Credibilità scientifica e h-index

Recentemente sul quotidiano Il Tempo è apparso un articolo dal titolo “Burioni, Pregliasco e Brusaferro . Gli esperti più scarsi del mondo” in cui i nomi di tre medici che ultimamente occupano le prime pagine dei giornali non sono neanche messi in ordine alfabetico. L’articolo che trovate qui è un attacco neanche troppo velato alla credibilità di questi tre professionisti che ci avvertono dei pericoli della pandemia da SARS-Cov-2. L’attacco viene sferrato usando uno dei parametri (non l’unico) utilizzato per la valutazione comparativa dei candidati a posti più o meno importanti nel mondo accademico e della ricerca scientifica: l’h-index.

Cos’è l’h-index?

Per i non addetti ai lavori, si tratta di un indice che serve per valutare l’impatto che il lavoro di uno scienziato ha sulla comunità scientifica di riferimento. Se un lavoro pubblicato è molto importante, esso viene citato tantissimo e l’h-index di quello scienziato aumenta in modo proporzionale al numero delle citazioni che riceve.

Nel mondo da classifiche calcistiche in cui viviamo, questo parametro sembra molto utile, vero?

In effetti sembra così. Il problema è che questo parametro deve essere necessariamente contestualizzato. Prima di usarlo è necessario entrare nel merito del lavoro di uno scienziato. Se così non fosse tutte le commissioni di cui faccio parte e di cui ho fatto parte (inclusa quella relativa all’Abilitazione Scientifica Nazionale del mio settore concorsuale) non avrebbero alcun senso. Se bastasse solo valutare il valore dell’h-index per fare una classifica di idoneità ad una data posizione accademica, non sarebbe necessario rompere le scatole ai docenti universitari per includerli nelle commissioni: basterebbe il lavoro di un semplice ragioniere che non dovrebbe fare altro che accedere ai data base accademici, estrarre il valore dell’h-index e, poi, mettere i nomi dei candidati in ordine di h-index decrescente. Al contrario, se a me serve un ricercatore che abbia esperienza in fisiologia vegetale, non vado a vedere solo il suo h-index, ma vado a valutare anche l’attinenza della sua ricerca con la posizione che egli deve occupare. Se al concorso si presenta un ricercatore in filologia romanza con h-index 40 ed uno in fisiologia vegetale con h-index 20, sceglierò il secondo dei due perché la sua attività di ricerca è più attinente al profilo di cui si sente il bisogno. Da tutto ciò si evince che l’articolo pubblicato su Il Tempo è fallace proprio in questo. Il giornalista, di cui non conosco il nome e neanche mi interessa perché sto valutando solo quello che ha scritto, ha messo a confronto gli h-index di una serie di scienziati più o meno famosi senza andare a vedere se i settori di cui essi si occupano sono congruenti gli uni con gli altri e se i lavori scientifici che hanno pubblicato siano congruenti con la virologia. Questo giornalista si è solo peritato di agire come un tipico ragioniere che legge dei numeri e li mette in fila dal più grande al più piccolo. Alla luce di questa classifica ha concluso che Burioni (persona che conosco personalmente e che stimo moltissimo) è uno scienziato tra i più scarsi del mondo. A questo giornalista non importa neanche minimamente ciò che il Prof. Burioni dice. Ciò che gli importa è che un parametro, che nel mondo universitario noi utilizziamo con tanta oculatezza, collochi questo scienziato in fondo alla classifica che egli ha deciso autonomamente di stilare senza tener in alcun conto delle differenze che possono esistere tra i diversi settori scientifici in cui gli scienziati da egli presi in considerazione si muovono. Ed allora perché non inserire nella stessa classifica anche il Prof. Guido Silvestri che ha un h-index di 66 (qui) e che si muove su posizioni analoghe a quelle di Burioni? Ma…poi…siamo sicuri che Anthony Fauci, con h-index 174 e consigliere di Trump, non sia in linea con quanto dicono Burioni e Silvestri? Il giornalista che ha scritto l’articolo che sto commentando, probabilmente, pensa di no. Non tiene conto del fatto che Trump è una scheggia impazzita, che gli americani hanno eletto a loro rappresentante uno che è fallito ben due volte, e che questa persona non brilli certo in quanto a cultura e preparazione scientifica.

Gli h-index e la credibilità scientifica.

Ora voglio usare gli stessi criteri del giornalista de Il Tempo per fare una mia classifica di scienziati. Partiamo dalla fisica. Penso che io non abbia bisogno di presentare Enrico Fermi. È una gloria italiana che ha dato un contributo notevole alla fisica mondiale. Trovate una sua biografia qui. Il suo h-index è 28 (qui). Incredibile vero? Nonostante abbia vinto un premio Nobel, Enrico Fermi ha un h-index confrontabile con quello di Burioni che il giornalista de Il Tempo ha giudicato scarso. Però in effetti sto confrontando un medico con un fisico, peraltro deceduto già da molto tempo. Non sono paragoni da fare. Andiamo a prendere un altro fisico che è diventato famoso qualche tempo fa, all’inizio degli anni 2000: Jan Hendrik Schön. Ho parlato di questo scienziato qui. Fu uno studioso della superconduttività nei sistemi organici. In odore da Nobel fino a che si scoprì che inventava i dati. Gli è stato ritirato anche il dottorato di ricerca. Ebbene, se andiamo a leggere l’h-index di Schön su Scopus, risulta che esso è pari a 32 (qui). In definitiva, usando i parametri del giornalista de Il Tempo, Enrico Fermi è più scarso di Jan Hendrik Schön. Ma quale tra i due ha maggiore credibilità? Enrico Fermi che ha lavorato seriamente ed ha dato un contributo alla fisica riconosciuto dall’intera comunità scientifica oppure Jan Schön che, invece, ha lavorato in modo poco serio arrivando ad inventarsi i dati pur di avere quella notorietà internazionale che non meritava?
Voglio continuare. Ritorniamo nel campo medico e prendiamo Wakefield. Sì, proprio il medico che è stato radiato dall’ordine dei medici e dalla comunità scientifica per aver inventato di sana pianta la correlazione tra vaccini ed autismo. Il suo h-index è 45 (qui) dovuto principalmente alle oltre 1500 citazioni che il suo lavoro su The Lancet, pubblicato nel 1998 e poi ritrattato una decina di anni dopo, sulla correlazione vaccini-autismo ha ricevuto. Usando i parametri del giornalista de Il Tempo, Burioni è più scarso di Wakefield. Ma voi nelle mani di chi mettereste la vostra salute: di Burioni o di Wakefield? Io non ho dubbi, per quanto mi riguarda: mi affiderei senza ombra di dubbi a Burioni.

Conclusioni

Ho scritto questo articolo per far capire quanta spazzatura ci sia in rete in merito a come vengono usati i numeri che hanno significato solo nell’ambito per cui quei numeri sono stati introdotti. Al di fuori dell’ambito accademico, l’h-index non può essere utilizzato. In ogni caso, anche in ambito accademico va utilizzato non in senso assoluto ma assieme a tutta una serie di parametri che servono per valutare la credibilità di uno scienziato. Usando un linguaggio matematico, l’h-index è condizione necessaria ma non sufficiente a farsi un’idea del lavoro di qualcuno.

Fonte dell’immagine di copertina

Fa freddo lassù?

Checché ne dicano chimici e fisici, le due discipline di cui essi sono rappresentanti sono strettamente correlate tra di loro. A certi livelli sono talmente incuneate l’una nell’altra che è difficile dire quando finisce la chimica e quando comincia la fisica. Prendete per esempio la quantomeccanica. Tutti quelli che ne parlano sono fisici, ma questa branca della fisica può essere considerata anche chimica grazie agli sforzi compiuti da Linus Pauling che, nella prima metà del XX secolo, si “inventò” la chimica quantistica, o quantochimica, per spiegare la natura del legame chimico (Figura 1).

Figura 1. Raccolta dei lavori di Linus Pauling in cui viene identificata la natura del legame chimico.

Fino a che Pauling non si impadronì della quantomeccanica per adattarla alla chimica, la rottura e la formazione dei legami chimici rimase in una sorta di limbo che faceva dei chimici dei veri e propri praticoni, abilissimi nel “maneggiare” le molecole, ma ancora lontani dal poter prima progettare e poi realizzare in laboratorio quanto avevano in mente.

Perché vi scrivo tutto questo?

Dovete sapere che in questo periodo di quarantena sono costretto a fare lezione per via telematica. Mi manca fortissimamente il contatto con gli studenti ed il poter trasferire le mie conoscenze non solo con le parole ma anche con la prossemica e con l’attività di laboratorio. In questo contesto sto studiando le lezioni che devo fare nelle prossime settimane per il mio corso di “Recupero delle aree degradate”. Una delle ultime lezioni riguarda la contaminazione atmosferica. È proprio ripassando le diapositive che presenterò tra un paio di settimane che ho realizzato anche a me stesso ciò che dico normalmente agli studenti dei miei corsi: chimica e fisica sono parenti stretti; non si può capire la chimica se non si conosce la fisica e non si può comprendere a fondo la fisica se non si hanno anche conoscenze chimiche. Sono sicuro che i miei amici fisici dissentiranno da quanto ho appena scritto, ma lasciatemi dire che chi afferma che per conoscere la fisica non c’è bisogno della chimica ha profonde falle cognitive. È come dire che la conoscenza umanistica non serve a chi si occupa di scienza. In realtà, la conoscenza umanistica aiuta a pensare, a mettere ordine nelle proprie idee, nel proprio modo di esprimersi e nel modo di presentare ciò che sappiamo.

Ma andiamo con ordine.

La fisica dell’atmosfera è direttamente legata alla sua chimica.
Nella Figura 2 si evidenzia la geografia dell’atmosfera con l’indicazione dei cambiamenti di temperatura (quindi una proprietà fisica) che si osservano man mano che ci allontaniamo dalla superficie terrestre.

Figura 2. Geografia dell’atmosfera con indicazioni dei cambiamenti di temperatura che si osservano al variare dell’altezza.

Usando il linguaggio tipico della Scienza del Suolo, la Figura 2 mostra il profilo dell’atmosfera nel quale è possibile individuare diversi orizzonti. L’orizzonte più vicino al suolo ha un’altezza di circa 16 km. Esso viene indicato col termine di troposfera in cui il suffisso “tropo” è di derivazione greca e vuol dire “mutazione”, “cambiamento”. La composizione chimica della troposfera è abbastanza complessa. Essa è costituita non solo da ossigeno ed azoto molecolari, ma anche da vapor d’acqua, anidride carbonica e tutte le altre varie anidridi come quelle di azoto e zolfo che hanno sia origine antropica che origine naturale. Per effetto dell’energia termica rilasciata dal suolo, le molecole di gas più vicine ad esso si riscaldano, diminuiscono di densità e si muovono verso l’alto venendo sostituite dalle molecole di gas più fredde e più dense che si trovano ad altezze maggiori. Si realizzano, quindi, delle correnti ascensionali (Figura 3) che sono sfruttate, per esempio, dai deltaplanisti o da chi è appassionato di volo senza motore.

Figura 3. Schema delle correnti ascensionali che si realizzano per effetto del riscaldamento al suolo delle molecole di gas atmosferico.

È proprio grazie all’energia termica rilasciata dal suolo che possiamo spiegare perché nella troposfera la temperatura diminuisce con l’altezza. Infatti, più vicini siamo al suolo, più risentiamo del calore emesso dalla superficie terrestre. Più ci allontaniamo dal suolo, più si riduce la temperatura per effetto della dissipazione del calore che proviene dalla superficie terrestre.
Tra 16 e 50 km di altezza c’è l’orizzonte atmosferico che viene definito stratosfera. In questo orizzonte c’è una concentrazione media di ozono che è dell’ordine delle decine di parti per milioni (v/v) contro i 0.04 ppm medi presenti nella troposfera. Questa elevata concentrazione di ozono rende conto dell’aumento di temperatura che si osserva man mano che ci si allontana dalla superficie terrestre e si passa dai 16 ai 50 km di altezza. Infatti, le radiazioni luminose provenienti dal suolo, da un lato, consentono la degradazione dell’ozono (O3) ad ossigeno molecolare (O2) ed ossigeno radicalico (O∙) in una reazione esotermica, dall’altro consentono un aumento dell’energia cinetica dei gas della stratosfera con conseguente aumento dell’energia termica.
Tra 50 ed 85 km c’è l’orizzonte che chiamiamo mesosfera. In questo orizzonte si osserva di nuovo una diminuzione di temperatura all’aumentare dell’altezza. Infatti, la temperatura della mesosfera può arrivare fino a -90°C. Questa diminuzione di temperatura è legata alla riduzione della densità dei gas ivi contenuti. L’energia termica proveniente dal Sole, pur incrementando l’energia cinetica delle molecole di gas, non è, tuttavia, in grado (a causa della bassa concentrazione di tali gas) di portare ad un aumento della temperatura.
L’orizzonte incluso tra 85 e 500 km di altezza prende il nome di termosfera. La composizione chimica della termosfera vede la presenza di molecole di ossigeno e molecole contenenti azoto. La radiazione elettromagnetica proveniente dal sole consente la ionizzazione delle molecole anzidette in reazioni di tipo esotermico. L’esotermicità delle reazioni appena citate, associate all’aumento dell’energia cinetica dei sistemi gassosi presenti nella termosfera, portano ad un aumento della temperatura che può arrivare fino a 1200 °C. Gli ioni presenti nella termosfera non solo sono in grado di far “rimbalzare” le onde radio consentendo, quindi, le comunicazioni sul globo terrestre, ma sono anche responsabili delle aurore boreali. Infatti, essi assorbono energia solare riemettendola sotto forma di radiazioni luminose che danno luogo alle meravigliose scenografie che si osservano nell’emisfero Nord del nostro pianeta (Figura 4).

Figura 4. Aurora boreale (Fonte).
Conclusioni

Fa freddo lassù? La risposta corretta è: dipende. Dipende dall’altezza a cui ci troviamo e dalla chimica degli orizzonti del profilo atmosferico. Come dicevo più su, questo post nasce dal desiderio di condividere con voi le meraviglie di due discipline interconnesse tra loro: la chimica e la fisica. Come potete intuire leggendo questo breve articolo, le conoscenze chimiche riescono a spiegare i fenomeni fisici che si osservano nell’atmosfera. Spero possiate perdonare le inesattezze che sicuramente ho scritto e che tutto ciò possa innescare una discussione interessante.

Altre letture

Fundamentals of physics and chemistry of atmosphere

Fonte dell’immagine di copertina

 

 

Pillole di scienza. Alla ricerca degli elettroni di Dirac

Cosa è un elettrone di Dirac?

Si tratta di un elettrone che è descritto dall’equazione di Dirac (Figura 1).

Figura 1. Equazione di Dirac

Semplice vero? Certo come no! Questa è la classica spiegazione a ciambella, ovvero un giro di parole che non spiega nulla se non si è un addetto ai lavori.

Cerchiamo di capire cos’è e perché è importante l’equazione di Dirac.

Ormai è noto a tutti che l’inizio del XX secolo è stato molto prolifico in termini scientifici. È nata, infatti, la meccanica quantistica (MQ) grazie alla quale oggi tutti hanno sentito parlare almeno una volta nella vita dell’equazione di Schoeredinger che, tra le tante cose, permette di descrivere il comportamento degli elettroni.

Una delle cose che viene insegnata a livello semplicistico a tutti gli studenti dei primi anni di corsi di studio scientifici è che l’equazione di Schoeredinger permette di definire gli orbitali come quella zona di spazio in cui esiste una buona probabilità di trovare gli elettroni. Come ho già scritto, questa è una supersemplificazione. Tuttavia fatemela passare per buona perché qui non si sta facendo una lezione di meccanica quantistica, bensì si cerca di fare un po’ di divulgazione per avvicinare concetti complessi a chi non è del settore.

Negli stessi anni in cui nasceva e si sviluppava la MQ, nasceva e si sviluppava anche la teoria della relatività ristretta (RR) di Albert Einstein. Questa si basa sostanzialmente su due postulati. Il primo postulato stabilisce che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, il secondo afferma che la luce si propaga nel vuoto ad una velocità ben definita pari a 2.99 x 108 m s-1.

”Bene. Bravo. Ed ora? Dove vuoi arrivare mettendo assieme MQ e RR?” vi starete chiedendo.

Abbiate un attimo di pazienza, per favore. Lasciatemi ancora poche parole per arrivare al punto.

Meccanica quantistica e relatività ristretta sono due facce della stessa medaglia.

Fin da quando le due teorie, della MQ e della RR, si sono affermate, gli studiosi hanno cercato di unificarle. Tuttavia, tra le tante difficoltà che essi hanno incontrato, una particolarmente “ostica” è stata quella relativa alla asimmetria tra spazio e tempo della teoria di Schoeredinger che mal si conciliava con la simmetria spazio-temporale di Einstein. In altre parole, mentre Schoeredinger trattava spazio e tempo come se fossero due cose distinte e separate, Einstein considerava le dimensioni spaziali alla stessa stregua della dimensione temporale (prego i miei amici fisici di non essere troppo severi con me se sto semplificando troppo. Anzi, vi invito a correggermi se ritenete che io stia andando fuori dal seminato).

Solo Dirac, grazie alla sua genialità, riuscì a risolvere il problema elaborando una equazione (quella dell’immagine di Figura 1) con la quale riuscì a trattare le particelle quantistiche (quindi anche gli elettroni) nel regime relativistico.

Ma allora, a cosa serve sapere cosa sono gli elettroni di Dirac?

L’equazione di Dirac descrive molto bene il comportamento degli elettroni nei semiconduttori ed in sistemi quali il grafene. Per associazione, anche se studi del genere non sono stati ancora condotti, l’equazione di Dirac dovrebbe descrivere bene anche il comportamento di sistemi simil-grafene quali il biochar. Tuttavia, bisogna aggiungere che il numero di tecniche analitiche capaci di confermare sperimentalmente il comportamento degli elettroni secondo Dirac si può contare sulla punta delle dita di una sola mano. Si tratta di tecniche che sono “maneggiate” con una certa familiarità dai fisici, ma che per un chimico sono alquanto “ostiche”.

La risonanza magnetica nucleare (NMR) e gli elettroni di Dirac.

È di pochi giorni fa la notizia che su Nature Communication è apparso uno studio attraverso cui, per la prima volta, sono stati osservati mediante NMR (una tecnica molto amata dai chimici, incluso me che faccio l’NMR-ista sin dal 1992) gli effetti che gli stati elettronici di Dirac (ovvero quelli descritti dall’equazione di Figura 1) hanno sul comportamento dei nuclei di una lega metallica fatta da Bismuto e Tellurio (Bi2Te3) che viene utilizzata come isolante.
Se avete voglia di leggere l’articolo originale basta cliccare sull’immagine qui sotto.

Figura 2. Immagine tratta dall’articolo di Nature Communications.
Ed allora?

Bella domanda. Intanto si aggiunge una nuova tecnica a quelle già usate per lo studio del comportamento degli elettroni e la verifica sperimentale dell’equazione di Dirac. Inoltre, si aprono nuovi scenari per la progettazione di nuovi materiali con proprietà sempre più sofisticate da poter utilizzare nei campi più disparati come la ricerca spaziale o quella medica.

Per approfondire

What the heck is a Dirac electron?

Dirac electrons

The metal-insulator transition depends on the mass of Dirac electrons

Relatività ristretta

Giorgio Chinnici, Assoluto e relativo, Hoepli ed. 

Giorgio Chinnici, La stella danzante, Hoepli ed. 

Fonte dell’immagine di copertina

 

 

 

 

 

Pillole di scienza: le meraviglie dell’aromaticità

Chiedo scusa ai miei lettori, ma questa pillola di scienza oggi è dedicata ai miei studenti ed a tutti quelli che hanno studiato la chimica organica. Per questo motivo userò un linguaggio poco divulgativo ed abbastanza tecnico.

Il linguaggio comune ed il linguaggio scientifico: usi ed abusi

Il termine “aromatico” viene attribuito, nel linguaggio comune, a un oggetto che emana un buon odore. Si tratta quindi di una qualità che viene associata a qualcosa di “buono”. Quante volte abbiamo sentito, o noi stessi abbiamo detto, “senti che buon aroma di caffè” oppure “hmmmm che buon profumo ha questa zuppa” laddove il termine “profumo” è sinonimo di “aroma”.

Ebbene, noi chimici, a causa delle limitazioni del nostro linguaggio, siamo abituati a prendere i termini comuni ed a cambiar loro di significato per attribuirne uno di carattere molto più tecnico. Ecco perché mi salta subito la mosca al naso quando sento le persone parlare di chimica o, più in generale, di scienza usando termini tecnici di cui, però, non conoscono il significato. Queste persone pensano che usare parole prese dal linguaggio scientifico e messe in fila in modo casuale dia un’àura di scientificità alle cose che dicono. Solo per citare pochi esempi mi vengono in mente quelli che esaltano la biodinamica scrivendo “robe” come quelle che vedete nell’immagine qui sotto. Cliccando sull’immagine si apre la pagina dalla quale ho fatto lo screenshot.

Che dire poi di quelli che si sono votati all’omeopatia, pratica esoterica di cui parlo abbondantemente in uno dei capitoli del mio libro “Frammenti di Chimica“? Ne ho già parlato tante volte. Alcune delle chicche sono analizzate nel link qui sotto:

Omeopatia, ultima frontiera

Cosa significa aromatico in chimica

Lasciamo da parte le polemiche e concentriamoci sul significato dell’aggettivo “aromatico” nel linguaggio chimico. Se cerchiamo sulla Treccani online, possiamo leggere:

aromàtico agg. [dal lat. tardo aromatĭcus, gr. ἀρωματικός] (pl. m. –ci). – […] In chimica organica, composti a. (così denominati perché vi appartengono molte sostanze aromatiche), serie di composti ciclici nella cui molecola sono contenuti uno o più sistemi a sei atomi di carbonio disposti ad anello (distinti in omociclici e eterociclici a seconda che ai vertici dell’anello si trovino tutti atomi di carbonio o anche altri atomi)

Questo è il classico esempio di informazione così generale da perdere completamente di significato in termini chimici. Infatti esistono tanti composti omociclici ed eterociclici che non hanno assolutamente la caratteristica di essere aromatici. E non necessariamente devono essere presenti sistemi ciclici a sei atomi di carbonio.

La regola di Hückel

Da un punto di vista chimico un sistema organico si dice aromatico quando:

  1. contiene 4n+2 elettroni π (con n intero e  ≥ 0)
  2. è ciclico e planare

In tutti gli altri casi il sistema si dice antiaromatico. I sistemi aromatici hanno come peculiarità la bassa reattività, ovvero elevata stabilità chimica.

Vediamo alcuni esempi di composti aromatici ed antiaromatici

Il benzene è un sistema ciclico con la struttura descritta nella figura seguente:

La posizione dei doppi legami cambia e le due strutture, del tutto equivalenti, sono indicate come ibridi di risonanza. Nel sistema π del benzene sono presenti 6 elettroni, ovvero rispetta la regola del 4n+2 per n=1. Qui sotto viene evidenziato come l’ibridazione (sp2) degli atomi di carbonio consenta alla molecola di avere una struttura planare.

Entrambe le condizioni della regola di Hückel sono rispettate ed il benzene può essere considerato un composto aromatico.

Prendiamo adesso in considerazione il [10]annulene qui sotto:

C’è un anello, ci sono 10 elettroni π. Il numero di elettroni nel sistema π segue la regola di Hückel del 4n+2 per n=2. Tuttavia il composto non è aromatico perché non ha una struttura planare:

(Fonte)

La non planarità è dovuta al fatto che gli atomi di idrogeno indicati nella figura sottostante si respingono per effetto sterico portando la molecola ad avere una struttura a twist.

(Fonte)

 

Lo ione tropilio

Quando si studia la chimica organica e si arriva al capitolo sull’aromaticità, ci si imbatte anche nello ione tropilio (o catione cicloeptatrienile) che viene, in genere, indicato come lo ione più grande avente caratteristiche aromatiche. Esso si ottiene per allontanamento dello ione idruro dal cicloeptatriene. Quest’ultimo, pur avendo 6 elettroni π (n=1 nella regola di Hückel), non è aromatico a causa di un carbonio sp3 che lo rende non planare. Quando lo ione idruro viene allontanato, tutti gli atomi di carbonio risultano di tipo sp2, il sistema diventa planare, il numero di elettroni è quello previsto dalla regola di Hückel e lo ione è aromatico.

I sistemi aromatici “giganti”

La regola di Hückel è un utile strumento per comprendere cosa significhi il termine “aromatico” in chimica . Questa regola è di applicabilità generale e può essere validata sperimentalmente attraverso l’uso della spettroscopia di risonanza magnetica nucleare (NMR). Infatti, gli elettroni del sistema π di un composto aromatico generano una corrente di anello (ring current) responsabile di un campo magnetico locale che si addiziona o si sottrae al campo magnetico applicato durante l’esperimento NMR. La variazione del campo magnetico dovuta alla corrente di anello comporta  uno shift dei segnali dei nuclei soggetti a tale fenomeno. Per un approfondimento di carattere didattico cliccare qui.

(Fonte)

La spettroscopia di risonanza magnetica nucleare è la tecnica usata per sfatare un mito in base al quale più grande è la molecola contenente 4n+2 elettroni π e più facilmente essa è in grado di deformarsi così da allontanarsi dalle condizioni strutturali che soddisfano la regola di Hückel.

Nel 2016 è stato pubblicato un lavoro (qui) in cui viene descritta una molecola aromatica contenente fino a 62 elettroni π (ovvero n=15 nella regola del 4n+2):

Come mai una molecola così grande, la più grande sintetizzata fino al 2016, si comporta come un sistema aromatico rispettando la regola di Hückel? Gli autori dell’articolo ipotizzano che l’enorme flessibilità della molecola consenta la coesistenza di tanti conformeri. Tra questi possono sussistere dei conformeri in cui le nuvole elettroniche di tipo π interagiscano tra loro in modo da portare ad una delocalizzazione elettronica in grado di soddisfare la regola di Hückel. Questa stessa spiegazione è stata usata per giustificare il comportamento aromatico di una molecola sintetizzata più recentemente (il lavoro è stato pubblicato il 20 Gennaio 2020, qui) contenente ben 162 elettroni π (ovvero n=40 nella regola del 4n+2). Si tratta di una vera e propria ruota gigantesca in cui coesistono 12 anelli porfirinici.

(Fonte)
Conclusioni

A questo punto mi potreste chiedere: ok. Bella tutta ‘sta storia, ma a che serve? Voglio evidenziare che la sintesi di molecole così grandi consente di mettere a punto protocolli che possono essere usati per la sintesi di molecole diverse e con attività biochimiche da sfruttare per l’elaborazione di nuovi farmaci. Per poter “vedere” queste molecole è necessario spingersi ai limiti delle tecniche analitiche più utilizzate in chimica. Questo vuol dire che vengono migliorate le caratteristiche di tecniche che possono diventare di applicazione sempre più ampia e consentire di arrivare a limiti finora inesplorati. Infine, queste molecole aromatiche giganti possono essere utilizzate per studiare gli effetti quantistici a livello nanoscopico ben oltre i limiti imposti dalle dimensioni della costante di Planck.

Quando leggo queste notizie, che per me sono affascinanti perché mi consentono di immergermi in un mondo tutto mio, mi ricordo perché mi sono innamorato della chimica ed ho fatto del mio hobby il mio lavoro.

Letture consigliate

Even Huge Molecules Follow the Quantum World’s Bizarre Rules

Quantum superposition of molecules beyond 25 kDa

Porphyrin wheel sets record as largest aromatic ring

[62]Tetradecaphyrin and Its Mono- and Bis-ZnII Complexes

Global aromaticity at the nanoscale

Fonte dell’immagine di copertina

A tu per tu con l’esperto: alluminio o plastica?

Continua la serie di interviste per la C1V edizioni in cui si affrontano problemi chimici legati alla vita quotidiana. Dopo aver parlato di acqua e dolcificanti (qui), oggi si affronta un problema molto attuale che riguarda la sostenibilità ambientale. Prendendo spunto dalle iniziative di alcune Istituzioni pubbliche che hanno deciso di fornire bottiglie di alluminio per disincentivare l’uso della plastica, affronto il problema dell’inquinamento da plastica ed evidenzio limiti e vantaggi delle iniziative anzidette.

_________________________________

Professore, la sua attività di ricerca è mirata non solo alla delucidazione dei meccanismi coinvolti nella dinamica di nutrienti e contaminanti nei suoli, ma anche al recupero ambientale. Ha letto sicuramente dell’iniziativa promossa dal Comune di Milano e dall’Università di Padova per combattere la lotta all’inquinamento da plastica. Cosa ne pensa?

Cominciamo col dire che il termine “plastica” individua una moltitudine di materiali che si differenziano tra loro per caratteristiche chimico-fisiche e meccaniche. Forse solo gli addetti ai lavori ricordano che una delle prime “plastiche” ad essere sintetizzate fu il rayon. Si tratta di un derivato della cellulosa – sì, il polimero a base di glucosio che costituisce le fibre vegetali – che fu conosciuta come “seta artificiale”. [continua…]

Fonte dell’immagine di copertina

Rete informale SETA – Scienze e Tecnologie per l’Agricoltura

È nata la Rete Informale SETA – Scienze e Tecnologie per l’Agricoltura che raccoglie professionisti del settore (accademici, liberi professionisti ed operatori agricoli) per lo sviluppo ed il sostegno ad una agricoltura sostenibile mediante l’uso delle conoscenze scientifiche e delle tecnologie più attuali.

Nelle immagini che seguono potete leggere il Manifesto per l’Agricoltura del XXI secolo da cui riporto uno stralcio:

<Crediamo necessario guardare all’agricoltura in un’ampia prospettiva di spazio e di tempo: essa si deve prioritariamente preoccupare di assicurare ad un’Umanità in crescita cibo sufficiente in termini quantitativi, sicuro in termini qualitativi, appropriato in termini nutrizionali ed equamente distribuito; lo deve fare incrementando la propria capacità produttiva – quanto meno fintanto che non si giungerà alla stabilità demografica – senza provocare il depauperamento irreversibile delle risorse naturali, al contempo adottando logiche di multifunzionalità che mirino alla tutela del paesaggio, del benessere e della cultura delle comunità locali. In tal senso riteniamo che questi obiettivi possano essere raggiunti soltanto attraverso l’impiego integrato di tutte le tecnologie disponibili, sulla base dei principi di sostenibilità economica, sociale e ambientale>

Potete chiedere informazioni scrivendo all’indirizzo: info@setanet.it

A breve sarà disponibile anche il modulo per l’adesione alla Rete Informale SETA.

Xylella, scienza e superstizioni

Riporto da un post di Enrico Bucci:

“Le misure contro la Xylella fastidiosa sono spesso attaccate da un variegato mondo che ama definirsi ambientalista e libertario, il quale ciancia di attacco alla democrazia, di misure imposte senza prove e di pericoli per la salute.

Oltre 150 scienziati del settore, tra cui alcuni Lincei, ricercatori, medici, giuristi, amministratori locali, imprenditori agricoli, naturalisti e chi è o è stato in prima linea – tra loro il generale Silletti – ci dicono una sola cosa: non è così, basta bugie.

Trovate al link qui sotto le loro considerazioni e la possibilità di lasciare il vostro nome per unirvi a loro.”

Contro la disinformazione sull’epidemia di Xylella fastidiosa

Io ho firmato perché ritengo che il mondo scientifico debba risollevarsi contro questo rigurgito di superstizioni che alimenta solo interessi personali.

Fonte dell’immagine di copertina: https://commons.m.wikimedia.org/wiki/File:Ostuni_olive_grove_SS379-3339.jpg

Scienza e novità – nuove strategie chimiche per l’agricoltura

In questi giorni si leggono tanti soloni discettare di dogmatismo scientifico perché il mondo accademico, almeno una parte consistente di esso, bolla come pseudoscientifiche le elucubrazioni esoteriche di chi cerca di ammantare di scientificità la pratica agricola che va sotto il nome di biodinamica®. Ricordo brevemente che si tratta di una pratica che si basa sulle concezioni filosofiche di Rudolf Steiner, vissuto tra il 1861 ed il 1925, il quale dettò alcune regole per la produzione alimentare che avevano come obiettivo l’equilibrio “spirituale” tra l’uomo e la Terra. Non è questo il momento per evidenziare le sciocchezze di Steiner. Ne ho scritto qualcosa qui e recentemente, assieme ad Enrico Bucci, ne ho parlato anche qui. Voglio, piuttosto, centrare l’attenzione sul fatto che i soliti redivivi Giordano Bruno e Galileo Galilei pensano di essere innovativi e che la scienza ufficiale brutta e cattiva si opponga alle loro novità per motivi economici o di arrivismo carrieristico. Tralasciando queste accuse che qualificano solo chi le fa, è da un po’ di tempo che non racconto di novità in ambito scientifico. Oggi voglio raccontarvi di nuove scoperte che la chimica – sì, proprio quella che produce le tanto vituperate sostanze tossiche (qui, per esempio) – sta facendo per aiutare la produzione agricola.

Chi mi segue sa che qualche volta ho parlato delle grandi scoperte scientifiche. Tra queste bisogna certamente annoverare il processo Haber-Bosch grazie al quale è possibile convertire l’azoto molecolare in ammoniaca.

Vi chiederete: embé?

Da un punto di vista chimico, l’azoto molecolare (N2) è una delle molecole più stabili (ovvero irreattive) che esistano in natura. L’energia di dissociazione della molecola di azoto è di circa 900 kJ mol-1. Ai non chimici questa informazione quantitativa è inutile. Vediamo di trasformarla in qualcosa di più comprensibile.

La reazione del processo Haber-Bosch (che potete trovare descritta qui) è:

N2 + 3H2 = 2NH3

Per ottenere questa conversione attualmente bisogna operare a 500 °C (contro i 600 °C del processo originario) e 150 bar (contro i 300 bar del processo originario). In altre parole, occorre una temperatura particolarmente alta (voi mettereste la mano nel piombo o nel rame fusi? Ecco…neanche io. 500 °C è una temperatura alla quale sia il rame che il piombo sono in fase liquida) ed una pressione altrettanto drastica (150 bar corrispondono approssimativamente alla pressione esercitata dall’acqua quando scendiamo ad una profondità di circa 1500 m).

L’importanza di questa reazione è legata al fatto che l’aria che noi respiriamo è costituita per l’80 % di azoto molecolare che è, quindi, disponibile a basso costo. La conversione Haber-Bosch consente di ottenere ammoniaca dalla quale poter, poi, sintetizzare molecole quali il solfato di ammonio che vengono usate, tra l’altro, per arricchire di azoto disponibile i suoli. Ricordo che l’azoto è un elemento importantissimo non solo per l’uomo, ma anche per le piante – ed in generale per tutti gli esseri viventi. Il motivo è che esso è presente in molecole come DNA e RNA, e nel nostro corredo proteico. Una carenza di azoto porta le piante a condizioni di stress in quanto esse non sono in grado di sintetizzare le predette molecole. Vi renderete conto, quindi, che l’uso di concimi a base di azoto è estremamente importante per conservare la fertilità dei suoli (che è la capacità di un suolo di sostenere la vita) e consentire la produzione alimentare per fornire sostentamento alla popolazione mondiale attualmente ancora in crescita.

Ebbene, fatta questa lunga premessa su un processo chimico oggi molto importante per le sue implicazioni in agricoltura, veniamo alla novità (l’articolo originale è qui. Se non avete possibilità di accesso a JACS, potete leggerne un riassunto qui).

Ricercatori statunitensi si sono messi a studiare in modo sistematico un fenomeno dall’apparente non riproducibilità.

Circa 75 anni fa si osservò che il biossido di titanio (TiO2), un composto inorganico usato come catalizzatore nella chimica verde, come sbiancante nelle vernici e nei dentifrici, nella forma allotropica indicata come rutilo  (Figura 1) riesce a convertire l’azoto molecolare in ammoniaca secondo lo schema riportato più su in condizioni molto blande, ovvero temperatura e pressione ambiente.

Figura 1. Struttura del rutilo (Fonte)

Il fenomeno veniva osservato solo saltuariamente. Tuttavia, nel tempo un certo numero di ricercatori ha condotto studi computazionali dai quali si è evinto che la non ripetibilità della conversione era legata al fatto che centro dell’attenzione nell’ottenimento del biossido di titanio era un prodotto con elevato grado di purezza. Quando tracce di impurezze carboniose erano presenti sulla superficie del catalizzatore, esso funzionava ottimamente a temperatura e pressione ambiente per convertire azoto molecolare in ammoniaca. Nel lavoro su JACS (una delle riviste più autorevoli della American Chemical Society) sono riportate finalmente le prove sperimentali di quanto ottenuto attraverso la computazione.

Qual è la morale di questa storia. I “bufalari” sono usi opporsi alla scienza perché definiscono gli scienziati chiusi nelle loro posizioni dogmatiche. Questi ignoranti ed arroganti neanche si rendono conto che se un fenomeno non viene osservato, non c’è nessun motivo per studiarlo. Quali ipotesi si dovrebbero formulare se il fenomeno semplicemente non esiste? Invece, la conversione di azoto in ammoniaca, sebbene saltuaria, era evidente. Bisognava solo capire quali fossero le condizioni necessarie a rendere ripetibile e riproducibile il fenomeno. Una volta individuate queste condizioni, si è ottenuta la fissazione dell’azoto in modo più conveniente del processo Haber-Bosch. Si tratta ora solo di replicare lo studio in laboratori indipendenti e ingegnerizzate il tutto in modo da produrre fertilizzanti a costo molto più basso dell’attuale.

Altro che le scemenze sulla biodinamica o sulla agro-omeopatia che esistono solo nella testa dei seguaci di queste pseudoscienze.

Fonte dell’immagine di copertinahttp://www.fritegotto.it/News-Due-moli-di-azoto-e-tre-di-idrogeno/

Numeri, numerielli e numericchi: la qualità dei dati scientifici (aggiornamenti alla Parte II)

Interessante. Oggi parlavo con un collega che evidentemente sta seguendo i miei post sul blog, in particolare questi sugli errori, e mi faceva notare che anche io non sono esente da errori nel riportare correttamente le cifre significative di cui ho parlato qui. Dovrei stare attento quando giudico gli altri e scrivo certe cose perché io stesso sono suscettibile delle medesime critiche. Sono d’accordo. Anzi aggiungo che sono assolutamente d’accordo. Ma proprio per questo devo guardare anche a me stesso.

Ho controllato nei diversi lavori che ho pubblicato, avendo come traccia solo che si trattava di un lavoro degli inizi della mia carriera. In effetti è così. L’ho trovato. Si tratta di: Zena, Conte, Piccolo (1999) GC/ECD determination of ethylenethiourea residues in tobacco leaves, Fresenius Environmental Bulletin 8, 116-123. Si tratta di un lavoro in cui sono stati ricercati i prodotti di degradazione, anzi del prodotto di degradazione, di un fungicida usato nella coltivazione del tabacco. Le tabelle incriminate sono quelle che potete vedere in Figura 1 e Figura 2.

Figura 1. Tabella 1 con il numero non corretto di cifre significative
Figura 2. Altra tabella con errori nelle cifre significative

Si tratta di errori del tutto analoghi a quelli che ho denunciato nella Parte II di questo reportage.

Non è certo un caso che la rivista che ha accettato questo lavoro abbia un impact factor di 0.673 per il 2017/2018. In effetti una qualsiasi altra rivista più quotata quasi sicuramente non avrebbe fatto passare un lavoro con questi errori così evidenti. La qualità di questa rivista è valutabile al seguente link Fresenius Environmental Bulletin.

La Figura 3 mostra come si posiziona negli anni Fresenius Environmental Bulletin nei vari quartili che sono utilizzati per la valutazione della qualità di una rivista scientifica.

Figura 3. Posizionamento dei Fresenius Environmental Bulletin negli anni

Per i non addetti ai lavori, ogni rivista viene posizionata in un quartile in base all’importanza della rivista stessa. Il quartile più importante è indicato come Q1, poi a scalare ci sono Q2, Q3 e Q4. Le riviste che si posizionano in Q1 sono quelle più accreditate (Nature e Science, tanto per essere chiari), mentre più alto è il valore del quartile, meno importante è la rivista in cui si decide di pubblicare. Il codice dei colori riportato in Figura 3 mostra che Fresenius Environmental Bulletin per il 2017 si trova in Q4 per il settore Environmental Science e Q3 per i settori Pollution e Waste Management and Disposal.  La posizione migliore che questa rivista aveva nel 1999 era Q2 per Waste Management and Disposal.

Come fa una rivista a scendere così in basso nel posizionamento dei quartili? Uno dei motivi è che accetta lavori come il mio con errori così evidenti che non consentono agli stessi di far crescere la rivista in cui sono pubblicati.

Le quotazioni di una rivista crescono con la qualità dei lavori che essa accetta e pubblica. Lavori di bassa qualità non permettono alla rivista di essere catalogata tra quelle importanti per un determinato settore scientifico.

Volete sapere quale è stato l’impatto di questo mio lavoro nella comunità scientifica? Lo potete vedere nella Figura 4 che è ricavata dallo screenshot della mia pagina Google Scholar (qui).

Figura 4. Impatto del lavoro su Fresenius Environmental Bulletin nella comunità scientifica

Come vedete, dal 1999 ad oggi il lavoro è stato citato solo sei volte. In quasi venti anni sei citazioni sono davvero poche. Solo come confronto, nella Figura 4 è riportato anche l’impatto (in numero di citazioni) di altri due miei lavori. Evidentemente la qualità dei dati sperimentali descrivibile attraverso l’uso scorretto delle cifre significative riflette la qualità complessiva del lavoro che non è risultato utile alla comunità scientifica relativa al mio settore.

Devo ancora trattenermi in quel che dico o scrivo perchè alcuni ritengono che sottolineare il pressapochismo che sovente si nota nel riportare le cifre significative sia insignificante o, addirittura, sbagliato? No.
Anche io posso sbagliare, ma l’importante è stato imparare dai miei errori, non certo non commetterne mai. Anzi, sono molto grato al mio collega che ha avuto la costanza e la pazienza di andarsi a scaricare tutta (sic!) la mia produzione scientifica, leggere un bel po’ di lavori ed andare a spulciare nei meandri delle mie pubblicazioni se eventualmente ci fosse da segnalare al sottoscritto la presenza di sbagli, anche in pubblicazioni di quasi venti anni fa. Di questo lo ringrazio perchè la mia memoria non è così ferrea.
Ma, anche, questo mi permette di dire che tutti commettiamo errori e che non bisogna mai abbassare la guardia di fronte alla sciatteria scientifica se si ha la volontà di crescere e migliorare professionalmente.

Fonte dell’immagine di copertinahttps://saluteuropa.org/scoprire-la-scienza/chi-supervisiona-la-qualita-delle-pubblicazioni-scientifiche/

Numeri, numerielli e numericchi: la qualità dei dati scientifici (Parte III)

Nelle prime due parti del reportage sulla qualità dei dati scientifici ho posto l’attenzione sulla differenza tra riviste chiuse e riviste aperte (qui) e ho evidenziato che la scarsa qualità dei dati scientifici non riguarda solo i predatory journal, ma anche giornali ritenuti molto affidabili (qui). In altre parole ho puntualizzato che la cosiddetta bad science, ovvero ciò che sfocia nella pseudo-scienza, è trasversale; ne sono pervase un po’ tutte le riviste: siano esse predatory journal oppure no; siano esse open-access oppure no. Ne ho discusso anche altrove (per esempio qui e qui), quando ho evidenziato che lavori poco seri sono apparsi su Nature e Science (riviste al top tra quelle su cui tutti noi vorremmo pubblicare) e che più che dal contenitore, ovvero dalla rivista, bisogna giudicare la qualità di un lavoro scientifico sulla base di ciò che viene scritto. Nonostante questo, tutte le istituzioni accademiche e non, riconoscono che la probabilità di avere bad science in un predatory journal è più alta che nelle riviste considerate non predatory; per questo motivo tutte le istituzioni formulano delle linee guida per tenersi lontani da riviste di dubbia qualità.

In che modo difendersi dalla bad science delle riviste predatorie?

Esistono tanti siti al riguardo. Per esempio, la mia Università, l’Università degli Studi di Palermo, mette a disposizione una pagina (qui) in cui elenca una serie di siti web da cui attingere per valutare se una rivista è seria oppure no. In particolare, se la rivista in cui si desidera pubblicare è compresa negli elenchi dei link riportati ed è anche nella Beall’s list of predatory journals and publishers, con molta probabilità si tratta di un predatory journal a cui si raccomanda di non inviare il proprio rapporto scientifico. Se, invece, la rivista o l’editore sono negli elenchi citati ma non nella  Beall’s list of predatory journals and publishers, con buona probabilità si tratta di riviste non predatorie. Qual è il limite di queste raccomandazioni? I predatory journal spuntano come funghi per cui  è possibile che ci si imbatta in una rivista che non è stata ancora catalogata come predatoria. Cosa fare in questo caso? Bisogna ricordarsi che tutte le riviste predatorie hanno in comune alcuni caratteri essenziali che le distinguono dalle riviste più accreditate:

  1. Comitati editoriali anomali, non determinati o inesistenti
  2. Tendenza a pubblicare lavori scientifici in settori molto eterogenei tra loro
  3. Tasse per la pubblicazione estremamente basse (in genere meno di 150 €)
  4. Presenza di immagini sfocate o non autorizzate presenti nei loro siti web
  5. Richiesta di invio dei lavori mediante posta elettronica, spesso a indirizzi e-mail non professionali o non accademici, e non attraverso un sistema di invio on-line
  6. Mancanza di qualsiasi politica sulle ritrattazioni, correzioni, errata corrige e plagio (più della metà delle riviste più accreditate descrive nei propri siti web come comportarsi in ognuna delle quattro circostanze)
  7. Basso o inesistente valore di impact factor (IF)

Tutti questi caratteri possono essere presenti contemporaneamente o in parte in una data rivista. Tuttavia, la loro presenza non necessariamente deve essere indice di predazione. Infatti, per esempio, una rivista nuova non ha l’impact factor che si calcola confrontando il numero di citazioni di tutti gli studi pubblicati in un biennio col numero totale di studi pubblicati nello stesso biennio (qui). Questo significa che una rivista può cominciare ad avere un IF solo a partire dal terzo anno di vita. Se la rivista è di nuova fondazione, può attuare una politica di incentivazioni alla pubblicazione fornendo agevolazioni ai ricercatori che decidono di inviare il loro lavoro. Per esempio, la ACS Omega (una rivista ancora senza IF della American Chemical Society, ACS) permette la pubblicazione gratuita a chiunque disponga di voucher (del valore di circa 750 $) elargiti dalla ACS a ricercatori di paesi in via di sviluppo o con problemi di fondi di ricerca per la pubblicazione in open access. C’è anche da dire che attualmente è abbastanza facile costruire siti web accattivanti ed attraenti. Per questo motivo, a meno che non si tratti di truffe molto evidenti, è abbastanza difficile trovare riviste predatorie con siti web fatti male. Infine, in passato ho pubblicato su riviste molto importanti del mio settore (quindi non predatorie, non open access e con ottimo IF), il cui editor rispondeva ad un indirizzo e-mail con dominio gmail.com.

Ma adesso sto diventando prolisso. Basta annoiarvi.

Ho aperto questo articolo scrivendo che tutte le istituzioni accademiche (e non) si raccomandano di seguire le linee guida appena indicate per evitare di pubblicare su riviste dalla scarsa qualità. In altre parole, le linne guida riportate sono un modo per riconoscere l’attendibilità dei contenitori in cui “versare” le conoscenze scientifiche che noi raccogliamo dalla nostra attività di ricercatori. Per ora non vi voglio annoiare di più. Nella quarta ed ultima parte di questo reportage dimostrerò che, in realtà, la qualità della ricerca non dipende dalla tipologia di rivista, ma da ben altri fattori tra cui le istituzioni che finanziano la ricerca e che, nello stesso tempo, si raccomandano di tenersi lontani da certi giornali.

Altre letture

https://www.enago.com/academy/identifying-predatory-journals-using-evidence-based-characteristics/

https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-015-0423-3

Fonte dell’immagine di copertina: https://www.efsa.europa.eu/it/press/news/170803