalenti (come l’esavalente) permettono di proteggere contemporaneamente da più malattie con meno somministrazioni, semplificando i calendari vaccinali e migliorando la copertura.

Questo si traduce in una maggiore efficienza delle campagne, minori costi logistici e un impatto complessivo più forte sulla salute pubblica. Lo confermano anche diversi studi su riviste di settore. Per esempio, un trial pubblicato su Lancet ha documentato un’efficacia del 94.9 % contro la varicella e fino al 99.5 % contro altre forme virali moderate o severe, mentre una meta-analisi del 2015 ha evidenziato che le formulazioni combinate mantengono un profilo di sicurezza e immunogenicità paragonabile, ma più efficiente rispetto alle somministrazioni separate. Infine, in un recente studio caso-controllo, il vaccino Priorix‑Tetra (MMRV) ha mostrato un’efficacia dell’88‑93 % contro la varicella dopo una sola o due dosi, e del 96 % contro le ospedalizzazioni.

Come ogni farmaco, i vaccini possono avere effetti collaterali, ma sono rari e attentamente monitorati tramite sistemi di farmacovigilanza che possono intervenire tempestivamente in caso di sospetti. Definire i vaccini “tossici” senza distinguere fra effetti lievi e transitori (come febbre o gonfiore locale) e eventi gravi, ma estremamente rari, è un artificio retorico che induce confusione. In realtà, i benefici delle vaccinazioni – prevenire malattie gravi, complicanze e morti – superano di gran lunga i rischi, grazie anche a un sistema di sicurezza ben strutturato.

Le “analisi pre-vaccinali”

Uno dei cavalli di battaglia dei critici dei vaccini è l’utilizzo di analisi pre‑vaccinali – come test genetici, tipizzazione HLA o dosaggi di anticorpi – per valutare il rischio individuale o l’immunità naturale. A prima vista può sembrare una precauzione intelligente ma in realtà è un’idea infondata e controproducente. Gli eventi avversi gravi legati alle vaccinazioni sono estremamente rari e non correlabili a marcatori genetici o immunologici conosciuti. Al momento non esistono esami in grado di prevedere in anticipo chi potrebbe sviluppare una reazione avversa significativa.

Studi su varianti genetiche e reazioni avverse da vaccino (come studi su polimorfismi MTHFR o antigeni HLA) hanno dimostrato che l’uso di questi test non è scientificamente rilevante, né affidabile per prevenire eventi avversi.
La Federazione Nazionale degli Ordini dei Medici ha ribadito con forza che:
«La richiesta di esami diagnostici da eseguire di routine prima della vaccinazione non ha alcuna giustificazione scientifica».
In altre parole, valutare il rischio da vaccinazione è responsabilità del medico curante, basata su anamnesi e valutazioni cliniche, non su test di laboratorio preliminari.

Nel suo magazine di divulgazione, la Fondazione Veronesi – attraverso l’esperto Pier Luigi Lopalco – risponde chiaramente alla domanda “Esistono test pre‑vaccinali per valutare possibili effetti collaterali?”, la risposta è netta: non esistono.

L’introduzione obbligatoria di esami prevaccinali renderebbe logisticamente impossibili le campagne, ostacolando la copertura diffusa necessaria per l’immunità di gregge. Le vaccinazioni funzionano proprio perché applicate su larga scala, creando uno scudo comunitario che riduce la circolazione dei patogeni.

L’inversione retorica: “noi siamo la vera scienza”

Un tratto distintivo della comunicazione di chi contesta le vaccinazioni è la pretesa di incarnare la “vera scienza”, accusando al tempo stesso le istituzioni di rifiutare il confronto. È un vero rovesciamento di prospettiva: si imputa alla comunità scientifica un atteggiamento dogmatico, mentre ci si propone come gli unici detentori delle “vere prove”. In pratica, si pretende di cambiare le regole del gioco scientifico, così che affermazioni prive di fondamento possano essere messe sullo stesso piano delle evidenze prodotte e validate dall’intera comunità. È come voler riscrivere le regole del Monopoli per far sì che a vincere non sia chi accumula dati e dimostrazioni, ma chi urla di più o pesca la carta giusta al momento opportuno.

La realtà è un’altra: il confronto scientifico non si svolge sui social o nei talk show, ma nelle riviste peer-reviewed, nei congressi specialistici e nei comitati di valutazione delle evidenze. Ed è in questi contesti che certe tesi non trovano spazio, non per censura, ma per una ragione molto più semplice: mancano dati solidi che le sostengano.

Conclusione: la scienza contro gli slogan

Il caso Bellavite mostra come il linguaggio della scienza possa essere piegato e trasformato in uno strumento di retorica ideologica: un lessico apparentemente tecnico usato non per chiarire ma per confondere; non per spiegare ma per insinuare dubbi e paure privi di basi reali.

I vaccini rimangono uno dei più grandi successi della medicina moderna. Hanno ridotto o eliminato malattie che per secoli hanno decimato intere popolazioni. Certo, come ogni atto medico comportano rischi, ma il rapporto rischi/benefici è da decenni valutato e aggiornato con metodi rigorosi ed è incontrovertibile: il beneficio collettivo e individuale supera enormemente i rari effetti collaterali.

In politica, come nei discorsi attraverso cui si criticano le vaccinazioni, accade spesso che a prevalere siano slogan facili e interpretazioni personali. Il dibattito si trasforma così in un’arena di opinioni precostituite, dove il volume della voce sembra contare più della solidità delle prove. Ma la scienza non funziona in questo modo: non si piega alle opinioni, non segue le mode e non obbedisce agli slogan. È un processo collettivo, autocorrettivo e guidato dai dati, che avanza proprio perché seleziona ciò che resiste alla verifica e scarta ciò che non regge all’evidenza.

Chi tenta di manipolare questo processo dimentica un punto essenziale: la verità scientifica non appartiene a chi urla più forte, ma a chi misura, dimostra e sottopone i risultati al vaglio della comunità. È questo meccanismo che, tra errori e correzioni, consente alla scienza di progredire e di migliorare la vita di tutti.

Nota a margine dell’articolo

Sono perfettamente consapevole che questo scritto non convincerà chi è già persuaso che i vaccini siano dannosi o chi si rifugia dietro un malinteso concetto di “libertà di vaccinazione”. Desidero però ricordare ai miei quattro lettori che l’Art. 32 della nostra Costituzione recita:

“La Repubblica tutela la salute come fondamentale diritto dell’individuo e interesse della collettività, e garantisce cure gratuite agli indigenti. Nessuno può essere obbligato a un determinato trattamento sanitario se non per disposizione di legge. La legge non può in nessun caso violare i limiti imposti dal rispetto della persona umana”.

La Corte Costituzionale, interpretando questo articolo, ha più volte ribadito che la salute pubblica può prevalere su quella individuale. Già con la sentenza n. 307/1990 e la n. 218/1994 ha chiarito che l’obbligo vaccinale è compatibile con la Costituzione se proporzionato e giustificato dall’interesse collettivo. La sentenza n. 282/2002, pur riguardando i trattamenti sanitari obbligatori in ambito psichiatrico, ribadisce il principio generale: un trattamento sanitario può essere imposto per legge, purché rispettoso della dignità della persona. Infine, la più recente sentenza n. 5/2018 ha confermato la piena discrezionalità del legislatore nell’introdurre obblighi vaccinali a tutela della salute pubblica.

Il mio intento non è convincere chi non vuole ascoltare, ma offrire strumenti a chi esita, a chi è spaventato. La paura è umana, comprensibile, ma non ha fondamento: i dati dimostrano che vaccinarsi significa proteggere sé stessi e, soprattutto, la comunità di cui facciamo parte. È questo il senso profondo dell’art. 32: la salute non è mai solo un fatto privato, ma un bene comune.

Le interviste impossibili: incontriamo Benjamin Franklin

Ed eccomi a volare con la fantasia nel nuovo mondo. Sono verso la fine del Settecento, e mi ritrovo in un ambiente completamente diverso dal laboratorio di Faraday. Qui tutto profuma di carta, inchiostro e… ozono. È il tipico studio settecentesco con scaffali pieni di libri, strumenti per esperimenti elettrici, penne d’oca e un calamaio ancora macchiato di lampi. Di fronte a me, un uomo dallo sguardo vivace, i capelli incorniciati da una parrucca bianca, gli occhi pieni di una curiosità che sembra non aver conosciuto stanchezza. È Benjamin Franklin.

– Dr. Franklin, grazie per avermi accolto. Come sa, sto facendo un reportage di interviste impossibili. Ho già incontrato i Professori Boyle, Lavoisier e Faraday. Immagino che lei abbia un’idea chiara del loro ruolo nello sviluppo della chimica.
– Eccome se ce l’ho! Boyle ha fatto ordine nel caos, Lavoisier ha messo la logica sopra i miti, Faraday ha liberato l’elettricità dalle catene del mistero. Io, modestamente, sono stato il più impaziente: mentre loro costruivano i palazzi della chimica, io mi divertivo a bussare alle porte della natura con un aquilone in mano. Non sarà accademico, ma ha funzionato.

– L’aquilone… ma come le è venuto in mente?
– Guardi, io non avevo un laboratorio attrezzato come i vostri scienziati moderni. Ma avevo occhi, mani e fantasia. L’aquilone era un gioco da bambini, e io lo usai come un filo teso fra cielo e terra: bastò un po’ di coraggio per trasformarlo in esperimento. In fondo la scienza è questo: prendere ciò che sembra un passatempo e scoprire che nasconde una legge dell’universo.

– Sa che oggi esperimenti del genere sarebbero liquidati come estremamente pericolosi e verosimilmente non verrebbero autorizzati?
– Ne sono certo! Se avessi chiesto un permesso ufficiale per far volare un aquilone sotto un temporale, mi avrebbero rinchiuso prima ancora di spiegare il progetto. Ma vede, la conoscenza non nasce dall’attesa di un timbro: nasce dall’osservazione e dal coraggio. Senza un po’ di rischio, non avremmo mai imparato che il fulmine e la scintilla erano fratelli.

– Cosa pensa, allora, delle normative attuali che impongono l’uso di strumenti sicuri, sia per l’ambiente che per gli umani per realizzare esperimenti?
– Penso che siano un segno di maturità. Io ho corso rischi che oggi giudico folli: la curiosità mi salvò, ma avrei potuto perderci la vita. E nessuna scoperta vale quanto una vita umana. Indiana Jones può far sorridere sullo schermo, ma nella realtà un uomo che gioca costantemente con la morte non è un eroe, è uno sciocco. La vera grandezza della scienza sta nel proteggere e migliorare la vita, non nel sacrificarla per un colpo di fortuna.

– Il parafulmine è stata una delle sue invenzioni più utili. È curioso che anche qui ci fu chi si oppose, accusandola quasi di voler interferire con la volontà divina.
– Già! Alcuni predicatori sostenevano che fermare il fulmine significasse ribellarsi a Dio. Io replicai che Dio ci aveva dato l’intelligenza proprio per proteggerci. Non vedo differenza fra un tetto che ripara dalla pioggia e un parafulmine che ripara dal fuoco celeste.

– Lei ha fatto chiarezza, molta chiarezza, nel “decodificare” i fulmini. Alla fine, lei ha capito che si trattava di fenomeni naturali legati all’elettricità. In qualche modo ha aperto un varco nella comprensione di fenomeni che venivano associati all’ira divina: una volta Zeus, poi il Dio dei cristiani.
– Esatto. E non mi pare che Dio si sia offeso perché abbiamo capito come funziona un fulmine. Se la pioggia non è più vista come il pianto degli dèi ma come il ciclo dell’acqua, nessuno si scandalizza. Io credo che l’Onnipotente ci abbia dato la ragione proprio per usarla: ignorare i fenomeni naturali in nome della paura non è fede, è superstizione. E una società che resta prigioniera della superstizione non cresce, resta in ginocchio davanti al tuono.

– Ma le sue scoperte hanno fatto comprendere che la religione interviene solo quando non riusciamo a spiegarci qualcosa. Noi abbiamo bisogno di comprendere e, se non ci riusciamo, invochiamo un dio…
– È vero: gli uomini hanno sempre chiamato “divino” ciò che non sapevano spiegare. Ogni tuono era Zeus, ogni fulmine l’ira del Cielo. Il guaio è che, a forza di scoprire, gli dèi si sono ritrovati con meno lavoro: ecco perché dico che la scienza, in fondo, li mette in pensione anticipata. Ma questo non toglie dignità alla fede: anzi, la libera dalla superstizione. Un Dio ridotto a tappabuchi della nostra ignoranza è un Dio fragile; un Dio che ci ha dato intelletto e curiosità, invece, si aspetta che li usiamo. Perché la vera bestemmia non è capire il fulmine: è restare in ginocchio davanti al tuono senza mai volerlo capire.

– La capisco, Dr. Franklin. Io però sono ateo, e non riesco a vedere Dio neppure come ipotesi di lavoro. Mi tornano in mente le parole di Margherita Hack: “Dio è un’ipotesi non necessaria”.
– Non mi scandalizza affatto. Io vivevo in un tempo in cui la religione era il linguaggio comune: negarla avrebbe significato isolarsi dal dialogo civile. Ma vede, il bello della scienza è proprio questo: non impone a nessuno la fede o l’ateismo, chiede solo la voglia di capire. Che uno veda in quell’ordine la mano di Dio, o che lo chiami semplicemente Natura, poco importa: la verità resta verità, e il fulmine non obbedisce né al prete né all’ateo.

– Dr. Franklin, lei è passato alla storia come un individuo molto versatile: scienziato, inventore, diplomatico, politico, editore. Chi è lei, in realtà?
– Sono stato tutte queste cose e, al tempo stesso, nessuna soltanto. Non ho mai sopportato le etichette: erano i problemi concreti a chiamarmi, e io rispondevo come potevo. Se serviva un esperimento, facevo lo scienziato; se serviva un accordo, il diplomatico; se serviva chiarezza, scrivevo da editore. Ironia della sorte, mi sentivo più un apprendista della Natura che un maestro, un uomo con troppi mestieri e troppe poche tasche per contenerli. Se dovessi scegliere una definizione, direi che sono stato questo: un curioso ostinato, convinto che la vera identità dell’uomo non stia nel titolo che porta, ma nella scintilla che lo spinge a capire e migliorare il mondo.

– Lei dice giustamente: “la vera identità dell’uomo non è nel titolo che porta, ma nella scintilla che lo spinge a capire e migliorare il mondo”. Allora le rivolgo la medesima domanda che ho fatto al Professor Faraday: sa che una frase del genere nella mia epoca potrebbe essere usata dai complottisti di ogni risma? Questi interpreterebbero la sua dichiarazione come uno sdoganamento dell’ignoranza.
– E allora che lo facciano pure: non sarà certo il loro gracchiare a spegnere il fulmine. Ma sia chiaro: la scintilla che muove l’uomo non è la superbia di credere alle proprie fantasie, è l’umiltà di inchinarsi davanti ai fatti. I complottisti, invece, si fermano al lampo: gridano di aver visto la luce, ma non scaldano nessuno. Non sono ribelli coraggiosi: sono pigri travestiti da profeti, che scambiano il sospetto per pensiero critico e l’ignoranza per libertà. La curiosità autentica smonta i dogmi, anche quelli comodi: chi rifiuta prove e ragione non è un cercatore di verità, è un ciarlatano che preferisce restare al buio.

– Lei non fu solo scienziato. Fu anche diplomatico a Parigi e padre fondatore degli Stati Uniti. Crede che la scienza debba sempre dialogare con la politica?
La politica senza scienza è cieca, la scienza senza politica è muta. Ma attenzione: quando un governante chiude gli occhi davanti ai fatti, non è soltanto cieco, è pericoloso. Governa con l’illusione, e l’illusione uccide più del ferro e del fuoco. Un politico che ignora la scienza è come un capitano che butta la bussola in mare e pretende di guidare la nave “a sentimento”: può anche ingannare i passeggeri per un po’, ma alla fine li porterà sugli scogli. La scienza, se resta chiusa nei laboratori, non salva nessuno; ma la politica che la calpesta condanna un popolo all’ignoranza, alla malattia e alla fame. La verità non si vota e non si compra: un virus non chiede il permesso a un ministro, il clima non attende il consenso di un parlamento. Chi governa contro la scienza governa contro la vita stessa, e questo non è solo un errore politico: è un tradimento morale.

– Negli ultimi anni, anche negli Stati Uniti che lei ha contribuito a fondare, ci sono state politiche definite “antiscientifiche”. L’amministrazione Trump, in particolare, è stata accusata di negare l’evidenza del cambiamento climatico e di ostacolare la ricerca ambientale. Come vede tutto questo?
– Con sgomento. Vede, un politico che rinnega la scienza non è solo ignorante, è colpevole. Trump tratta i fatti come se fossero merce da mercato: accettabili quando tornano comodi, rifiutati quando disturbano i suoi affari. Questo non è governo, è ciarlataneria. Negare il cambiamento climatico non ferma lo scioglimento dei ghiacci, come negare una malattia non guarisce un malato. La politica che finge di non vedere i dati condanna il proprio popolo a pagare il prezzo della menzogna. Io dico che un leader che calpesta la scienza non tradisce solo i suoi contemporanei: tradisce anche le generazioni future, perché lascia in eredità un mondo più fragile, più povero e più ingiusto.

– Quindi la negazione del cambiamento climatico le sembra un grave errore politico?
– Non è un errore: è un atto di irresponsabilità criminale. Perché negare l’evidenza non rallenta il riscaldamento globale, ma lo accelera. Un governante che finge che il problema non esista non solo inganna il suo popolo: lo espone consapevolmente a catastrofi che si potevano prevenire. E questo non è politica, è complicità con il disastro.

– Oggi un tema che divide molto l’opinione pubblica è quello dei vaccini. Alcuni li vedono come una conquista di civiltà, altri come una minaccia alla libertà personale. Lei da che parte starebbe?
– Dalla parte della ragione. La libertà individuale non è mai licenza di danneggiare gli altri. Io stesso mi sono battuto per la libertà politica e religiosa, ma non avrei mai confuso la libertà con il diritto di mettere in pericolo la comunità. Un vaccino protegge non solo chi lo riceve, ma chi gli sta accanto. Rifiutarlo senza motivo è come gettare scintille in una polveriera e chiamarlo “atto di coraggio”: non è coraggio, è incoscienza.

– E come si combatte la disinformazione che avvelena il dibattito pubblico?
– Con la stessa arma che usavo io: rendendo la verità semplice e utile. Io pubblicavo almanacchi pieni di proverbi e osservazioni quotidiane, perché sapevo che la gente non leggeva i trattati, ma capiva benissimo un consiglio chiaro. Oggi dovreste fare lo stesso: spiegare la scienza in modo diretto, farne vedere l’utilità concreta. Una bugia urlata può sedurre, ma una verità spiegata bene è inespugnabile. Chi continua a diffondere fake news non è un ribelle della verità: è un avvelenatore del pozzo comune.

– Una curiosità: se fosse vivo oggi, su cosa avrebbe lavorato?
– Avrei un laboratorio pieno di pannelli solari e aquiloni per misurare l’inquinamento atmosferico! Mi divertirei a trasformare il vento e il sole in energia pulita: perché solo un folle preferirebbe restare schiavo del carbone quando il cielo offre elettricità gratis.

– Sì, ma oggi oltre al sole e al vento abbiamo a disposizione anche il nucleare
– E allora usatelo con intelligenza. Non c’è nulla di “immorale” nell’atomo, immorale è sprecarne il potere o trasformarlo in arma. Io non ho mai avuto paura dell’elettricità: l’ho studiata, imbrigliata, resa utile. Con il nucleare dovreste fare lo stesso. Chi rifiuta l’atomo per pregiudizio è miope quanto chi lo idolatra come panacea. Se il vostro obiettivo è liberare il mondo dalla dipendenza dai combustibili fossili, non potete permettervi dogmi: ogni fonte sicura e sostenibile è un alleato. E ricordatevi che l’ignoranza uccide più di qualsiasi radiazione.

– Prima di salutarla, Dr. Franklin, una battuta finale per chi oggi lotta contro politiche antiscientifiche, magari con la sua ironia pungente.
Dite ai vostri contemporanei che gli ignoranti sono come aquiloni senza filo: volano un attimo, poi si perdono. Ma noi dobbiamo essere parafulmini: attrarre la verità e scaricarla sulla paura. Quanto a chi rifiuta i fatti, lasciatelo gridare al vento: cadrà da solo. Voi intanto costruite scuole, vaccini, energie pulite. Perché il futuro non lo fanno i ciarlatani: lo fanno i coraggiosi che hanno scelto di restare dalla parte della ragione.

E con un sorriso complice, Franklin solleva la penna e lascia un tratto di fulmine tra le righe: non un addio, ma un invito a custodire la scintilla della scienza, sempre.

E mentre il lampo si spegne sulla carta, capisco che la conoscenza non vive soltanto nei laboratori e negli strumenti, ma anche nei libri, nei versi, negli sguardi di chi cerca la verità nel cuore dell’uomo e nella natura. È lì che mi attende il mio prossimo viaggio…

Note Bibliografiche

B. Franklin (2022). Autobiography of Benjamin Franklin. Philadelphia

B. Franklin (1751). Experiments and Observations on Electricity. London: E. Cave

B. Franklin (1751). Observations Concerning the Increase of Mankind, Peopling of Countries, etc. Philadelphia

B.  Franklin (2023). Poor Richard’s Almanack. Philadelphia

 

 

Le interviste impossibili: incontriamo Michael Faraday

Lasciata Parigi, dove ho avuto l’onore di dialogare con Antoine Lavoisier, faccio rotta verso l’Inghilterra. È il 1831 — almeno, così mi piace pensare — e la bruma londinese avvolge i sobborghi di Newington Butts. Qui, in una piccola casa modesta, mi attende Michael Faraday: chimico, fisico, autodidatta, uomo dalla curiosità inesauribile. Dai suoi esperimenti nascono concetti e scoperte che hanno plasmato la chimico-fisica moderna: l’elettromagnetismo, le leggi dell’elettrolisi, l’introduzione di termini come “anodo” e “catodo”, e quell’inimitabile ciclo di lezioni che raccolse in The Chemical History of a Candle. Un uomo che, pur privo di studi matematici formali, ha saputo leggere nel linguaggio segreto della natura e tradurlo in esperimenti chiari e affascinanti.

— Buongiorno, Professor Faraday. Sono onorato che lei abbia voluto incontrarmi.
— Buongiorno a lei, e benvenuto a Londra. Sono lieto di parlare con chi mostra curiosità per la scienza, perché la curiosità è la fiamma che accende ogni scoperta.

— Professor Faraday, il suo nome è legato a scoperte epocali in campi diversi. Partiamo dall’elettrochimica: come nacquero le sue famose leggi dell’elettrolisi?
— Tutto è cominciato facendo esperimenti, con tanta pazienza e un po’ di ostinazione. L’elettrolisi, per dirla semplice, è quando si fa passare corrente elettrica in un liquido — come una soluzione salina — e agli elettrodi avvengono reazioni chimiche: si formano gas, si depositano metalli, o si liberano altre sostanze. Mi resi conto che la quantità di sostanza prodotta non era mai a caso: più elettricità facevo passare, più materia ottenevo. Questo è il cuore della mia prima legge. Poi, cambiando sostanza — oro, rame, idrogeno, ossigeno… — vidi che, se facevo passare sempre la stessa “dose” di elettricità, ottenevo quantità diverse di materiale, ma sempre in proporzione a un valore caratteristico di quella sostanza, il cosiddetto “peso equivalente”. In fondo, quelle regole erano già lì, scritte nella natura: io ho solo avuto la pazienza di osservarle e metterle nero su bianco.

— Questo è quanto hanno affermato, tra le righe, anche il Professor Boyle e Monsieur Lavoisier che, immagino, lei conosca.
— Eccome se li conosco! Boyle, con il suo modo rigoroso di sperimentare, ha aperto la strada a tutti noi: era convinto che le leggi della natura fossero lì da scoprire, non da inventare. E Lavoisier… be’, lui ha saputo dare un ordine e un linguaggio alla chimica. Ha dimostrato che nulla si crea e nulla si distrugge, e che il compito dello scienziato è trovare il filo che lega ogni trasformazione. Io ho solo continuato quel lavoro, seguendo il filo della corrente elettrica.

— Quindi, lei ha seguito le orme di monsieur Lavoisier, dimostrando in modo indipendente che aveva ragione.
— Direi piuttosto che ho camminato su un sentiero che lui aveva già tracciato, ma guardando dettagli che, ai suoi tempi, erano nascosti. Lavoisier aveva ragione nel dire che la materia si conserva e che le reazioni seguono leggi precise. Io ho potuto vedere quelle stesse leggi in azione nei processi elettrici, e mostrarne il funzionamento quantitativo. In un certo senso, la mia elettrochimica è stata la prova sperimentale di un’idea che lui aveva reso universale.

— E come ha detto monsieur Lavoisier, la scienza è un gioco corale…
— …esattamente. Non c’è un singolo musicista che possa suonare tutta la sinfonia da solo. Ognuno aggiunge una nota, un tema, un’armonia. Boyle ha messo le fondamenta del metodo sperimentale, Lavoisier ha dato ordine e linguaggio alla chimica, e io ho avuto la fortuna di inserirvi l’elettricità come nuova voce. La scienza avanza così: un’idea ispira un’altra, un esperimento ne provoca cento nuovi. È un lavoro che attraversa generazioni, senza gelosie — o almeno, così dovrebbe essere.

— E in questo coro, lei ha introdotto un tema che ha cambiato per sempre la fisica: l’induzione elettromagnetica.
— Fu una delle mie scoperte più care. E nacque da una domanda molto semplice: se una corrente elettrica può generare un campo magnetico, come aveva mostrato Oersted, non sarà possibile anche il contrario? Mi misi al banco di lavoro con fili di rame, bobine, magneti e molta pazienza. Scoprii che muovendo un magnete vicino a un circuito, o variando il campo magnetico che lo attraversa, in quel circuito compare una corrente. Una corrente “indotta”. Non serviva contatto diretto: il cambiamento del campo era sufficiente.

— Un principio che oggi è alla base dei generatori e dei trasformatori elettrici…
— All’epoca non pensavo certo alle centrali elettriche: vedevo solo un nuovo modo in cui natura e movimento dialogano. Ma la bellezza della scienza è che ciò che nasce da curiosità pura, un giorno, può cambiare il mondo.

— Questa è l’idea della ricerca di base, un tipo di ricerca che, come avrà sicuramente saputo, oggi viene ritenuta inutile. Oggi, nella stesura dei progetti per ottenere finanziamenti, occorre anche descrivere i risultati attesi e le possibili applicazioni…
— Ah, capisco. Ma vede, la ricerca di base è come seminare in un terreno fertile: non si può sempre sapere in anticipo quale frutto crescerà, né quando. Se nel 1831 mi avessero chiesto quali applicazioni pratiche avrei tratto dall’induzione elettromagnetica, avrei potuto solo dire: “Ancora non lo so, ma è un fenomeno reale e va compreso”. Eppure, da quella curiosità oggi nascono la produzione e la distribuzione dell’elettricità. La scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.

— Bellissimo ciò che ha detto… la scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.
— E glielo posso raccontare con un piccolo episodio personale. Quando iniziai a parlare dei miei esperimenti sull’elettricità, alcuni colleghi mi chiesero: “Ma a cosa serve tutto questo? Cosa produrrà di utile?” Io risposi semplicemente: “Non lo so ancora… ma quando lo scoprirò, sarà più utile di qualsiasi risposta affrettata”. Ridono ancora, quando lo racconto, perché nessuno allora poteva immaginare che quei giochi con fili e magneti un giorno avrebbero illuminato case, fabbriche e città intere. La curiosità pura è stata il mio unico motore. Non ho mai pensato che l’utilità pratica dovesse precedere la comprensione; credo fermamente che le leggi della natura si rivelino meglio a chi le osserva con meraviglia e senza fretta.

— È davvero straordinario come la curiosità pura abbia portato a scoperte così rivoluzionarie… eppure, lei non si è fermato all’elettricità: ha anche esplorato la luce.
— Sì, e anche qui è stata la stessa curiosità a guidarmi. Nel 1845, mentre studiavo l’influenza dei campi magnetici sulla materia, mi venne in mente di verificare se la luce potesse essere influenzata da un campo magnetico. Preparai un esperimento semplice: un raggio di luce che passava attraverso una sostanza trasparente immersa in un campo magnetico. Con grande stupore, notai che il piano di polarizzazione della luce ruotava leggermente.

— Questo è ciò che oggi chiamiamo effetto Faraday
— È il primo esempio noto di interazione tra luce e magnetismo, e dimostrò che la luce e il magnetismo non sono fenomeni separati, ma legati da un principio comune. All’epoca non conoscevo l’equazione di Maxwell — che sarebbe arrivata solo qualche decennio dopo — ma intuivo che elettricità, magnetismo e luce fossero fili di uno stesso tessuto. Il mio compito era solo tirare uno di quei fili per vedere come vibrava l’intero intreccio.

— Professor Faraday, lei ha dimostrato di saper fare scoperte enormi senza una formazione matematica formale. Come ci è riuscito?
— Non ho mai considerato la matematica un ostacolo insormontabile, ma uno strumento che, se necessario, avrei potuto imparare. La mia forza era nel laboratorio, nell’osservazione meticolosa, nell’immaginare esperimenti semplici che potessero dare risposte chiare. Credevo — e credo ancora — che il pensiero sperimentale sia universale: se la natura ti mostra un fenomeno, puoi comprenderlo anche senza formule complesse, purché tu abbia pazienza, rigore e umiltà.

— A proposito di umiltà, lei ha spesso rifiutato titoli e onori…
— Sì, perché il vero riconoscimento per uno scienziato non è una medaglia, ma vedere che le sue scoperte entrano a far parte della vita di tutti. Ho sempre pensato che la scienza debba restare al servizio dell’uomo, non dell’ego dello scienziato.

— …che non è esattamente quello che accade oggi, quando molti di noi — me compreso — provano un certo piacere a stare sotto i riflettori. E glielo confesso: quando lo dico ai colleghi, vengo anche preso per pazzo.
— Forse perché oggi la visibilità non porta solo applausi, ma anche finanziamenti. E questi, lo so bene, possono arrivare da ogni direzione, compresa quella di chi vende illusioni ben confezionate: omeopatia, biodinamica e altre amenità. Ai miei tempi, la fama non apriva così facilmente le casse di mecenati o aziende; e comunque, il rischio di piegare la scienza a interessi di parte era sempre in agguato. Il punto è ricordare che il palcoscenico passa, mentre la verità scientifica resta — e che oggi, troppo spesso, la dignità e l’autorevolezza scientifica vengono barattate per un piatto di lenticchie.

— Professor Faraday, molti la ricordano anche per le sue celebri Christmas Lectures alla Royal Institution. Come nacque l’idea de La storia chimica di una candela?
— Ogni anno, a Natale, tenevo delle lezioni per i ragazzi. Volevo offrire loro un’esperienza che fosse insieme semplice e affascinante. Scelsi la candela perché è un oggetto comune, familiare a tutti, ma dietro la sua fiamma si nasconde un mondo di fenomeni fisici e chimici.

— Qual era il suo obiettivo nel parlare di una cosa così quotidiana?
— Dimostrare che la scienza non è confinata nei laboratori: è dappertutto. Una candela, accendendosi, mette in scena combustione, convezione, cambiamenti di stato, reazioni chimiche complesse. Volevo che i giovani capissero che anche un gesto banale può essere una porta verso grandi scoperte.

— Qual è il primo segreto che una candela rivela?
— Che la fiamma non è materia, ma energia in azione. La cera, riscaldata, diventa liquida, poi gassosa; il gas brucia liberando calore e luce. È un ciclo continuo di trasformazioni: solido, liquido, gas, e di nuovo energia.

— Lei parlava spesso di osservare prima di spiegare. Come lo applicò in queste lezioni?
Invitavo i ragazzi a guardare: il colore della fiamma, il fumo che si sprigiona quando si spegne la candela, la forma della goccia di cera che si scioglie. Solo dopo passavamo a spiegare il perché di ciò che avevano visto. La curiosità nasce dall’osservazione diretta.

— In fondo, è un po’ la stessa filosofia della sua ricerca…
Sia che studi l’elettromagnetismo, sia che guardi una candela, l’approccio è lo stesso: osservare con attenzione, porre domande, non dare nulla per scontato.

— Cosa pensa che La chimica di una candela possa insegnare ancora oggi?
— Che la scienza è nelle mani di chi sa guardare. Non importa se il laboratorio è una stanza piena di strumenti o il tavolo di cucina: ciò che conta è la capacità di meravigliarsi e di cercare risposte.

— Sa che queste sue parole potrebbero essere usate oggi, nella mia epoca, da complottisti di ogni risma? Gente che si riempie la bocca di “pensiero indipendente”, “Galilei era uno contro tutti” e così via cantando…
— Oh, conosco bene il rischio. Ma vede, c’è una differenza sostanziale: il vero pensiero indipendente nasce dallo studio rigoroso e dall’osservazione onesta della realtà; quello dei complottisti nasce spesso dal rifiuto pregiudiziale delle prove. Galilei non era “uno contro tutti” perché amava contraddire: era uno che portava dati, misure, esperimenti ripetibili. Se oggi qualcuno brandisce il suo nome per giustificare opinioni infondate, sta confondendo la curiosità con l’arroganza e il metodo scientifico con la chiacchiera da taverna. E guardi che lo stesso vale per una candela. Posso raccontare che la fiamma è alimentata da minuscole fate luminose che ballano nell’aria: suona poetico, e qualcuno potrebbe pure crederci. Ma basta un semplice esperimento per dimostrare che la luce e il calore vengono dalla combustione di vapori di cera. La scienza non è negare la fantasia — è verificarla.

— Professor Faraday, se dovesse riassumere in poche parole il senso del suo lavoro, cosa direbbe?
— Direi che ho passato la vita a inseguire scintille: alcune erano letterali, altre metaforiche. Ma ogni scintilla, se seguita con attenzione, può accendere una fiamma di conoscenza.

Mentre lascio la sua casa, il cielo di Londra è ancora avvolto nella bruma, ma nella mia mente resta accesa una piccola luce: quella di una candela che, sotto lo sguardo paziente di Michael Faraday, si trasforma da semplice oggetto quotidiano in una lezione eterna di curiosità, rigore e meraviglia.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra fili di rame e campi invisibili, scopriremo che la scienza può unire fenomeni che sembravano mondi separati, guidata dalla stessa curiosità che accende una fiamma e illumina una mente.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L.  Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Michael Faraday (1845) Experimental Researches in Electricity. Philosophical Transactions of the Royal Society

Michael Faraday (1866) Storia Chimica di una candela. Editori della Biblioteca Utile

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Le interviste impossibili: incontriamo Robert Boyle

Come i miei quattro lettori sanno, sono un appassionato di chimica. Ne ho fatto la mia professione, unendo la passione per la ricerca – il mio giocattolo preferito, con cui smonto la realtà, ne indago i segreti e poi la rimonto – a quella per la didattica che, nel tempo, mi ha rivelato un lato inatteso: la voglia di rendere “digeribili” agli studenti concetti chimici anche molto complessi.

C’è poi un’altra passione: la storia della chimica. Sono convinto che solo conoscendo ciò che è accaduto in passato si possa capire come e perché una disciplina si sia sviluppata in una direzione piuttosto che in un’altra.

Da queste premesse nasce questa rubrica dal titolo: Le interviste impossibili. Si tratta una serie di incontri – ovviamente immaginari – con grandi scienziati del passato, principalmente chimici, con i quali intavolerò discussioni che potranno spaziare dalla scienza alla politica, dall’etica ad altre questioni che il dialogo potrà far emergere. Saranno conversazioni interamente frutto della mia immaginazione, ispirate alla filosofia scientifica e al pensiero della persona intervistata.

E per cominciare, chi meglio di Robert Boyle? Un uomo che, nel 1661, con Il chimico scettico, ha segnato la nascita della chimica moderna, abbandonando le nebbie dell’alchimia per abbracciare la luce della sperimentazione. Sarà lui il primo ospite di questa serie, e vi assicuro che, nonostante i suoi 400 anni portati con una certa eleganza, ha ancora parecchie cose da dire.

_______________________

Buongiorno, professor Boyle.
— Buongiorno a lei, signore. Mi perdoni se non mi alzo: questa pompa pneumatica è un po’ capricciosa e non vorrei perdere il vuoto proprio adesso.
— Vedo che la tratta con grande cura.
— Cura? Direi venerazione. È stata la mia chiave per scardinare vecchie idee. Con essa ho mostrato che l’aria non è un concetto filosofico, ma una sostanza reale, con peso, volume, pressione. Ai miei tempi, molti pensavano che la natura fosse governata da qualità misteriose, imponderabili. Io ho voluto misurare, pesare, verificare.

— E questo cambiò la chimica?
— Cambiò il modo di guardare alla materia. Prima si parlava di “aria”, “fuoco”, “acqua” e “terra” come entità quasi mistiche. Io ho voluto trattarle come sostanze concrete. Senza questa svolta, dubito che la chimica avrebbe potuto diventare lo strumento potente – e pericoloso – che è oggi.

— Pericoloso?
— Oh, sì. Ai miei tempi, il pericolo era limitato dal ritmo lento della ricerca: poche persone, pochi strumenti, pochi esperimenti. Oggi vedo una velocità inaudita: sintetizzate composti che non esistono in natura e li disperdete nell’ambiente prima ancora di comprenderne a fondo le conseguenze. Pensate alla plastica: una meraviglia della chimica moderna, ma anche un nuovo sistema chimico, onnipresente nei mari e nei corpi degli animali. Noi scienziati dobbiamo ricordare che ogni “creazione” lascia un’impronta.

— Quindi anche nel XVII secolo si poteva parlare di impatto ambientale?
— Certo, ma in forme diverse. I metallurgi avvelenavano i fiumi con le scorie, nelle città si bruciava carbone liberando fumi tossici. Noi non usavamo la parola “inquinamento”, ma ne sentivamo gli effetti: miniere abbandonate, aria irrespirabile nelle botteghe, malattie croniche tra i lavoratori. Solo che nessuno collegava questi effetti alle cause chimiche: mancava il concetto stesso di “responsabilità scientifica verso l’ambiente”.
— E come ci si è arrivati?
— È stato un percorso lento, nato dall’osservazione e dall’accumulo di prove. Con l’Ottocento e la rivoluzione industriale, l’aumento di fumi e scorie divenne innegabile; nel Novecento, con la chimica capace di produrre composti mai visti in natura, si cominciò a capire che ogni reazione ha conseguenze non solo in laboratorio, ma anche nei fiumi, nei campi e nei corpi. Gli esempi non mancano: le piogge acide dovute alle emissioni industriali, il DDT che si accumulava nelle catene alimentari, il buco nello strato di ozono causato dai clorofluorocarburi. Fu allora che l’umanità iniziò a capire che l’ambiente non era un contenitore infinito, ma un sistema delicato, capace di spezzarsi sotto il peso delle nostre stesse invenzioni. Oggi chiamate questo approccio “valutazione dell’impatto ambientale”: è la naturale estensione del metodo scientifico. Osservare, misurare e trarre conclusioni, ma applicato non solo all’esperimento, bensì alle sue conseguenze sul mondo reale. E, cosa ancora più importante, farlo prima di introdurre su larga scala una nuova sostanza o tecnologia. Tanto che in molti Paesi questo esame preventivo è diventato un obbligo di legge: un modo per ricordare che la prudenza non è un freno al progresso, ma la sua assicurazione.

— Come vede il rapporto tra scienza e politica oggi?
— Non troppo diverso da allora: la politica ama la scienza quando porta vantaggi immediati, ma la ignora – o la ostacola – quando chiede pazienza e prudenza. Ai miei tempi, un re o un mecenate finanziava un esperimento se prometteva ricchezza o prestigio; oggi, un governo o un’azienda lo finanziano se promette profitto o consenso. La differenza è che oggi gli effetti sono globali, non locali.

— E anche la scienza stessa è cambiata.
— Oh, sì. Mi avete parlato di questa massima: publish or perish, pubblica o scompari. Ai miei tempi pubblicare era un atto ponderato, spesso il lavoro di una vita. Ora vedo un’esplosione di articoli, ma molti sono come bolle di sapone: luccicanti per un attimo, poi svaniscono. Alcuni dicono poco o niente, altri celano errori gravi, e vi sono perfino casi di falsità intenzionali. Mi avete raccontato di un certo Jan Hendrik Schön, che riempì riviste prestigiose di risultati entusiasmanti sui transistor molecolari… peccato che fossero artefatti. Grafici identici per esperimenti diversi, dati “cancellati” per mancanza di spazio…
— E la comunità scientifica?
— Ha fatto ciò che doveva: ha verificato, smascherato e ritirato quegli studi. Ma il danno d’immagine resta: basta un imbroglione per far credere a molti che tutta la scienza sia marcia.

— E non è solo un problema di chi scrive articoli. Anche chi siede nei comitati scientifici ha responsabilità enormi.
— Certamente. Mettere in un comitato tecnico persone che rifiutano le basi stesse della disciplina che dovrebbero consigliare è come nominare un astrologo direttore di un osservatorio astronomico, o un alchimista a capo di un laboratorio chimico. Ai miei tempi, la Royal Society aveva un motto: Nullius in verba, “non fidarti della parola di nessuno”. Oggi dovreste aggiungere: “ma fidati dei dati”.
— E invece?
— Invece vedo che talvolta si preferisce dare spazio a voci che piacciono al pubblico, o che creano polemica, piuttosto che a quelle fondate sulla prova. È un cortocircuito pericoloso: si confonde il dibattito scientifico, che nasce dall’evidenza, con l’opinione personale, che nasce dal pregiudizio.

— Torniamo un attimo al suo Chimico scettico: il suo invito era a dubitare, a verificare.
— Sì. Lo scetticismo è la virtù cardinale dello scienziato. Senza di esso, si scivola nell’illusione. Oggi, a quanto vedo, convivono scoperte straordinarie e credenze assurde: si creano vaccini in pochi mesi e allo stesso tempo si vendono boccette di acqua “miracolosa” che pretendono di curare tutto.
— Omeopatia.
— Già. La chiamerei “chimica dell’assenza”: meno sostanza c’è, più miracoli si promettono. È un concetto che mi lascia perplesso: ho passato la vita a misurare e qui si celebra ciò che non si può misurare.

— Se potesse dare un consiglio agli scienziati di oggi?
— Non dimenticate che ogni molecola che “create” entrerà in qualche ciclo della natura. E ricordatevi che la scienza non è una collezione di verità scolpite nella pietra, ma un cantiere aperto, dove ogni scoperta deve essere messa alla prova, anche – e soprattutto – quando sembra troppo bella per essere vera.

— Ultima domanda, professore: se le offrissi un bicchiere di acqua “omeopatica” per la salute?
— (Sorride) Lo accetterei… ma solo se avessi sete.

_______________________

Saluto il professor Boyle e mi avvio verso il prossimo appuntamento impossibile. Il mio interlocutore, ghigliottinato nel 1794, aveva una convinzione incrollabile: nulla si crea, nulla si distrugge. Ma, come scopriremo presto, non tutto si conserva…

Note Bibliografiche

R. Boyle (ed. 2013) The skeptical chymist. Dover Publications

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L. Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

A. Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica. Edises

 

Nomine e cortocircuiti: quando l’antiscienza entra nei comitati scientifici

È di queste ore la notizia che il ministro della salute, Orazio Schillaci, ha nominato nel Gruppo Tecnico Consultivo Nazionale sulle Vaccinazioni (NITAG) due tecnici, Paolo Bellavite ed Eugenio Serravalle, dalle posizioni, in più occasioni espresse pubblicamente, in contrasto con quanto riportato nella letteratura scientifica più accreditata (quest’ultima può essere rappresentata dagli articoli riportati qui, qui, qui e qui).

Che cos’è il NITAG?

Dal sito del Ministero della Salute apprendiamo che: Il NITAG è un Organo indipendente col compito di supportare, dietro specifica richiesta e su problematiche specifiche, il Ministero della Salute nella formulazione di raccomandazioni “evidence-based” sulle questioni relative alle vaccinazioni e alle politiche vaccinali, raccogliendo, analizzando e valutando prove scientifiche.

In altre parole, si tratta di un comitato scientifico che, sulla base di prove scientifiche inoppugnabili, consente al Ministero della Salute e, quindi, al Governo di prendere decisioni importantissime in merito a problematiche relative alla salute pubblica.

Chi è Paolo Bellavite

Bellavite è un medico che fino a qualche anno fa ha ricoperto il ruolo di Professore Associato in Patologia Generale presso l’Università di Verona. Le sue posizioni in merito ai vaccini sono riportate sia in interviste che nei libri che ha scritto e pubblicato. In particolare, egli dice di non essere contrario ai vaccini in quanto tali, ma critica duramente quella che definisce una “ideologia vaccinista”. A suo avviso, la narrazione dominante che presenta i vaccini come soluzione unica e infallibile si configura come un dogma che soffoca il dibattito scientifico e il pensiero critico. “Non ha nulla a che fare con la scienza”, ha affermato in un’intervista, parlando di un clima in cui “l’odio vaccinale è la tomba della medicina”.

Autore del libro “Vaccini sì, obblighi no”, Bellavite contesta soprattutto l’obbligatorietà della vaccinazione, sostenendo che il consenso informato debba restare alla base di ogni trattamento sanitario. Il professore ha anche espresso dubbi sull’efficacia a lungo termine dei vaccini anti-Covid e sulla loro capacità di limitare la diffusione del virus, ricordando che “i vaccinati possono infettarsi e trasmettere il virus, a volte anche più dei non vaccinati”.

Dal punto di vista immunologico, Bellavite mette in guardia contro le possibili conseguenze di una stimolazione eccessiva del sistema immunitario attraverso dosi ripetute. E sull’aspetto etico sottolinea: “Siamo ancora nella fase sperimentale. Ha ragione chi ha paura”.

Naturalmente, egli è anche un forte sostenitore della pratica omeopatica. Infatti, Paolo Bellavite sostiene che l’omeopatia non sia una moda passeggera, ma l’espressione di un profondo cambiamento culturale e scientifico che mette in discussione i limiti dell’attuale paradigma medico meccanicistico e molecolare. Questo approccio tradizionale, pur avendo ottenuto importanti risultati, non ha saputo affrontare efficacemente la complessità biologica e clinica, spesso riducendo la medicina a una frammentazione iperspecialistica. L’omeopatia, al contrario, propone una visione sistemica del paziente, centrata sull’individualità, sulla totalità dei sintomi e sulla stimolazione dei processi endogeni di guarigione, concetti che si allineano con la scienza della complessità. Bellavite rivendica per l’omeopatia una dignità scientifica, sostenendo che essa possa essere studiata con metodi sperimentali avanzati e integrata razionalmente nella medicina moderna. Si oppone con forza a ciò che definisce una campagna denigratoria nei confronti dell’omeopatia da parte dei media e di alcuni esponenti del mondo accademico, accusandoli di diffondere affermazioni false senza consentire un contraddittorio serio e competente. Pur riconoscendo il valore di farmaci convenzionali e vaccini in determinate circostanze, Bellavite li considera soluzioni alternative da adottare solo dopo aver tentato approcci più naturali e fisiologici, come omeopatia, fitoterapia, agopuntura, corretta alimentazione e igiene. In questa visione, l’omeopatia non è solo una medicina possibile, ma una medicina vera e prioritaria, da contrapporre a un uso troppo disinvolto e sintomatico della farmacologia convenzionale.

Chi è Eugenio Serravalle

Serravalle è laureato in Medicina e Chirurgia e specializzato in Pediatria Preventiva, Puericultura e Patologia Neonatale. Egli ha più volte preso posizione contro la vaccinazione di massa dei bambini, soprattutto in relazione al Covid-19. Secondo lui, l’infezione da SARS-CoV-2 non rappresenta un’emergenza sanitaria tra i più piccoli e i potenziali rischi della vaccinazione superano i benefici. “Tutti gli studi scientifici affermano che non vi è alcuna emergenza Covid tra i bambini”, ha dichiarato in un’intervista.

Serravalle contesta anche l’efficacia dei vaccini nel prevenire il contagio, soprattutto con l’avvento delle varianti come Omicron. Secondo la sua analisi, in alcuni casi i vaccinati si infettano più dei non vaccinati e l’immunità acquisita naturalmente sarebbe più duratura. Per questo, a suo dire, non sussistono i presupposti per raggiungere l’immunità di gregge né per giustificare obblighi o pressioni vaccinali.

Oltre ad essere un medico, Eugenio Serravalle risulta diplomato in Omeopatia Classica presso la Scuola Omeopatica di Livorno e svolge attività didattica come professore presso l’Accademia di Omeopatia Classica Hahnemanniana di Firenze.

Come Bellavite, quindi, anche Serravalle è un forte sostenitore dell’omeopatia.

In un articolo intitolato “Il Dr. Eugenio Serravalle risponde a Maurizio Crozza sull’Omeopatia”, Serravalle replica alle battute ironiche del comico Crozza sostenendo con fermezza l’efficacia e la correttezza della pratica omeopatica. Scrive:

“Abbiamo una regolare laurea in medicina… e se abbiamo adottato la terapia omeopatica è perché, evidentemente, ne abbiamo sperimentato l’efficacia.”

“Non si può essere venditori di fumo quando si curano pazienti… e tra questi pazienti sono numerosi i bambini e gli animali che non sono influenzabili dall’effetto placebo.”

Con questa risposta, Serravalle rigetta la critica secondo cui l’omeopatia sarebbe solo “fumo” o priva di efficacia, affermando invece di aver osservato personalmente risultati tangibili, anche in soggetti difficilmente influenzabili da placebo.

Quando i conti non tornano

A leggere le dichiarazioni dei due nominati, si potrebbe pensare di essere davanti a voci “fuori dal coro” che invitano alla cautela. Ma basta andare oltre la superficie per capire che non si tratta di sano scetticismo scientifico: siamo, piuttosto, di fronte a posizioni che, alla luce delle evidenze scientifiche disponibili, risultano in contrasto con il consenso della comunità scientifica. Ed è qui che inizia il vero problema.

Il punto centrale è che un organismo tecnico chiamato a esprimere pareri qualificati in materia di salute pubblica deve basarsi su conoscenze aggiornate e scientificamente inoppugnabili. Non può diventare il ricettacolo di discussioni inutili fatte in nome di una presunta “pluralità di opinioni”. Il concetto di democrazia politica è completamente diverso  – e molto lontano – da quello di democrazia scientifica. In una democrazia politica è legittimo avere opinioni diverse su come affrontare un problema di gestione della res publica. In ambito tecnico-scientifico, invece, un’opinione non qualificata non ha lo stesso peso di quella di chi possiede competenze specifiche e fondate sull’evidenza.

Ecco perché, per esempio, ci fu la levata di scudi del mondo accademico agrario quando si paventò l’ingresso di esponenti della biodinamica in tavoli tecnici per l’assegnazione di fondi all’agricoltura.

A mio avviso, il Ministro ha preso decisioni discutibili, in nome di una pluralità di opinioni che, in ambito scientifico, non ha alcun senso. Sta ora tentando di mettere delle pezze a questa scelta, dimenticando che anche lui è un medico e ha responsabilità che vanno ben oltre la sua funzione politica.

Se mai un responsabile istituzionale si trovasse nella condizione di dover cedere a compromessi, la scelta più coerente con la difesa della scienza sarebbe quella di rassegnare le dimissioni. Servirebbe, come nel caso della biodinamica, una sollevazione compatta del mondo scientifico e medico. Nel frattempo, nel mio piccolo, continuo a far sentire la mia voce e auspico che tutti gli organismi professionali – dagli ordini alle società scientifiche – facciano sentire la loro, in difesa della medicina basata sulle prove e della salute pubblica.

Il cortocircuito dell’antiscienza

Le posizioni di Paolo Bellavite ed Eugenio Serravalle non sono semplicemente “opinioni alternative” in un dibattito tra pari. Non si tratta di ricercatori che presentano dati nuovi, pronti a essere vagliati e discussi dalla comunità scientifica: qui non c’è nessun dato nuovo. C’è, piuttosto, un riciclo di tesi contestate e smentite dalla letteratura scientifica, che riaffiorano come vecchie erbacce tra le crepe del discorso pubblico.

Con l’omeopatia il copione lo conosciamo bene: una pratica nata oltre due secoli fa, costruita su concetti come “similia similibus curentur” e “dinamizzazione”, mai dimostrati in modo riproducibile. Nei miei articoli – dalla presunta memoria dell’acqua (link) alle più recenti fantasie agronomiche (link) – ho mostrato come la letteratura scientifica di qualità non abbia mai trovato un effetto dell’omeopatia superiore al placebo. Chi la difende, spesso, non lo fa su basi sperimentali, ma su convinzioni personali, esperienze aneddotiche o richiami a un presunto “cambiamento di paradigma” che non trova riscontro in alcun dato.

Sul fronte dei vaccini, il meccanismo è simile: si selezionano singoli studi, si estrapolano dati fuori contesto, si enfatizzano le incertezze inevitabili di ogni processo scientifico per far passare l’idea che “non sappiamo abbastanza” o che “i rischi superano i benefici”. Nei miei pezzi – da antivaccinisti ed immunità di gregge a vaccini e corretta informazione scientifica – ho spiegato come l’evidenza accumulata su milioni di dosi mostri una riduzione netta di ospedalizzazioni e decessi.

Quando Bellavite parla di “fase sperimentale” per i vaccini anti-Covid, non sta facendo un’osservazione prudente: formula un’affermazione che non trova riscontro nei dati scientifici, perché quei vaccini hanno completato tutte le fasi di sperimentazione necessarie per l’autorizzazione. Quando Serravalle afferma che “i vaccinati si infettano più dei non vaccinati”, non menziona i dati che mostrano come, pur con una protezione dall’infezione che diminuisce nel tempo, la vaccinazione resti una barriera fondamentale contro le forme patologiche gravi e le loro complicanze.

La contraddizione diventa lampante quando entrambi propongono l’omeopatia come alternativa o complemento “prioritario” alla farmacologia. Il mandato del NITAG è basato sull’evidence-based medicine, e l’omeopatia non rientra in alcuna linea guida internazionale sul trattamento o la prevenzione di malattie infettive. È paragonabile, per incoerenza, a nominare un negazionista del cambiamento climatico in un comitato per la transizione ecologica: il risultato è solo quello di minare la credibilità dell’organo stesso.

Il problema, però, non è solo tecnico. È culturale. Dare spazio istituzionale a posizioni non supportate da dati scientifici significa legittimare un messaggio pericoloso: che le evidenze scientifiche siano opinioni e che la sanità pubblica possa essere guidata da convinzioni personali. È il cortocircuito dell’antiscienza: quando la politica apre la porta a teorie già confutate, la fiducia nelle istituzioni si sgretola e i cittadini restano più esposti a bufale e disinformazione. Come ho scritto altrove  – qui e qui – quando la pseudoscienza entra dalla porta principale, la salute pubblica rischia di uscire dalla finestra.

Tricochimica: un viaggio tra bellezza, scienza e indagini

Introduzione

Che cosa possono raccontarci i nostri capelli? Molto più di quanto immaginiamo. Non sono soltanto un segno di identità o di stile personale, ma vere e proprie architetture biologiche capaci di custodire informazioni preziose: sulla nostra salute, sulle sostanze a cui siamo stati esposti e persino sulle tracce lasciate da trattamenti cosmetici.

È proprio per raccontare questa dimensione scientifica, spesso trascurata, che voglio parlare di tricochimica: uno studio chimico del capello in tutti i suoi aspetti, dall’estetica alla tossicologia e fino all’analisi forense.

Il termine tricochimica non è nuovo: è stato proposto già anni fa dal collega Lucio Campanella, che lo ha usato per descrivere la chimica applicata ai capelli. Riprendo volentieri questo nome, perché lo trovo perfetto per raccontare – in modo serio ma accessibile – i tanti aspetti che uniscono bellezza, scienza e indagini.

La chimica, infatti, non è una disciplina astratta. È uno strumento concreto per capire fenomeni quotidiani. Capire come funzionano le tinture, le permanenti o i trattamenti liscianti significa comprendere reazioni chimiche precise. Allo stesso modo, analizzare i capelli per individuare droghe o metalli pesanti richiede metodiche chimico-analitiche raffinate, fondamentali in medicina legale e nelle indagini forensi.

In questo articolo proverò a esplorare questo campo affascinante e multidisciplinare. Vedremo come sono fatti i capelli, quali trasformazioni chimiche possono subire e come la chimica ci aiuta a leggerne la storia. Un viaggio che unisce bellezza e scienza, con uno sguardo attento anche alle implicazioni sociali ed etiche di queste conoscenze.

Il significato evoluzionistico dei capelli

Per affrontare la chimica dei capelli in modo completo è utile partire da una domanda più profonda: perché l’essere umano ha ancora i capelli sulla testa? A differenza della maggior parte dei mammiferi, che conservano un pelame diffuso sul corpo, la nostra specie si caratterizza per una pelle glabra salvo alcune aree strategiche, come il cuoio capelluto.

Le ipotesi evolutive più accreditate interpretano i capelli come una reliquia evolutiva che ha progressivamente perso molte delle funzioni originarie di isolamento termico. Tuttavia, la loro conservazione sul cranio potrebbe aver offerto vantaggi adattativi. Un ruolo plausibile è la protezione dal surriscaldamento diretto, agendo da schermo contro la radiazione solare intensa, specialmente in climi aperti e soleggiati. Allo stesso tempo, il cuoio capelluto riccamente vascolarizzato favorisce la dispersione di calore in eccesso. La distribuzione e la densità dei capelli umani sono quindi il risultato di una pressione selettiva che ha equilibrato protezione e termoregolazione.

Inoltre, il capello ha mantenuto importanti valenze sociali e sessuali. Il colore, la forma e la consistenza dei capelli variano tra individui e popolazioni, diventando segnali di riconoscimento, età, salute e persino desiderabilità sessuale. Queste caratteristiche hanno stimolato la selezione sessuale e culturale, contribuendo a fare del capello un elemento centrale dell’identità personale.

A conferma della sua rilevanza evolutiva, studi recenti hanno identificato correlazioni genetiche di fine scala con la morfologia del capello, evidenziando la selezione naturale e la divergenza adattativa in diverse popolazioni umane.

Comprendere queste dimensioni evolutive non è solo una curiosità: ci ricorda che la chimica del capello studia un tessuto vivo di storia biologica e culturale. Anche la tricochimica si deve confrontare con questa eredità evolutiva, che plasma le caratteristiche fisiche e chimiche della fibra capillare così come le funzioni sociali che ancora oggi attribuiamo ai nostri capelli.

Nascita e crescita del capello: la biologia del follicolo pilifero

Per comprendere davvero la chimica del capello – la tricochimica – è fondamentale partire dalla sua biologia. Il capello non è soltanto la fibra che vediamo spuntare dalla cute, ma il risultato di un processo di crescita complesso che avviene all’interno del follicolo pilifero, una struttura specializzata immersa nella pelle.

Il follicolo pilifero è una piccola tasca di epitelio che avvolge la parte viva del capello e ne dirige la formazione. Al suo interno si trova la papilla dermica, ricca di vasi sanguigni, che fornisce nutrienti, ossigeno e, non meno importante, trasporta farmaci e metalli pesanti che possono incorporarsi nella fibra in formazione. È proprio grazie a questa connessione vascolare che il capello diventa un archivio biologico capace di registrare, nel tempo, esposizioni a sostanze esterne.

Tradizionalmente, il ciclo di vita del capello si suddivide in tre fasi principali:

Anagen: fase di crescita attiva, che può durare anni. In questa fase le cellule della matrice germinativa si moltiplicano rapidamente e si cheratinizzano progressivamente, formando il fusto del capello che emerge dalla cute. È qui che avviene l’incorporazione più stabile di sostanze esogene, rendendo questa fase cruciale per l’analisi tossicologica.

Catagen: breve fase di regressione (2–3 settimane) in cui l’attività proliferativa si arresta e il follicolo si contrae.

Telogen: fase di riposo (2–6 mesi) al termine della quale il capello smette di crescere e rimane “in attesa” prima di essere espulso.

Vale la pena segnalare che la letteratura più recente tende a riconoscere anche una quarta fase, detta exogen, che descrive in modo più specifico il distacco vero e proprio e la caduta del capello ormai morto dal follicolo. Questa distinzione, pur non essendo sempre adottata in modo uniforme, riflette un approccio più moderno e dettagliato alla biologia del ciclo pilifero.

Un altro aspetto importante del follicolo è la presenza di strutture di supporto come la guaina epiteliale interna, che avvolge la fibra nelle sue prime fasi di formazione. In questa guaina si esprime la trichohyalin (in italiano la tradurrei come tricoialina), una proteina ricca di glutammina che svolge un ruolo cruciale nel conferire resistenza meccanica e nell’ordinare la cheratinizzazione delle cellule. Questa proteina agisce come una sorta di “impalcatura molecolare”, indispensabile per ottenere la struttura finale della fibra capillare.

Capire la biologia del follicolo è dunque essenziale per spiegare non solo la struttura del capello che osserviamo a occhio nudo, ma anche la sua capacità di registrare esposizioni chimiche durante la crescita. Solo conoscendo questo processo si possono comprendere appieno sia la chimica cosmetica (che deve penetrare e modificare la fibra), sia le analisi tossicologiche (che leggono la storia di queste incorporazioni).

Struttura e composizione del capello

Un capello non è un semplice “filo” uniforme: è un materiale biologico complesso, progettato per resistere, proteggere e comunicare caratteristiche individuali come colore, forma e lucentezza.

Architettura della fibra: cuticola, corteccia e midollo

Il capello è costituito da tre parti principali (Figura 1). All’esterno si trova la cuticola, formata da cellule appiattite e sovrapposte a tegola, che proteggono gli strati interni e conferiscono lucentezza grazie alla loro disposizione ordinata. Subito sotto si trova la corteccia, la parte più voluminosa, composta da fibre di cheratina organizzate in macrofibrille e pigmenti melanici che determinano il colore. Qui si stabiliscono i legami chimici (come i ponti disolfuro) che influenzano la forma del capello. Al centro si trova il midollo, una regione meno definita e spesso discontinua nei capelli più fini, che contribuisce all’isolamento termico e alla rigidità.

Figura 1. Struttura schematica di un capello umano.

Composizione chimica: membrana interna, cheratina, lipidi e acqua

A livello chimico, la fibra capillare è un materiale stratificato e sofisticato. La componente principale è la cheratina, una proteina fibrosa costituita da filamenti polipeptidici ricchi di cisteina, che si organizzano in strutture a coiled-coil di tipo α-elica. Queste eliche si associano in filamenti intermedi, che a loro volta formano macro-fibrille, dando alla corteccia un’architettura gerarchica e resistente.  Studi recenti di diffrazione a raggi X hanno confermato questa architettura gerarchica, evidenziando distanze caratteristiche tra filamenti intermedi (90, 45 e 27 Å) che si mantengono costanti in individui con tipi di capelli diversi.

Tra le cellule della corteccia e della cuticola si interpone il Cell Membrane Complex (CMC), una struttura lipidica e proteica laminare che funge da collante idrofobo, regolando la coesione cellulare e la permeabilità all’acqua e alle sostanze chimiche. Esperimenti di microdiffrazione hanno dimostrato che il CMC è sensibile all’umidità, mostrando rigonfiamento al contatto con l’acqua: un aspetto che spiega la sua importanza nei trattamenti cosmetici e nella penetrazione di agenti idrosolubili.

La cuticola, oltre alla funzione protettiva, contiene lamelle ben stratificate che includono β-cheratina, distinta dall’α-cheratina della corteccia, conferendole maggiore compattezza e impermeabilità. Inoltre, la composizione chimica complessiva del capello include lipidi liberi (circa 1-9%), acqua (10-15% circa in condizioni normali), minerali come magnesio, zinco, ferro e rame, oltre a tracce di aminoacidi e vitamine. Questa miscela complessa fornisce al capello proprietà di robustezza, elasticità e resistenza agli stress ambientali, anche se può essere danneggiata in modo irreversibile da trattamenti cosmetici aggressivi, calore e radiazioni UV.

Le proprietà fisiche e cosmetiche del capello dipendono infine dai legami chimici che ne stabilizzano la struttura. I legami a idrogeno sono deboli ma numerosi, si rompono e si riformano facilmente con umidità o calore, ed è grazie a loro che si ottiene l’effetto temporaneo della piega (phon, piastra). Per approfondire la natura e la forza di questi legami nell’acqua e nelle soluzioni, è possibile leggere due articoli che ho scritto sul blog: qui e qui. I legami salini, di tipo ionico, dipendono dall’interazione tra cariche opposte presenti sulle catene laterali degli amminoacidi e sono sensibili al pH. I legami disolfuro, molto più forti, uniscono in modo stabile le catene di cheratina grazie ai ponti tra residui di cisteina e sono i bersagli principali dei trattamenti chimici come permanenti o lisciature.

Conoscere questa struttura complessa è fondamentale per capire come e perché i capelli reagiscono ai trattamenti cosmetici, all’umidità ambientale o ai processi analitici usati in tossicologia e scienze forensi. È il primo passo del nostro viaggio nella tricochimica.

Ulteriori approfondimenti sono disponibili anche qui.

La chimica cosmetica del capello

La chimica cosmetica applicata ai capelli è un settore complesso e affascinante che si occupa di trasformare la fibra capillare attraverso reazioni controllate, con l’obiettivo di modificare colore, forma e aspetto. Uno degli esempi più noti è la colorazione permanente, che si basa su un processo di ossidazione ben studiato. In questo caso si usano due componenti principali: un agente alcalino (come l’ammoniaca o la etanolammina) e un ossidante (generalmente perossido di idrogeno o acqua ossigenata). Il composto alcalino serve ad aprire le squame della cuticola, permettendo al perossido e ai precursori del colore (come la p-fenilendiammina) di penetrare nella corteccia. Lì, il perossido ossida i precursori in intermedi reattivi che, legandosi a opportuni “couplers” (come il resorcinolo), formano grandi molecole di colorante intrafibra, responsabili della tonalità stabile e duratura. Questo processo, come ricorda anche la letteratura recente, è pressoché invariato da oltre un secolo, ma rimane il più efficace per coprire i capelli bianchi e schiarire tonalità naturali. La Figura 2 mostra le strutture chimiche di alcune molecole usate per il trattamento di colorazione permanente.

Figura 2. Molecole usate nei processi di colorazione permanente dei capelli.

I trattamenti per permanenti e lisciature chimiche agiscono invece modificando i legami disolfuro tra le catene di cheratina all’interno della corteccia. Nelle permanenti tradizionali si usa un riducente (come l’acido tioglicolico, Figura 3) per rompere questi ponti, consentendo di avvolgere i capelli su bigodini e fissare la nuova forma. Successivamente si applica un ossidante (solitamente ancora perossido di idrogeno) per riformare i legami disolfuro nella configurazione desiderata. Anche le lisciature chimiche sfruttano lo stesso principio, ma con tecniche e formulazioni diverse per spezzare i ponti disolfuro e fissare una fibra capillare più lineare. Questi processi, pur efficaci, indeboliscono la struttura del capello e ne aumentano la porosità, con conseguenze estetiche e meccaniche rilevanti.

Figura 3. Struttura dell’acido tioglicolico.

Un capitolo delicato è quello dei trattamenti liscianti con formaldeide (Figura 4) o con rilascio di formaldeide, molto discussi per i potenziali rischi per la salute. Il cosiddetto “Brazilian Blowout” e trattamenti simili usano formaldeide (o precursori che la rilasciano a caldo) per creare ponti metilenici tra le catene di cheratina, bloccandole in configurazioni lisce. Tuttavia, l’esposizione ai vapori di formaldeide è un noto rischio cancerogeno e può causare irritazioni acute e sensibilizzazioni. Per questo motivo, normative come quelle dell’Unione Europea vietano o limitano severamente l’uso di formaldeide libera o rilasciata oltre soglie minime, imponendo test e dichiarazioni specifiche sui cosmetici (riferimenti qui, qui e qui).

Figura 4. Struttura della formaldeide.

La cosmetica dei capelli si muove così su un crinale tecnico e normativo importante: da un lato c’è la ricerca di prodotti sempre più efficaci e personalizzati, dall’altro la crescente attenzione alla sicurezza dell’utilizzatore e del professionista. Negli ultimi anni, inoltre, si osserva un forte interesse per alternative più delicate e sostenibili, come colorazioni a basso contenuto di ammoniaca o a base di derivati naturali, e trattamenti liscianti privi di formaldeide, che sfruttano polimeri cationici o derivati di aminoacidi per un effetto condizionante e disciplinante meno aggressivo (riferimenti qui e qui).

L’analisi tossicologica del capello

L’analisi tossicologica del capello è una tecnica consolidata e molto apprezzata in ambito clinico e forense, grazie alla capacità unica di registrare l’esposizione a droghe o metalli pesanti su una scala temporale estesa. A differenza di sangue e urina, che rilevano l’assunzione di sostanze solo per pochi giorni, il capello funziona come un archivio biologico che conserva tracce di esposizione per settimane o mesi, a seconda della lunghezza del campione. Questa proprietà lo rende particolarmente utile per ricostruire storie di abuso cronico, monitorare la terapia sostitutiva, verificare la compliance in percorsi di disintossicazione o per valutazioni legali, come l’idoneità alla guida o l’affidamento dei minori.

I farmaci e i metalli pesanti si depositano nel capello principalmente durante la fase di crescita (anagen), grazie alla circolazione sanguigna che porta le molecole fino al follicolo, la piccola struttura immersa nella cute dove le cellule del capello si formano, si moltiplicano e si cheratinizzano. Una volta incorporate nella matrice di cheratina in formazione, queste sostanze restano stabilmente legate alla struttura del fusto, resistendo alla degradazione per lungo tempo. Altri percorsi di incorporazione includono il sebo, il sudore e in misura minore l’assorbimento ambientale. Tuttavia, i moderni protocolli di lavaggio e decontaminazione riducono il rischio di contaminazione esterna falsamente positiva.

Dal punto di vista analitico, l’analisi tossicologica del capello richiede tecniche di estrazione sofisticate. La fibra capillare, costituita per il 65–95% da cheratina, oltre che da lipidi, acqua e pigmenti, deve essere digerita o frammentata in modo controllato per liberare i composti target senza degradarli. Tra le tecniche più comuni di preparazione ci sono l’idrolisi acida o enzimatica, l’estrazione in solventi organici e la digestione assistita da ultrasuoni. Dopo l’estrazione, le sostanze vengono analizzate con metodi ad alta sensibilità e specificità come la spettrometria di massa accoppiata alla gascromatografia (GC–MS) o alla cromatografia liquida (LC–MS). Queste metodiche consentono di rilevare quantitativi nell’ordine dei picogrammi di numerosi farmaci e metaboliti, inclusi oppiacei, cocaina, cannabis, amfetamine e benzodiazepine, così come metalli pesanti analizzabili via spettroscopia di assorbimento atomico (AAS).

Uno dei principali vantaggi dell’analisi sul capello è la sua “finestra temporale estesa”: ogni centimetro di lunghezza corrisponde approssimativamente a un mese di crescita, permettendo di segmentare il campione per ricostruire una cronologia dettagliata delle esposizioni. Tuttavia, esistono anche limiti e criticità. Trattamenti cosmetici aggressivi come tinture, decolorazioni o permanenti possono ridurre la concentrazione di sostanze depositate o alterarne la distribuzione, rendendo più difficile l’interpretazione. Anche la variabilità individuale (colore, contenuto di melanina, porosità) può influenzare l’assorbimento dei farmaci, rendendo complessa la traduzione quantitativa dei dati in dosi assunte.

Nonostante queste sfide, l’analisi tossicologica del capello rappresenta uno strumento fondamentale in ambito forense e clinico per la sua capacità di documentare l’esposizione remota a sostanze psicoattive o tossiche, offrendo informazioni preziose che integrano e completano quelle ricavabili da sangue o urina.

Conclusioni, prospettive e sfide future

La tricochimica si propone come un campo di studio davvero interdisciplinare, capace di unire la conoscenza chimica della fibra capillare con esigenze estetiche, implicazioni tossicologiche e applicazioni forensi. Comprendere la composizione, la struttura e le trasformazioni chimiche dei capelli significa poter progettare trattamenti cosmetici più efficaci e sicuri, interpretare correttamente le analisi tossicologiche e persino ricostruire storie di consumo di sostanze o dinamiche criminali.

Tra le sfide principali spicca la necessità di una maggiore standardizzazione delle analisi tossicologiche: solventi, protocolli di estrazione, metodi di decontaminazione e tecniche strumentali richiedono armonizzazione per garantire risultati confrontabili e robusti. Anche i trattamenti cosmetici pongono questioni complesse: mentre il mercato cerca prodotti sempre più performanti e personalizzati, resta fondamentale valutarne l’efficacia in relazione alla salute del capello e della persona, evitando ingredienti aggressivi o potenzialmente dannosi.

Il futuro della tricochimica si muove verso un’integrazione sempre più stretta tra cosmetica e tossicologia: l’obiettivo è sviluppare prodotti “smart” e sicuri, capaci di interagire con la fibra capillare in modo controllato, rispettandone la biologia e la chimica. In questo senso, la ricerca multidisciplinare – che unisce chimica organica, biochimica, tossicologia analitica e scienza dei materiali – sarà essenziale per innovare e rispondere alle nuove esigenze di consumatori, professionisti e legislatori.

La tricochimica non è dunque un semplice esercizio accademico: è una disciplina viva e applicata, che tocca la nostra quotidianità, dalla cura estetica all’identità personale, dalla salute alla sicurezza pubblica. Riconoscerne l’importanza e investire nella sua evoluzione significa contribuire a un approccio più consapevole, informato e sostenibile al mondo dei capelli.

Dialogo sopra i due massimi sistemi di cura, nel quale si discorre delle virtù mirabili dell’omeopatia e dell’arte medica fondata su prove

Personaggi:

  • Simplicio, difensore fervente dell’omeopatia e delle medicine alternative.
  • Salviati, filosofo naturalista e uomo di scienza.
  • Sagredo, gentiluomo curioso e attento, che modera il discorso.

[Scena: in una loggia, i tre siedono a discorrere. Il sole volge al tramonto.]

Sagredo: Vi prego, signori miei, di proseguire quella disputa che già stamani cominciaste, acciocché io possa intendere meglio la ragione del contendere.

Salviati: Con piacere. Discorrevamo dell’arte medica, e in specie di quella setta che si vanta di guarire con nulla, chiamata omeopatia.

Simplicio: Vi prego di non schernirla, ché molti l’usano con profitto.

Salviati: Profitto spirituale, forse. Giacché altro effetto io non trovo se non quello che ogni placebo ben somministrato produce.

Simplicio: Eppure vi sono testimonianze infinite di chi fu sanato!

Salviati: Testimonianze infinite vi sono anche di chi ha veduto spiriti, eppure niuno spirito fu mai sezionato né posto in provetta.

Sagredo: Io comprendo che voi, Salviati, chiedete esperimento?

Salviati: E metodo. Che si faccia prova, in doppio cieco, con numero sufficiente, con analisi statistica e rigore.

Simplicio: Ah! Ma la scienza moderna non può comprendere i sottili influssi, le energie informate dall’acqua!

Salviati: Voi dite energie informate? Io non vedo che acqua distillata.

Simplicio: È perché non sapete veder oltre la materia!

Salviati: Se il “vedere oltre” vuol dir fingere, vi cedo volentieri il primato.

Sagredo: Oibò, vi prego di moderarvi!

Salviati: Sagredo, vedi che io sono pacato. Sol domando che, se effetto vi sia, si misuri; e se nulla si misura, si taccia.

Simplicio: Ma la medicina convenzionale ha effetti collaterali!

Salviati: E l’omeopatia ne ha così pochi che si contano sulle dita d’una mano amputata.

Sagredo: Questa è mordace!

Salviati: Mordace, ma vera.

Simplicio: Voi ridete, Salviati, ma ignorate che l’acqua possiede memoria!

Salviati: Memoria? Avete visto forse un quaderno in cui ella scriva?

Simplicio: Non di tal fatta! È memoria sottile, quantica! L’acqua si informa della sostanza e ne mantiene l’energia!

Salviati: Oh meraviglia. E quando la bollite, la memoria resta?

Simplicio: Non siate volgare. Vi son regole per non turbarla.

Salviati: Dunque non lavate i panni con acqua calda, ché potreste dimenticare la formula del sapone?

Sagredo: Orsù, Salviati, non lo provocate oltre!

Simplicio: In verità vi dico che scienziati illustri confermano la memoria dell’acqua!

Salviati: Quali? Quelli che stampano riviste in cui essi stessi son revisori?

Simplicio: Voi siete cieco alla Nuova Scienza Energetica!

Salviati: Mi chiamo uomo di prove. Mostratemi la differenza tra due fiale di pura acqua, una “informatizzata” e l’altra no.

Simplicio: Non avete gli strumenti adeguati!

Salviati: Né voi l’effetto.

Simplicio: Vi è però l’acqua C.G.E.!

Sagredo: Che novità è questa?

Simplicio: È acqua trattata con Codice Galattico Energetico!

Salviati: Galattico? Mi par termine assai vasto.

Simplicio: Appunto, abbraccia l’Universo. Si carica di frequenze armoniche inviate da Maestri Cosmo-spirituali!

Salviati: Mi fate intendere che l’acqua, già dotata di memoria, ora riceve telegrammi celesti?

Simplicio: Così è! E guarisce ogni male, dall’ansia alla calvizie.

Salviati: Oimè. Sagredo, non so se io debba replicare o piangere.

Sagredo: Ma questa acqua C.G.E. si vende?

Simplicio: Certamente, ed è ben cara! Ma non pensate al vile denaro: pensate alla salute!

Salviati: Non dubito che a costar molto sembri più mirabile.

Simplicio: Voi rimanete ottuso perché vi manca la fede!

Salviati: Io credo nella ragione. E in un bicchiere d’acqua fresca, purché non informatizzata.

Sagredo: Salviati, diteci in breve che cosa dunque vorreste?

Salviati: Semplice: che ogni rimedio si provi con metodo, che si misuri l’effetto, che si distingua la speranza dal risultato.

Simplicio: Che aridità di spirito!

Salviati: Che chiarezza di pensiero.

Sagredo: Bene, bene… Ma ditemi ora di quest’altra vostra invenzione. Ho sentito bisbigliare di un caffè omeopatico fatto con la vostra Acqua C.G.E.

Simplicio: Ah! Finalmente tocco un tema in cui l’arte mia brilla.

Salviati: Non dubito. Brilla come una lucciola in bottiglia vuota.

Simplicio: Vi spiego. Si prende l’Acqua C.G.E., già potentemente informata del Codice Galattico Energetico, e la si sottopone a energizzazione ulteriore con la firma vibrazionale del caffè.

Sagredo: Firma vibrazionale?

Simplicio: Sì! Basta avvicinare la tazzina di vero caffè alla bottiglia d’acqua. Le onde sottili trasmettono l’informazione aromatica e stimolante.

Salviati: Dunque non serve versarlo nell’acqua?

Simplicio: Che volgarità! Versare? No! Si comunica per risonanza quantica.

Salviati: E questa vostra pozione… stimola davvero?

Simplicio: Più del caffè stesso! È un caffè omeopatico di altissima potenza!

Salviati: Sicché con meno caffè si ottiene più effetto?

Simplicio: Esattamente. Con diluizioni di 30C, cioè una parte di caffè in un oceano, si ottiene energia infinita.

Sagredo: E quale è l’effetto sul bevitore?

Simplicio: Tiene svegli in eterno!

Salviati: In eterno?

Simplicio: Sì! Mai più sonno, mai più stanchezza. Il bevitore si eleva a stato di veglia permanente!

Salviati: Una condanna piuttosto che una cura.

Simplicio: Per voi scettici è sempre tutto negativo.

Salviati: Mi permetto di notare che chi non dorme impazzisce.

Simplicio: Ecco, siete schiavo della vostra scienza materialista. Noi, invece, vogliamo liberarci dal sonno imposto dalle convenzioni terrestri!

Salviati: Convenzioni? È fisiologia.

Simplicio: Schiavitù biologica.

Sagredo: Ma ditemi, il vostro caffè omeopatico ha sapore?

Simplicio: Solo per chi ha l’anima raffinata.

Salviati: E chi non lo sente?

Simplicio: Non è pronto.

Salviati: Ah, dunque il fallimento del rimedio è colpa del paziente.

Simplicio: Ora mi oltraggiate!

Salviati: No, vi studio come fenomeno curioso.

Sagredo: Insomma, lasciatemi capire. Prendete acqua C.G.E., la avvicinate a un caffè vero, la diluite fino a non aver più nulla, e la vendete come elisir di veglia eterna?

Simplicio: Esattamente. Ed è pur certificato dal Gran Collegio Omeopatico Cosmico!

Salviati: Dubito assai dell’accreditamento.

Sagredo: E il prezzo?

Simplicio: Accessibilissimo: solo cento ducati la boccetta.

Salviati: Rapina con garbo.

Simplicio: Innovazione, Salviati. Voi non comprendete il futuro.

Salviati: Se il futuro è questo, mi ritiro nel passato.

Sagredo: Signori miei, basta per oggi. Mi sento confuso. Devo bere un caffè… ma uno vero.

Salviati: Vi accompagno.

Simplicio: Ebbene, rimanete schiavi della caffeina grezza! Io avanzo con l’Acqua C.G.E. verso l’eternità vigile!

[Sipario]

 

Mentos e Coca Cola… una fontana di scienza!

Se almeno una volta nella vita hai visto il famoso esperimento in cui delle caramelle Mentos vengono fatte cadere in una bottiglia di Coca Cola (o, più spesso, Diet Coke), conosci già il risultato: una fontana impazzita di schiuma che può superare i tre metri d’altezza (v. il filmato qui sotto).

Ma cosa succede davvero? È solo una semplice reazione fisica? C’entra la chimica? Perché proprio le Mentos? E perché la Diet Coke funziona meglio della Coca normale?

Negli ultimi anni, diversi ricercatori si sono cimentati nello studio scientifico di questo fenomeno, spesso usato come dimostrazione educativa nelle scuole e nei laboratori divulgativi. E ciò che è emerso è una storia sorprendentemente ricca di fisica, chimica, e perfino di gastronomia molecolare.

La nucleazione: come nasce un cambiamento

La parola “nucleazione” descrive il momento in cui, all’interno di un sistema fisico, comincia a svilupparsi una nuova fase. È un concetto fondamentale per comprendere fenomeni come la formazione di gocce in una nube, la cristallizzazione di un solido, o – nel nostro caso – la comparsa di bolle in un liquido soprassaturo di gas.

Secondo la teoria classica della nucleazione, perché si formi una nuova fase (come una bolla di gas in un liquido), è necessario superare una barriera energetica. Questa barriera nasce dal fatto che generare una bolla comporta un costo in termini di energia superficiale (ovvero, bisogna spendere energia per “deformare” i legami a idrogeno che, nel caso dell’acqua, tengono unite le diverse molecole), anche se si guadagna energia liberando il gas.

Il sistema deve dunque “pagare un prezzo iniziale” per creare una bolla sufficientemente grande: questa è la cosiddetta “bolla critica”. Una volta che si supera quella dimensione critica, la formazione della nuova fase (cioè, la crescita della bolla) diventa spontanea e inarrestabile.

Tuttavia, nel mondo reale, è raro che le bolle si formino spontaneamente all’interno del liquido: nella maggior parte dei casi, servono delle “scorciatoie energetiche”. È qui che entra in gioco la nucleazione eterogenea.

Nucleazione eterogenea: quando le superfici danno una spinta

Nel mondo reale, è raro che una nuova fase si formi spontaneamente all’interno del liquido (nucleazione omogenea), perché la probabilità che si verifichi una fluttuazione sufficientemente grande da superare la barriera energetica è molto bassa. Nella maggior parte dei casi, il sistema trova delle “scorciatoie energetiche” grazie alla presenza di superfici, impurità o irregolarità: è quello che si chiama nucleazione eterogenea.

Le superfici ruvide, porose o idrofobe possono abbassare la barriera energetica necessaria per innescare la formazione di una bolla. Per esempio, un piccolo graffio sul vetro, un granello di polvere o una microscopica cavità possono ospitare delle minuscole sacche d’aria che fungono da “embrioni” di bolla. In questi punti, la CO2 disciolta trova un ambiente favorevole per iniziare la transizione verso la fase gassosa, superando più facilmente la soglia critica.

Anche la geometria ha un ruolo: cavità coniche o fessure strette possono concentrare le forze e rendere ancora più facile la nucleazione. In pratica, il sistema approfitta di qualsiasi imperfezione per risparmiare energia nel passaggio di fase.

Il caso delle Mentos: nucleatori perfetti

L’esperimento della fontana di Diet Coke e Mentos è un esempio spettacolare (e rumoroso) di nucleazione eterogenea. Quando le Mentos vengono lasciate cadere nella bottiglia, la loro superficie – irregolare, porosa e ricoperta da uno strato zuccherino solubile – offre migliaia di siti di nucleazione. Ogni microscopica cavità è in grado di ospitare una piccola sacca di gas o di innescare la formazione di una bolla (Figura 1). In più, le Mentos cadono rapidamente fino al fondo della bottiglia, generando nucleazione non solo in superficie, ma in profondità, dove la pressione idrostatica è maggiore. Questo favorisce un rilascio ancora più esplosivo del gas disciolto.

Il risultato? Una vera e propria “valanga di bolle” che si spingono a vicenda verso l’alto, trascinando con sé la soda e formando il famoso geyser, che può raggiungere anche 5 o 6 metri d’altezza.

Figura 1. Nucleazione eterogenea di una bolla su una superficie solida. Le molecole d’acqua a contatto con una superficie solida interagiscono con essa, formando legami che disturbano la rete di legami a idrogeno tra le molecole d’acqua stesse. Questo indebolimento locale della coesione interna rende la zona prossima alla superficie più favorevole all’accumulo di gas disciolto, come la CO2. Il gas si concentra in microcavità o irregolarità della superficie, gonfiando piccole sacche d’acqua. Quando queste sacche superano una dimensione critica, la tensione interna diventa sufficiente a vincere le forze di adesione, e la bolla si stacca dalla superficie, iniziando a crescere liberamente nel liquido. Questo meccanismo, noto come nucleazione eterogenea, è alla base di molti fenomeni naturali e tecnici, incluso l’effetto geyser osservato nel celebre esperimento con Diet Coke e Mentos.

Non è una reazione chimica, ma…

Uno dei miti più diffusi, e da sfatare, è che il famoso effetto geyser della Diet Coke con le Mentos sia il risultato di una reazione chimica tra gli ingredienti delle due sostanze. In realtà, non avviene alcuna trasformazione chimica tra i componenti: non si formano nuovi composti, non ci sono scambi di elettroni né rottura o formazione di legami chimici. Il fenomeno è invece di natura puramente fisica, legato al rilascio improvviso e violento del gas disciolto (CO2) dalla soluzione liquida.

La Coca Cola (e in particolare la Diet Coke) è una soluzione sovrassatura di anidride carbonica, mantenuta tale grazie alla pressione all’interno della bottiglia sigillata. Quando la bottiglia viene aperta, la pressione cala, e il sistema non è più in equilibrio: il gas tende a uscire lentamente. Ma se si introducono le Mentos – che, come abbiamo visto, forniscono una miriade di siti di nucleazione – la CO2 trova una “scappatoia rapida” per tornare allo stato gassoso, formando in pochi istanti una quantità enorme di bolle.

Pur non trattandosi di una reazione chimica nel senso stretto, il rilascio della CO2 provoca alcune conseguenze misurabili dal punto di vista chimico. Una di queste è il cambiamento di pH: la Coca Cola è fortemente acida (pH ≈ 3) perché contiene acido fosforico ma anche CO2 disciolta, che in acqua dà luogo alla formazione di acido carbonico (H2CO3). Quando il gas fuoriesce rapidamente, l’equilibrio viene spostato, l’acido carbonico si dissocia meno, e il pH del liquido aumenta leggermente, diventando meno acido.

Questa variazione, anche se modesta, è stata misurata sperimentalmente in laboratorio, ed è coerente con l’interpretazione fisico-chimica del fenomeno.

In sintesi, si tratta di una transizione di fase accelerata (da gas disciolto a gas libero), facilitata da superfici ruvide: un classico esempio di fisica applicata alla vita quotidiana, più che di chimica reattiva.

Diet Coke meglio della Coca normale?

Sì, e il motivo non è solo la diversa composizione calorica, ma anche l’effetto fisico degli edulcoranti artificiali contenuti nella Diet Coke, in particolare aspartame e benzoato di potassio. Queste sostanze, pur non reagendo chimicamente con le Mentos, abbassano la tensione superficiale della soluzione, facilitando la formazione di bolle e rendendo il rilascio del gas CO2 più efficiente e spettacolare.

La tensione superficiale è una proprietà del liquido che tende a “resistere” alla formazione di nuove superfici – come quelle di una bolla d’aria. Se questa tensione si riduce, il sistema è più “disponibile” a formare molte piccole bolle, anziché poche grandi. E più bolle significa più superficie totale, quindi più spazio attraverso cui il gas può uscire rapidamente.

Anche altri additivi – acido citrico, aromi naturali (come citral e linalolo, Figura 2) e perfino zuccheri – influenzano il comportamento delle bolle. In particolare, molti di questi composti inibiscono la coalescenza, cioè, impediscono che le bolle si fondano tra loro per formare bolle più grandi. Questo porta a una schiuma fatta di bolle piccole, stabili e molto numerose, che massimizzano il rilascio di CO2 e quindi l’altezza della fontana.

Figura 2. Strutture chimiche di alcuni composti aromatici naturali presenti nelle bevande analcoliche. Il citral è una miscela di due isomeri geometrici: trans-citrale (geraniale) e cis-citrale (nerale), entrambi aldeidi con catena coniugata e intensa nota di limone. Il linalolo è un alcol terpenico aciclico, con due doppi legami e un gruppo ossidrilico (–OH), noto per il suo profumo floreale. Questi composti non partecipano a reazioni chimiche durante l’esperimento Diet Coke–Mentos, ma agiscono sul comportamento fisico del sistema, favorendo la formazione di schiuma fine e persistente e contribuendo all’altezza del geyser grazie alla inibizione della coalescenza delle bolle.

E che dire dei dolcificanti classici, come il saccarosio (lo zucchero da cucina)? A differenza dell’aspartame, il saccarosio non abbassa la tensione superficiale, anzi la aumenta leggermente. Tuttavia, anch’esso contribuisce a stabilizzare le bolle, soprattutto se combinato con altri soluti come acidi organici o sali. Questo spiega perché le bevande zuccherate (come la Coca Cola “classica”) producano comunque geyser abbastanza alti, ma meno impressionanti rispetto alle versioni “diet”.

Esperimenti controllati hanno mostrato che la Diet Coke produce le fontane più alte, seguita dalle bevande zuccherate e, in fondo, dall’acqua frizzante (che contiene solo CO2 e acqua): segno evidente che la presenza e la natura dei soluti giocano un ruolo chiave, anche in assenza di reazioni chimiche.

E se uso altre cose al posto delle Mentos?

La fontana di Coca Cola può essere innescata anche da altri materiali: gessetti, sabbia, sale grosso, zucchero, caramelle dure o persino stimolazioni meccaniche come gli ultrasuoni. Qualsiasi sostanza o perturbazione capace di introdurre nel liquido dei siti di nucleazione può innescare il rilascio del gas. Tuttavia, tra tutte le opzioni testate, le Mentos restano il materiale più efficace, producendo fontane più alte, più rapide e più spettacolari.

Questo successo si deve a una combinazione di caratteristiche fisiche uniche:

  1. Superficie molto rugosa e porosa
    Le Mentos hanno una superficie irregolare, visibile chiaramente al microscopio elettronico (SEM), con migliaia di microcavità che fungono da siti di nucleazione eterogenea. Più rugosità significa più bolle che si formano contemporaneamente, e quindi maggiore pressione generata in tempi brevissimi.
  2. Densità e forma ottimali
    Le caramelle sono sufficientemente dense e lisce all’esterno da cadere velocemente sul fondo della bottiglia, senza fluttuare. Questo è cruciale: la nucleazione avviene lungo tutta la colonna di liquido, non solo in superficie, e la pressione idrostatica più alta in basso aiuta la formazione più vigorosa di bolle. In confronto, materiali più leggeri (come il sale fino o la sabbia) galleggiano o si disperdono più lentamente, riducendo l’effetto.
  3. Rivestimento zuccherino solubile
    Il rivestimento esterno delle Mentos, a base di zuccheri e gomma arabica, si dissolve rapidamente, liberando nuovi siti di nucleazione man mano che la caramella si bagna. Inoltre, alcuni componenti del rivestimento (come emulsionanti e tensioattivi) favoriscono la schiuma e inibiscono la coalescenza delle bolle, contribuendo alla formazione di un getto più sottile e stabile

Un esperimento che insegna molto (e sporca parecchio)

Dietro quella che a prima vista sembra una semplice (e divertentissima) esplosione di schiuma, si nasconde una miniera di concetti scientifici: termodinamica, cinetica, tensione superficiale, solubilità dei gas, equilibrio chimico, pressione, nucleazione omogenea ed eterogenea. Un’intera unità didattica condensata in pochi secondi di spettacolo.

Ed è proprio questo il suo punto di forza: l’esperimento della fontana di Diet Coke e Mentos è perfetto per essere proposto nelle scuole, sia del primo grado (scuola media) che del secondo grado (licei, istituti tecnici e professionali), senza bisogno di strumenti di laboratorio complessi o costosi. Bastano:

  • qualche bottiglia di Coca Cola o altra bibita gassata,
  • delle Mentos (o altri oggetti solidi rugosi da confrontare: gessetti, zucchero, sabbia…),
  • una penna, un quaderno e un buon occhio per osservare e registrare cosa succede,
  • e, immancabili, canovacci, secchi, stracci e un po’ di detersivo per sistemare l’aula (o il cortile) dopo il disastro creativo!

Non solo: questo tipo di attività permette di lavorare in modalità laboratoriale attiva, stimolando l’osservazione, la formulazione di ipotesi, la progettazione sperimentale, la misura, l’analisi dei dati, la comunicazione scientifica. In altre parole: il metodo scientifico in azione, alla portata di tutti.

Insomma, la fontana di Diet Coke e Mentos non è solo un video virale da YouTube: è un fenomeno scientificamente ricchissimo, capace di affascinare e coinvolgere studenti e insegnanti. Provatelo (con le dovute precauzioni)… e preparatevi a fare il pieno di chimica!

Riferimenti

Baur & al. (2006) The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions. J. Chem. Educ. 83(4), 577. https://doi.org/10.1021/ed083p577.

Coffey (2008) Diet Coke and Mentos: What is really behind this physical reaction? Am. J. Phys. 76, 551. http://dx.doi.org/10.1119/1.2888546.

Eichler & al. (2007) Mentos and the Scientific Method: A Sweet Combination. J. Chem. Educ. 84(7), 1120. https://doi.org/10.1021/ed084p1120.

Kuntzleman & al. (2017) New Demonstrations and New Insights on the Mechanism of the Candy-Cola Soda Geyser. J. Chem. Educ. 94, 569−576. https://doi.org/10.1021/acs.jchemed.6b00862.

Maris (2006) Introduction to the physics of nucleation. C. R. Physique 7, 946–958. https://doi.org/10.1016/j.crhy.2006.10.019.

Sims & Kuntzleman (2016) Kinetic Explorations of the Candy−Cola Soda Geyser. J. Chem. Educ. 93, 1809−1813. https://pubs.acs.org/doi/10.1021/acs.jchemed.6b00263.

…e per i docenti della scuola secondaria di primo e secondo grado, ecco una scheda laboratorio pronta all’uso, per trasformare questa esplosione di schiuma in un’attività scientifica coinvolgente.

Scheda laboratorio – Un geyser di CO2 tra scienza e divertimento

🧪 Esperimento: La fontana di Diet Coke e Mentos

🎯 Obiettivi didattici

  • Osservare e descrivere fenomeni di nucleazione eterogenea
  • Comprendere il concetto di tensione superficiale e solubilità dei gas
  • Riconoscere la differenza tra fenomeni fisici e chimici
  • Introdurre il metodo scientifico: osservazione, ipotesi, verifica, confronto dati
  • Stimolare il pensiero critico e il lavoro di gruppo

🧰 Materiali

Quantità Materiale
1–2 Bottiglie da 1.5 o 2 L di Coca Cola/Diet Coke
1 confezione Mentos (preferibilmente menta)
facoltativi Zucchero, sabbia, gessetti, sale grosso, caramelle dure
1 Contenitore/sottovaso/catino (per contenere la fontana)
✔️ Carta, penne o tablet per prendere appunti
✔️ Canovacci, stracci, secchio, detersivo

📌 Procedura base (semplificata)

  1. Posizionare la bottiglia su un piano all’aperto o in un contenitore.
  2. Preparare il sistema di rilascio rapido delle Mentos (ad esempio con un cartoncino a scivolo o un tubo).
  3. Far cadere rapidamente 1–3 Mentos nella bottiglia aperta.
  4. Osservare il fenomeno: altezza, durata, forma della fontana, eventuale schiuma residua.
  5. Ripetere con altri materiali (gesso, sabbia, sale…) e confrontare l’effetto.
  6. Annotare le osservazioni. Stimolare ipotesi: perché cambiano i risultati?

📚 Spunti teorici (modulabili per il grado scolastico)

  • Fisica: pressione interna, energia potenziale, accelerazione del liquido
  • Chimica fisica: tensione superficiale, solubilità dei gas, acido carbonico e variazione di pH
  • Chimica generale: differenza tra cambiamento fisico e chimico
  • Scienza dei materiali: effetto della rugosità e della forma dei solidi sulla nucleazione
  • Metodo scientifico: osservazione, variabili, confronto controllato

🧠 Domande guida per la discussione

  • Cosa accade quando inseriamo le Mentos nella bibita?
  • Che differenza c’è tra Coca Cola normale e Diet Coke?
  • Perché altri materiali (es. sale o sabbia) funzionano diversamente?
  • È una reazione chimica o un fenomeno fisico?
  • Come potremmo misurare e confrontare le fontane? (es. altezza, tempo, schiuma)

📏 Varianti possibili

  • Cambiare la temperatura della bibita (fredda vs ambiente)
  • Provare con acqua frizzante o altre bevande gassate
  • Usare un righello o griglia per stimare l’altezza
  • Fare video al rallentatore e analizzare la dinamica
  • Includere una prova con ultrasuoni (se si dispone di un pulitore a ultrasuoni)

🚸 Note di sicurezza

  • L’esperimento è sicuro, ma va fatto in ambienti controllati o all’aperto
  • Tenere gli occhi lontani dal getto (meglio osservare di lato)
  • Prevedere pulizia immediata di superfici scivolose o appiccicose

L’atomo della pace: This is the dawning of the Age of Aquarius

“L’energia liberata dall’atomo non sarà più impiegata per la distruzione, ma per il bene dell’umanità.” Con queste parole, nel 1953, il presidente degli Stati Uniti Dwight D. Eisenhower lanciava al mondo il programma Atoms for Peace, in un celebre discorso all’Assemblea Generale delle Nazioni Unite. Era il tentativo, ambizioso e visionario, di trasformare il simbolo stesso della guerra in una promessa di progresso, usando le tecnologie nucleari non per armare le nazioni, ma per alimentare ospedali, centrali elettriche e laboratori scientifici.

Settant’anni dopo, quella visione resta più attuale che mai. In un pianeta che affronta crisi ambientali sempre più gravi e una domanda crescente di energia, l’atomo torna a farsi sentire: non come spettro del passato, ma come possibile chiave per un futuro più sostenibile.

Eppure, mentre la scienza offre strumenti per usare l’energia nucleare a beneficio della società, c’è ancora chi preferisce impiegarla per rafforzare equilibri di potere instabili, costruendo arsenali atomici in grado di distruggere il pianeta che abitiamo. Una scelta anacronistica, fondata su interessi politici miopi e incapaci di cogliere il potenziale positivo di una delle scoperte più straordinarie del Novecento.

Nel dibattito sulla transizione energetica, l’energia nucleare torna oggi al centro dell’attenzione. Di fronte all’urgenza climatica e alla crescente domanda globale di energia, le tecnologie nucleari civili si presentano come una delle soluzioni più promettenti per garantire una produzione elettrica stabile, sicura e a basse emissioni di carbonio.

Nonostante il peso simbolico lasciato da eventi come Chernobyl e Fukushima, i dati raccolti in decenni di esercizio mostrano che il nucleare civile è, per unità di energia prodotta, una delle fonti più sicure e pulite disponibili. Le nuove tecnologie oggi in sviluppo, come i reattori modulari di piccola taglia (SMR) e i reattori di IV generazione, puntano a migliorare ulteriormente la sicurezza, l’efficienza del combustibile e la gestione dei rifiuti. Alcuni progetti prevedono sistemi di sicurezza passiva, in grado di spegnere il reattore in caso di emergenza senza intervento umano né alimentazione elettrica esterna. Altri lavorano su cicli del combustibile chiusi, per ridurre drasticamente la quantità di scorie radioattive a lunga vita.

Parallelamente, progetti come ITER e numerose iniziative private stanno esplorando la strada della fusione nucleare, l’unica tecnologia in grado di imitare il funzionamento del Sole: energia virtualmente illimitata, senza il rischio di fusione del nocciolo e con rifiuti di gran lunga meno problematici rispetto alla fissione.

La chimica ambientale resta al cuore di queste sfide: dalla separazione degli attinidi alla progettazione di materiali resistenti, dalla speciazione degli isotopi radioattivi alla modellazione del loro comportamento nel suolo e nelle acque sotterranee. Capire come gli elementi si muovono, decadono, si adsorbono o si fissano in forma solida non è solo un esercizio accademico: è una condizione necessaria per progettare impianti più sicuri, prevedere il comportamento delle scorie e gestire correttamente il rischio.

Tuttavia, un ostacolo importante resta la percezione pubblica del rischio. L’energia nucleare continua a suscitare paure profonde, spesso basate su eventi eccezionali e su una comunicazione scientifica carente. Colmare questo divario tra realtà tecnica e immaginario collettivo è una responsabilità etica, oltre che culturale.

I radionuclidi non sono pericolosi per natura. Lo diventano solo quando vengono gestiti con superficialità, trascuratezza o opacità. Gli stessi elementi che in passato hanno provocato danni enormi se impiegati in modo irresponsabile, oggi ci permettono di curare malattie, studiare il passato, comprendere il clima e produrre energia pulita.

Abbiamo ereditato l’età dell’atomo come simbolo di potere e minaccia, ma possiamo ancora trasformarla in qualcos’altro. Forse è il momento di farla coincidere, almeno in parte, con quella età dell’Acquario cantata negli anni ’60: un’epoca immaginata di pace, di fiducia nella scienza, di armonia tra progresso e umanità.

Non si tratta di utopia, ma di responsabilità. Perché l’atomo, da solo, non porta né salvezza né rovina. È la mano che lo guida, e la visione che lo orienta, a determinarne il destino.

Sta a noi decidere se vivere nella paura del passato o costruire, con consapevolezza, un futuro possibile e migliore.

Microplastiche: i rischi che conosciamo, le sorprese che non ti aspetti

Quando pensiamo all’inquinamento da plastica, ci vengono subito in mente bottiglie che galleggiano negli oceani, sacchetti impigliati tra i rami degli alberi o imballaggi abbandonati nei fossi (Figura 1).

Figura 1. Tracce invisibili del nostro tempo: bottiglie, sacchetti e frammenti di plastica si insinuano nei paesaggi naturali, segnando il confine sottile tra quotidiano e catastrofe ambientale.

Ma esiste un tipo di plastica molto più subdolo e pericoloso, perché invisibile ai nostri occhi: le microplastiche. Questi minuscoli frammenti, spesso più piccoli di un chicco di riso, sono ormai ovunque: nell’acqua che beviamo, nell’aria che respiriamo, nel suolo che coltiviamo e persino, come recenti studi hanno dimostrato, dentro il nostro corpo.

Le microplastiche possono essere prodotte intenzionalmente, come accade ad esempio per le microperle usate in alcuni cosmetici e detergenti industriali. In altri casi, invece, derivano dalla frammentazione di oggetti di plastica più grandi, spezzati nel tempo da sole, vento, onde e attrito. Qualunque sia la loro origine, una volta disperse nell’ambiente, diventano praticamente impossibili da recuperare.

Se inizialmente l’attenzione della ricerca si è concentrata soprattutto sull’ambiente marino, oggi sappiamo che le microplastiche si trovano ovunque. Sono presenti nei mari, nei laghi, nei fiumi, ma anche nei ghiacciai e nell’atmosfera. Sono state rinvenute in alimenti di uso comune, come il pesce, il sale e perfino il miele. E non si tratta solo di contaminazione esterna: alcune ricerche hanno individuato tracce di microplastiche in campioni biologici umani, come sangue, feci e placenta. È una diffusione capillare, e proprio per questo difficile da controllare.

Un campo che ha attirato crescente interesse negli ultimi anni è quello dei suoli. Spesso trascurato rispetto agli ambienti acquatici, il suolo si sta rivelando un enorme serbatoio di microplastiche. La plastica può arrivarci attraverso molteplici vie: dai fanghi di depurazione usati in agricoltura, dai rifiuti plastici agricoli, dal compost contaminato, fino alla semplice deposizione atmosferica. Alcuni studi stimano che i suoli possano contenere più microplastiche degli oceani.

Ma quello che ha sorpreso molti ricercatori è che, in certi casi e in certe condizioni, la presenza di microplastiche nel suolo sembra produrre effetti inaspettati, non tutti negativi. Ad esempio, le plastiche possono contribuire ad aumentare la porosità del terreno, migliorandone l’aerazione e il drenaggio. In alcune situazioni, è stata osservata una maggiore stabilità degli aggregati del suolo e una migliore ritenzione idrica, caratteristiche che potrebbero essere utili, ad esempio, in contesti agricoli soggetti a siccità (Figura 2).

Figura 2. In alcune condizioni, la presenza di microplastiche nel suolo può modificare la struttura degli aggregati, favorendo aerazione, porosità e ritenzione idrica: effetti apparentemente utili in contesti agricoli aridi, ma non privi di rischi a lungo termine.

Anche dal punto di vista biologico, gli effetti sono controversi. Alcuni esperimenti hanno riportato un incremento dell’attività di lombrichi e di alcuni microrganismi in presenza di microplastiche, suggerendo un adattamento o una stimolazione di certi processi. Tuttavia, altri studi mettono in guardia: le stesse microplastiche possono alterare la composizione delle comunità microbiche del suolo, interferire con l’attività enzimatica, ostacolare la germinazione delle piante e veicolare sostanze tossiche, come metalli pesanti o pesticidi, adsorbiti sulla loro superficie.

Insomma, si tratta di una situazione complessa. Gli effetti variano molto a seconda del tipo di plastica, della sua forma — che siano fibre, frammenti o sfere — della concentrazione e, naturalmente, delle caratteristiche del suolo ospite. Anche se in certi casi le microplastiche sembrano migliorare temporaneamente alcune proprietà fisiche del terreno, la loro persistenza, la potenziale tossicità chimica e gli effetti a lungo termine sulla salute degli ecosistemi rendono il bilancio complessivo tutt’altro che rassicurante.

La chimica gioca un ruolo chiave in questa sfida. Grazie a essa possiamo non solo comprendere meglio il comportamento delle microplastiche nell’ambiente, ma anche sviluppare strategie per contrastarne la diffusione. La ricerca lavora su materiali biodegradabili, su metodi per separare e rimuovere microplastiche da acque e fanghi, su traccianti molecolari per seguirne il destino nell’ambiente e su tecnologie per limitarne l’ingresso nelle filiere produttive.

Ma anche nel nostro piccolo possiamo contribuire. Ridurre l’uso di plastica monouso, preferire materiali naturali per abbigliamento e oggetti di uso quotidiano, evitare prodotti cosmetici contenenti microperle — basta leggere le etichette con attenzione — sono scelte semplici che, moltiplicate per milioni di persone, possono fare una differenza reale. E soprattutto, possiamo diffondere consapevolezza. Perché le microplastiche sono piccole, sì, ma la loro portata è enorme. Capirle, raccontarle e affrontarle è un passo essenziale per costruire un rapporto più equilibrato tra l’uomo, la chimica e l’ambiente.

Riferimenti

Campanale, C., et al. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17(4), 1212. (https://www.mdpi.com/1660-4601/17/4/1212)

de Souza Machado, A.A., et al. (2019). Microplastics Can Change Soil Properties and Affect Plant Performance. Environmental Science & Technology, 53(10), 6044–6052. (https://pubs.acs.org/doi/10.1021/acs.est.9b01339)

Hale, R.C., et al. (2020). A Global Perspective on Microplastics. Journal of Geophysical Research: Oceans, 125(3), e2018JC014719. (https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JC014719)

Ng, E.-L., et al. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. (https://www.sciencedirect.com/science/article/pii/S0048969718303838?via%3Dihub)

Prata, J.C., et al. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. (https://www.sciencedirect.com/science/article/pii/S0048969719344468?via%3Dihub)

Ragusa, A., et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, 106274. (https://www.sciencedirect.com/science/article/pii/S0160412020322297?via%3Dihub)

Rillig, M.C., et al. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, 1805. (https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.01805/full)

Wright, S.L., Kelly, F.J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science & Technology, 51(12), 6634–6647. (https://pubs.acs.org/doi/10.1021/acs.est.7b00423)

Zhang, G.S., Liu, Y.F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12–20. (https://www.sciencedirect.com/science/article/pii/S0048969718320667?via%3Dihub)

Share