Marketing e Chimica: quando la pseudo scienza prende il sopravvento

Devo dire che molte volte me le vado a cercare.
Letteralmente.
Mi piace camminare e mi piace leggere le etichette dei prodotti esposti in vetrina, soprattutto se si tratta di alimenti o prodotti per la pulizia. Mi lascia sempre esterrefatto quanto poco il marketing faccia per elaborare slogan che siano un minimo rispettosi delle conoscenze scientifiche. In questa breve nota voglio puntare l’attenzione su marketing e chimica.

Nelle mie peregrinazioni alla ricerca di perle di saggezza pseudo scientifica, mi capita talvolta di entrare nei negozi biologici. Sì, quei negozi col “bio” in evidenza perché “fa bene”. Secondo i creduloni new age il “bio” fa bene alla salute. Secondo me, che sono un credulone scientifico, fa bene alle tasche di chi vende. La foto di copertina ne è una prova lampante.

In uno dei negozi di una nota catena “bio” cosa trovo? Un caffè biologico. Passi per il biologico che è una pratica agronomica sostenibile, benché io abbia le mie idee al riguardo. Ma leggere nell’etichetta che questo caffè è decaffeinato ad acqua senza l’uso di solventi chimici e quindi è naturale, mi sembra veramente troppo. È una offesa personale per tutti quelli che vanno a scuola e cercano di imparare i rudimenti di una qualsiasi materia scientifica.

Mi piacerebbe chiedere ai produttori di questo caffè: “ma secondo voi, l’acqua che cos’è? Non è un prodotto chimico e non è il solvente per eccellenza?”

Sono sicuro che i signori mi risponderebbero che l’acqua è sicuramente più naturale dei solventi organici, dimostrando una profonda ignoranza in due modi distinti. Da un lato, l’acqua che noi beviamo non è naturalmente pura. Noi abbiamo bisogno di sanificarla perché altrimenti essa potrebbe essere veicolo di micro organismi patogeni per l’uomo con la conseguenza di possibili epidemie o anche pandemie.
Ho già scritto una nota al riguardo al seguente link.

Insomma, l’acqua che noi usiamo come alimento non è certo come essa sgorga dalle sorgenti, ma è trattata. E sono sicuro che anche l’acqua usata per la decaffeinizzazione lo sia. Il secondo punto che denota profonda ignoranza è che sono anni che il caffè non viene più decaffeinato con solventi organici. Oggi, proprio per evitare residui seppur minimi di solventi organici, il caffè viene decaffeinato con anidride carbonica supercritica. Si tratta di un particolare stato della materia per cui questa molecola che a temperatura ambiente è un gas, in condizioni particolari di pressione e temperatura diventa qualcosa a metà fra un liquido ed un gas. In queste condizioni, l’anidride carbonica estrae la caffeina con una efficienza superiore a quella di un qualsiasi solvente organico. Il vantaggio è che, quando si torna nelle condizioni di pressione e temperatura atmosferici, tutto il solvente super critico si allontana e non ne rimane traccia alcuna.

Morale della storia. Se volete divertirvi a leggere stupidari chimici, andate a passeggiare in uno qualsiasi dei negozi “bio” in giro per l’Italia. Ne troverete delle belle. In ogni caso il marketing sconclusionato, secondo me, è molto dannoso. È vero che il business prevede di fare soldi, ma non dovrebbe mai essere a discapito dell’etica che dovrebbe imporre la diffusione di informazioni corrette.

Per saperne di più:

Il processo di decaffeinizzazione

Chimica e archeologia

Chimica e archeologia

Sapevate che l’indaco è un colorante conosciuto fin dall’antichità? È la molecola rappresentata nella figura inserita a corredo di questa nota. Si ottiene per fermentazione e successiva ossidazione delle foglie di una pianta [1]. È una molecola dal caratteristico colore blu brillante utilizzata oggi per produrre il colorante usato per i jeans.

È noto che l’uso di questo colorante sia iniziato in Asia circa 4000 anni fa per arrivare poi anche nei paesi del bacino del Mediterraneo [2].

È notizia di qualche ora che un team di studiosi di università Statunitensi ed Europee ha analizzato i tessuti ritrovati in una zona del Nord del Perù scoprendo che essi erano stati colorati di blu usando proprio l’indaco noto da circa quattro millenni in Europa ed Asia [2, 3].

La novità non è il ritrovamento di questi tessuti di per sé già importante per comprendere usi e costumi delle popolazioni locali, né tantomeno il fatto che la colorazione blu è dovuta all’uso di un colorante molto noto. La novità è nel fatto che la radiodatazione al 14C ha mostrato che i tessuti erano databili a circa 6000 anni fa.

In altre parole le indagini chimico fisiche hanno consentito di spostare indietro di 2000 anni l’uso di questo colorante per tessuti la cui applicazione fino ad ora si pensava molto più recente e tipica delle popolazioni Asiatiche e Mediterranee. Invece, a quanto pare i popoli dell’età precolombiana sono stati “chimici” più innovativi rispetto a quelli Asiatici e Mediterranei in quanto erano a conoscenza della tecnologia dell’indaco molto tempo prima di quanto riportato in tutti i libri di chimica dei coloranti.

Direi che la chimica a supporto dell’archeologia lascia venir fuori informazioni veramente intriganti e consente di aprire scenari storici veramente sorprendenti.

Letture consigliate

[1] http://www.chimicare.org/blog/metodi-e-approcci/527/

[2] http://www.sciencemag.org/…/blue-your-blue-jeans-may-have-o…

[3] http://advances.sciencemag.org/con…/…/e1501623.full.pdf+html

Perché ci sono individui che non sanno arrotolare la lingua?

Perché ci sono individui che non sanno arrotolare la lingua?

Quando ero un ragazzino giocavo con i miei amici a chi sapeva arrotolare la lingua. È un giochetto da bambini, ma solo adesso ho scoperto che, in realtà, questo giochetto si basa su delle complesse caratteristiche genetiche.

Alle medie mi fu spiegato dal professore di scienze che questa capacità dipende dalla presenza o dall’assenza di una proteina. Non mi ricordo se mi sia mai stato detto che tipo di proteina. Oggi ci ripensavo e, mentre lo facevo, ho attivato il mio senso critico e ho concluso che se mi è mai stata detta una cosa del genere (sono quasi cinquantenne e le scuole medie le ho frequentate una quarantina di anni fa per cui i ricordi non solo sono lontani, ma sono anche distorti), essa era una sciocchezza. Ho deciso, allora, di togliermi la curiosità e di utilizzare i mezzi che quaranta anni fa non esistevano: il web. L’unica risposta sensata che sono riuscito a trovare è riportata nel riferimento [1] dove si citano studi circostanziati nei quali sono state date delle risposte articolate alla domanda di questa nota.

A quanto pare nei pochi studi pubblicati tra gli anni 40 e 70 del secolo scorso si è evidenziato che non tutti sono capaci di arrotolare la lingua. Questa è un’azione che viene imparata tra i 6 ed i 12 anni. Superato questo intervallo non ci si riesce più se non con grande difficoltà. Gli studi suddetti sembrano dimostrare che la capacità di imparare ad arrotolare la lingua dipenda da una precisa predisposizione genetica che non è legata ad un solo gene ma ad una complessa interazione che coinvolge geni differenti. Inoltre, dall’analisi di questa capacità fatta su gemelli monozigoti, è apparso che oltre a fattori genetici ci siano anche fattori ambientali di cui tenere conto.

Lo studio più recente, in base a quanto riportato in [1], sembra essere del 1971. Da allora sembra non sia stata prodotta altra letteratura in merito per cui al momento non si conoscono i geni coinvolti e non si sa quale tra i due fattori, quello genetico e quello ambientale, sia il più importante nella capacità di arrotolare la lingua.

È importante saper arrotolare la lingua? No, certamente. Ma mi sono tolto una curiosità.

Riferimenti

[1] http://ulisse.sissa.it/chiediAUli…/domanda/…/Ucau091017d001/

Le proprietà dell’azoto liquido e l’effetto Leidenfrost

Le proprietà dell’azoto liquido e l’effetto Leidenfrost

L’azoto (N) è un elemento della tavola periodica che non esiste come tale in natura. Infatti, lo si trova sempre legato a qualche altro atomo. La forma più comune è l’azoto molecolare (N2) in cui due atomi di azoto sono legati a formare una delle molecole più stabili esistenti sulla Terra.

Per i più curiosi, la quantità di energia che è necessaria utilizzare per rompere il legame di N2 è di circa 1000 kJ/mol.

L’azoto molecolare è il gas più abbondante nell’aria che respiriamo dal momento che ne costituisce circa il 79% in volume [1].

L’azoto molecolare può essere “costretto” in forma liquida e conservato in opportuni contenitori. Questa forma di azoto trova tante applicazioni, prime tra tutte in cucina come riportato nel blog di Dario Bressanini [2], in medicina (ovvero nella criomedicina, come quella che serve per rimuovere le verruche), nella crioconservazione (per esempio per conservare campioni biologici come lo sperma) oppure per generare effetti scenici come la nebbia artificiale.

Maneggiare azoto liquido richiede estrema cautela. La sua temperatura è di circa – 200°C per cui, senza precauzioni, può provocare ustioni molto gravi come quelle che ha subito una ragazza inglese che ha bevuto un cocktail fatto con azoto liquido [3]. Avendo una temperatura di ebollizione molto bassa, nel momento in cui entra a contatto con sistemi a temperatura ambiente evapora velocemente generando nebbia. Tuttavia alte concentrazioni di azoto gassoso, ottenute in seguito alla rapida evaporazione di quello liquido, sono molto pericolose e provocano asfissia, coma e morte come accaduto a degli sprovveduti che qualche anno fa versarono alte quantità di azoto liquido in una piscina [4].

Ma il comportamento più interessante dell’azoto liquido è legato all’effetto Leidenfrost [5]. Molto semplicemente, l’azoto liquido versato sul pavimento (come nella figura a corredo di questa nota) evapora rapidamente producendo un cuscinetto gassoso che tiene sollevate gocce di azoto liquido dal pavimento consentendone il rotolamento in tutte le direzioni fino a che non scompaiono completamente sotto forma di gas. Questo effetto è anche quello che ci consente di immergere una mano nel liquido freddo (a circa -200°C) senza conseguenze di alcun tipo. Infatti la differenza di temperatura tra l’azoto liquido e la mano fa in modo che una pellicola di azoto gassoso avvolga quest’ultima impedendo il contatto diretto con il gas liquido e prevenendo le gravi ustioni.

Se avete voglia di vedere le interessanti conseguenze dell’effetto Leidenfrost, potete cliccare sul link qui di seguito: https://www.youtube.com/watch…

Riferimenti

[1] http://www.chimica-online.it/downl…/formula-chimica-aria.htm

[2] http://bressanini-lescienze.blogautore.espresso.repubblica.…

[3] http://www.corriere.it/…/cocktail-azoto-liquido-stomaco_09a…

[4] http://youmedia.fanpage.it/video/aa/UcGA1eSwFp5NZrIk

[5] https://it.wikipedia.org/wiki/Effetto_Leidenfrost

Come fanno gli animali a scambiare informazioni?

Come fanno gli animali a scambiare informazioni?

È da un po’ troppo tempo che non faccio post. Il lavoro di quest’ultimo periodo mi tiene un po’ occupato per cui non ho molto tempo da dedicare alla divulgazione. Ho letto una notizia su National Geographic che mi ha molto incuriosito [1].

Facebook, twitter, instagram e chi più ne ha più ne metta sono i classici social systems che usiamo per scambiarci informazioni o semplicemente “cazzeggiare”.

Ebbene anche gli animali superiori come i mammiferi si scambiano informazioni. Come fanno? Attraverso le urine. È noto fin dalle elementari che i gatti, per esempio, marcano il loro territorio con la pipì. Se un gatto estraneo arriva in zona, riconosce l’odore lasciato dal “padrone” del territorio e si defila [2].

Tuttavia, a quanto pare i mammiferi non usano solo l’urina per marcare il territorio, ma anche le feci. Sì, proprio la cacca. Un recente studio pubblicato su Proceedings of the Royal Society B [3] sulle componenti volatili delle feci di rinoceronte bianco (una specie protetta) ha evidenziato che tre molecole particolari hanno un significato ben preciso nell’organizzazione sociale di questi mammiferi. Il 2,3-dimetil-undecano (un idrocarburo alifatico) serve per il riconoscimento del sesso dell’individuo, l’eptanale (una aldeide) discrimina per la classe sociale, mentre il 2,6-dimetil-undecano (altro idrocarburo, isomero del precedente) serve per riconoscere lo stato estrale delle femmine del branco.

I ricercatori che hanno effettuato lo studio concludono che dal momento che i rinoceronti bianchi defecano comunitariamente, i cumuli di feci, probabilmente, servono come centri di informazione, ovvero: alte concentrazioni di 2,3-dimetil-undecano indicano potenziale minaccia per la presenza di un maschio concorrente nelle vicinanze; alte concentrazioni di 2,6-dimetil-undecano indicano presenza di femmine in calore per cui il maschio deve essere vigile per trovare la potenziale compagna.

Interessante, vero?

Riferimenti

[1] http://news.nationalgeographic.com/…/rhinoceroses-poop-mi…/…
[2] http://www.aspca.org/…/common-cat-behavi…/urine-marking-cats
[3] http://rspb.royalsocietypublishing.org/cont…/…/1846/20162376

Fonte dell’immagine: http://www.agraria.org/faunaselvatica/rinoceronte-bianco.htm

Da dove originano i nomi degli elementi?

Vi siete mai chiesti da dove originano i nomi degli elementi? Di tanto in tanto me lo sono chiesto anche io. Quando insegnavo la chimica generale e la chimica organica, era divertente sbalordire gli studenti con aneddoti curiosi e carini. Smorza la tensione per la lezione oggettivamente pesante e consente di andare avanti con più leggerezza.

Uno degli aneddoti che mi piaceva raccontare, ancora oggi lo faccio se ne ho la possibilità, è quello relativo all’azoto.

L’azoto è un elemento molto importante in natura. E’ presente in tantissimi composti organici che assolvono a funzioni metaboliche importantissime. E’ presente nelle proteine, nel RNA, nel DNA, in molte sostanze che i chimici definiscono composti naturali e compagnia cantando.

Ma perché si chiama azoto? Il nome è stato coniato da Lavoisier (https://it.wikipedia.org/wiki/Antoine-Laurent_de_Lavoisier) in Francia: “azote”. Significa “senza vita”. Deriva dal greco in cui al termine “zotos” (che viene da zoe, vivere) si associa la alfa privativa, da cui “a-zoto”, ovvero “azoto”. Sembra un paradosso, vero? Un elemento che è fondamentale per il metabolismo, ovvero per i processi alla base della vita, porta un nome che si riferisce alla morte.

Beh, ai tempi di Lavoisier non si conoscevano certo le molecole come si conoscono oggi. Non si conosceva l’importanza di questo elemento nei metaboliti. Si sapeva però che una atmosfera privata di ossigeno provocava la morte, da cui il termine “azote” che in Italiano è diventato “azoto”.

Ma se il nome è “azoto”, perché ha simbolo “N”?
In realtà,questo elemento ha un nome con doppia etimologia. Il termine “azoto” è usato prevalentemente nei paesi non anglosassoni.

Nei paesi anglosassoni “azoto” è indicato con “nitrogen”. Il nome fu coniato nel 1790 da Chaptal (https://it.wikipedia.org/wiki/Jean-Antoine_Chaptal), un altro chimico francese, che capì che l’elemento era uno dei costituenti del nitrato di potassio, un sale, comunemente noto come “salnitro” ed usato come sapone ai tempi dei Romani. “Nitro”-“gen” vuol dire quindi “genitore” del “nitron”, laddove “nitron” è l’antico nome del nitrato di Potassio.

In definitiva benché Paperino in questa vignetta http://bressanini-lescienze.blogautore.espresso.repubblica.… si riferisca ad un certo “nitrogeno” commettendo un errore che molti chimici ritengono grave perché in Italiano N = azoto, posso dire che, in realtà, si tratta solo di un errore veniale perché sia “azoto” che “nitrogeno” sono i nomi che possiamo attribuire all’elemento di simbolo “N” con numero atomico 7 e peso atomico 14 g/mol.

 

Riflessioni di un docente di mezza età. Cos’è la vita?

Stamattina ho fatto la mia solita lezione. Dalle 8:00 alle 10:00. Non è proprio un orario piacevole per gli studenti. Si beccano la chimica del suolo di prima mattina quando i neuroni sono ancora in fase di riposo…ma va bene. Preferisco che certe cose vengano dette a mente fresca, quando non sono ancora stanchi ed annoiati da una mattinata di lezioni varie.
Oggi ho parlato della reazione del suolo che, tradotto per i non addetti, vuol dire pH del suolo, come si misura e il suo effetto sulla dinamica dei nutrienti. La figura qui sotto mostra la disponibilità di alcuni nutrienti in funzione del pH.
Disponibilità dei nutrienti in funzione del pH dei suoli (Fonte)

Come mio solito quando faccio lezione (che da qualche anno a questa parte faccio a braccio, ovvero senza seguire una preparazione preventiva e seguendo le indicazioni degli studenti attraverso la valutazione della loro espressione e delle loro domande) sono passato dalla delucidazione scientifica a considerazioni di natura filosofica.
Qual è l’effetto di un pH troppo acido o troppo basico sui suoli? La prima cosa che deve venire in mente è che, al di là di una asettica dinamica molecolare, si ha una selezione della tipologia di forme di vita che sono presenti sul suolo. Se la concentrazione idrogenionica è troppo elevata (molto più elevata di quella presente all’interno delle cellule dei micro organismi del suolo) si innescano processi osmotici che portano alla lisi cellulare. Lo stesso meccanismo è valido quando il pH è troppo basico (troppo acido e troppo basico in chimica del suolo vuol dire molto al di sotto di pH 5.5 e molto al di sopra di pH 7.5, rispettivamente). E’ chiaro che in queste condizioni estreme, riescono a sopravvivere solo micro organismi estremofili. In definitiva, per effetto di una variazione del pH dei suoli, si innescano meccanismi di selezione che portano alla predominanza di certe forme di vita su altre.
Effetto del pH sulla crescita microbica (Fonte)
Ma che cos’è la vita?

Sembra una domanda banale. Gli studenti in genere dicono: noi esseri umani, le piante, gli animali. Altri aggiungono: sono vita anche i micro organismi (che possono essere del suolo o anche quelli simbiotici che vivono al nostro interno). In generale, nessuno è in grado di dare una risposta univoca che si applichi contemporaneamente a tutte le forme di vita.

Negli anni scorsi (non oggi perché per mancanza di tempo sono andato subito alle conclusioni) proponevo un giochetto (che poi è lo stesso proposto da Pier Luigi Luisi nel libro indicato più in basso).
Noi oggi siamo coinvolti nell’esplorazione spaziale alla ricerca, tra l’altro, di nuove forme di vita. Cosa ci dobbiamo aspettare? Come riconoscere nuove forme di vita?
Ci viene spontaneo dire che quanto riportato nel seguente elenco son tutte forme di vita:
Mosca; Albero; Mulo; Bambino; Fungo; Ameba; Pollo; Corallo
Mentre quanto contenuto in questa lista non è vita:
Radio; Automobile; Robot; Cristallo; Luna; Computer; Mare; Carta
Ma perché?
Si potrebbe dire che la mosca, il mulo il bambino, l’ameba, il pollo sono forme di vita perché sono “oggetti” che crescono e si muovono. Ma allora un albero ed un fungo, che non si muovono, non sono forme di vita? Alla luce di “crescita” e “movimento” potremmo dire che la Luna e il mare (che si muovono e crescono periodicamente) sono forme di vita. Ma non è così. Ed allora, perché nel primo elenco ci sono forme di vita e nel secondo no? Si potrebbe dire che son forme di vita tutti quegli “oggetti” che reagiscono agli stimoli esterni. Ma allora, ancora una volta un fungo non è vita. Sembra non reagire ad alcuno stimolo. Un computer, invece, potrebbe essere forma di vita perché reagisce a degli stimoli elettrici. Lo stesso si potrebbe dire per un robot. Le cose viventi sono tutte quelle che sono in grado di riprodursi. Ma allora, alla luce di questo parametro, il mulo, che è sterile, non è una forma di vita.
Come si arguisce dall’esempio fatto, qualsiasi parametro si vada a prendere in considerazione, gli elementi della prima lista possono rientrare nella seconda lista e viceversa.
In realtà esiste una unica risposta alla domanda “perché gli elementi della prima lista sono forme di vita mentre quelli della seconda lista non lo sono?”: tutti gli elementi della prima lista hanno una cosa in comune, ovvero una attività metabolica che consente a tutti loro di essere autopoietici. Non è una brutta parola. Significa solo che tutti gli esseri viventi, grazie ai processi metabolici che li accomunano, sono in grado di autoripararsi. Pensate a quando vi fate un graffio: esce del sangue, ma, dopo un po’ di tempo, il sangue coagula, le cellule ricrescono e tutto torna come prima.
Coagulazione del sangue (Fonte)
Tutti gli elementi della seconda lista non sono dotati della proprietà autopietica perché non hanno alcun metabolismo.
Abbiamo risposto alla domanda relativa al parametro da usare per identificare le forme di vita. Ma ancora bisogna rispondere alla domanda “cos’è la vita?”
A questo punto viene spontaneo dire che la “vita” è una proprietà emergente dall’interazione di diverse componenti. In altre parole, la vita è una proprietà intrinseca di “macchine molecolari” complesse dotate di metabolismo. Essa “nasce” dalla combinazione di “caso e necessità”. Cambiamenti casuali di carattere ambientale hanno consentito la sintesi di molecole più o meno complesse. Nel momento in cui esse sono state casualmente ottenute per combinazione degli elementi chimici che le compongono e sotto la spinta di pressioni ambientali, hanno cominciato ad “agire” seguendo la “necessità” di leggi chimico-fisiche che già conosciamo o che scopriamo ogni giorno grazie alla nostra attività scientifica. Ogni cambiamento casuale delle condizioni al contorno (ovvero delle condizioni ambientali), comporta una risposta metabolica ben precisa con successiva necessaria evoluzione per adattamento alle nuove condizioni.
Conclusioni
Non so cosa i miei studenti abbiano capito da questa lezione. Alla fin fine le domande d’esame verteranno solo sul pH dei suoli e sul suo effetto sulla dinamica dei nutrienti. Devo dire, però, che dalle loro espressioni ho capito che sono rimasti colpiti. Io mi sono divertito. Ma come spesso mi viene detto, forse mi sono divertito perché ho avuto modo di essere logorroico e di annoiare un pubblico che è obbligato ad ascoltarmi e non è nella posizione di mandarmi a quel paese. Posso chiudere dicendo che non mi importa: la scienza è conoscenza e la conoscenza è anche la deriva pseudo filosofica attraverso cui un individuo è spinto a riflettere sul significato più profondo delle domande che si è sempre posto. Ho scelto di fare il “pensatore” buttandomi nella ricerca universitaria per soddisfare le mie curiosità più recondite.
Per chi vuole approfondire:
Erwin Schoeredinger, Che cos’è la vita? Adelhi (1995) (http://www.adelphi.it/libro/9788845…)
Ed Regis, Cos’è la vita? Chiavi di lettura della Zanichelli (2010) (http://online.scuola.zanichelli.it/…)
Pier Luigi Luisi Sull’origine della vita e della biodiversità Mondadori (2013) (http://www.laputa.it/libri/sullorig…)
Le macchine molecolari – https://www.facebook.com/notes/rino…
J.J. Monod, il caso e la necessità, Mondadori (1971) (https://monoskop.org/images/8/8e/Mo…)
Fonte dell’immagine di copertina: http://hdimagesnew.com/3d-dna-wallp…

Le strane proprietà dell’acqua. L’effetto Mpemba

In che cosa consiste l’Effetto Mpemba?
Il mondo scientifico è molto variegato ed è estremamente libero. Ognuno si occupa delle cose che più lo incuriosiscono cercando di portare il proprio contributo alle conoscenze globali.
Tra le cose che attirano la curiosità di scienziati e gente comune sono le proprietà dell’acqua.
Qui, qui, qui, qui e qui sono descritte in modo divulgativo alcune delle sue proprietà influenzate dalla presenza dei legami a idrogeno.
Una caratteristica dell’acqua su cui non sembra esserci un accordo nel mondo scientifico è il cosiddetto effetto Mpemba, ovvero la capacità dell’acqua di congelare più velocemente se essa è prima riscaldata.
Il nome dell’effetto è quello di un Tanzaniano che, da ragazzino, affermava che era in grado di ottenere più velocemente i gelati se la crema veniva posta in freezer quando ancora calda. In realtà, l’osservazione del fenomeno pare risalga addirittura ad Aristotele, passando per Cartesio.
Erasto Mpemba, la persona da cui l’effetto prende nome (fonte dell’immagine: http://www1.lsbu.ac.uk/water/mpemba_effect.html)
L’effetto descritto è un paradosso: logicamente si sarebbe tentati di pensare che essendo l’acqua fredda più vicina al punto di congelamento, essa debba congelare più velocemente dell’acqua calda che, invece, è più distante dal punto di congelamento.
Il disaccordo nel mondo scientifico di cui accennavo sopra si sviluppa su diversi livelli. Ci sono scienziati che ne negano l’esistenza perché in condizioni controllate non riescono ad osservare il fenomeno e scienziati che, invece, sembrano osservare il fenomeno e ne danno anche una spiegazione. Nell’ambito di chi spiega l’effetto Mpemba c’è chi dà importanza ai gas disciolti e chi, invece, pone l’accento sulla natura dei legami a idrogeno.
Qual è la mia posizione? Devo dire che personalmente sono piuttosto scettico, ma la mia è solo una opinione basata sulla lettura di un lavoro apparso recentemente su Scientific Reports. In questo lavoro, gli autori non solo evidenziano che i dati sperimentali riportati negli studi assertivi dell’effetto Mpemba sono deficienti in ripetibilità e riproducibilità, ma sono anche affetti dal pregiudizio di conferma degli autori stessi.
Lo scopo di questa nota è riportare non le mie opinioni in merito (non ho mai studiato direttamente questo effetto e non potrei esprimermi in merito se non approfondendo ulteriormente i singoli casi studio), ma lo stato dell’arte in merito a quelle che sono delle spiegazioni piuttosto affascinanti di un effetto che, se osservato con maggiore attendibilità, evidenzierebbe nuovi tipi di anomalie dell’acqua.
LA STRUTTURA DELL’ACQUA
È già stato spiegato altrove (qui, qui, qui, qui e qui) che ogni molecola di acqua è in grado di formare fino a quattro legami a idrogeno impegnando sia i due atomi di idrogeno legati all’ossigeno (in questo caso la molecola di acqua funziona da donatrice di idrogeno) sia i doppietti solitari localizzati sull’atomo di ossigeno (in questo caso la molecola di acqua funziona da accettrice di idrogeno). Si forma, in questo modo, un insieme di cinque molecole di acqua agganciate tra di loro a formare un tetraedro. Di queste cinque molecole di acqua, una è al centro del tetraedro, le altre quattro sono nei vertici. Queste ultime, a loro volta, sono al centro di un altro tetraedro i cui vertici sono occupati da altre molecole di acqua.
La struttura dell’acqua. Quattro molecole di acqua si dispongono lungo i vertici di un tetraedro il cui centro è occupato da una quinta molecola di acqua (fonte dell’immagine: https://it.wikipedia.org/wiki/Acqua)
Volendo avere una visione semplificata delle molecole di acqua legate tra loro, potremmo immaginare un insieme di tetraedri che evolvono nelle tre dimensioni e sono agganciati gli uni agli altri attraverso i propri vertici. Questa è una visione semplificata per diversi motivi. Ogni molecola di acqua può formare fino a quattro legami a idrogeno, ma non è detto che sia così. Ci possono essere molecole di acqua che ne formano tre ed altre che ne formano due, per esempio. Allo stesso modo bisogna ricordare che il legame a idrogeno non è statico, ma ha natura dinamica. Se indichiamo per semplicità il legame a idrogeno con due punti tra il simbolo dell’ossigeno e quello dell’idrogeno, mentre il legame covalente con un semplice trattino (H:O-H), possiamo scrivere un equilibrio del tipo:
H:O-H = H-O:H
dal quale si evince che il legame covalente si interscambia con quello a idrogeno. Infine, i tetraedri in cui sono inserite le molecole di acqua non sono regolari, ma distorti.
Avendo in mente tutto questo, si riesce a comprendere che il modello tridimensionale fatto di tetraedri agganciati per i vertici non è una buona rappresentazione dell’acqua liquida, pur rendendo l’idea. Questo modello è, però, sufficiente per comprendere come è fatta una delle tante forme di ghiaccio. Ebbene sì, di ghiaccio non ne esiste un solo tipo ma ce ne sono molti altri e non tutti hanno densità più piccola di quella dell’acqua liquida; in altre parole non tutte le forme di ghiaccio galleggiano sull’acqua (Ref.).
Diagramma di fase dell’acqua. Sono evidenti le diverse forme di ghiaccio. Ne esistono undici differenti in cui le molecole di acqua sono “agganciate” tra loro in modi differenti (fonte dell’immagine: https://en.wikipedia.org/wiki/Ice)
Ciò che è importante da tutto questo discorso è capire che le molecole di acqua liquida tendono a formare dei “grappoli” tenuti insieme dai legami a idrogeno. La forma più elementare di uno di questi grappoli in cui diversi tetraedri sono “agganciati” tra loro attraverso i propri vertici è quella dell’icosaedro, un solido a 20 facce triangolari fatto dall’unione di 20 tetraedri per un totale di 280 molecole di acqua (Ref.)
Icosaedro. Struttura più elementare in cui si raggruppano i tetraedri distorti formati dalle molecole di acqua (fonte dell’immagine: https://www.mindmeister.com/maps/public_map_shell/574542913/poliedros-o-s-lidos-geom-tricos)
LE SPIEGAZIONI PIÙ CONOSCIUTE DELL’EFFETTO MPEMBA
L’effetto dei legami a idrogeno
Recentemente (Ref.)  è stato proposto che la variazione delle lunghezze dei legami a idrogeno e dei legami covalenti per effetto del riscaldamento sia direttamente coinvolta nell’effetto Mpemba.
Quando l’acqua è calda, le lunghezze dei legami a idrogeno H:O sono più grandi rispetto a quelle dei legami covalenti O-H. L’abbassamento della temperatura che si ottiene inserendo l’acqua calda nel congelatore comporta un accorciamento dei primi ed un allungamento dei secondi. Il “tira e molla” appena descritto può essere associato a due effetti: una sorta di “riscaldamento adiabatico” dovuto all’accorciamento del legame a idrogeno ed una sorta di “raffreddamento adiabatico” dovuto all’allungamento del legame covalente. L’effetto Mpemba è spiegato dalla prevalenza del secondo effetto sul primo. In particolare, più calda è l’acqua, più efficiente è il raffreddamento dovuto all’allungamento dei legami covalenti. In altre parole, il raffreddamento dell’acqua avviene perché quando i legami covalenti O-H si allungano sottraggono energia ai legami a idrogeno H:O con conseguente raffreddamento complessivo.
Questa spiegazione assomiglia molto a quanto accade ad un vapore che si allontana dalla superficie di un liquido. Per capire cosa accade fate un esperimento molto semplice. Cospargete la mano con alcol etilico (un liquido facilmente volatile); agitate la mano; sentirete una senzazione di fresco. Ecco! L’evaporazione dell’alcol etilico comporta che alcune molecole si allontanino dalla mano. Per poterlo fare, però, hanno bisogno di energia. Questa energia viene sottratta alle molecole di liquido che sono ancora sulla mano. La conseguenza è che le molecole di alcol etilico che bagnano la mano si raffreddano e danno la sensazione che sentite.
L’effetto dei gas disciolti
Il meccanismo appena descritto non tiene conto dell’effetto sulla struttura dell’acqua liquida da parte dei gas disciolti la cui presenza diventa importante nel momento in cui si sottopone l’acqua a riscaldamento. Infatti, è esperienza comune che quando si aumenta la temperatura dell’acqua compaiono delle bolle dovute al fatto che, ad alte temperature, la solubilità dei gas disciolti diminuisce ed essi si allontanano dal sistema generando le bolle.
Cosa accade in presenza delle bolle? Abbiamo detto che l’acqua liquida ha una struttura a grappoli in cui l’unità elementare ha forma di icosaedro. Più rigida è questa struttura, più facilmente si forma il ghiaccio. Ne viene che l’acqua fredda dovrebbe ghiacciare prima di quella calda. In realtà, l’acqua calda contiene una quantità più grande di nano-bolle rispetto all’acqua fredda.
L’acqua riscaldata forma delle bolle dovute alla diminuzione della solubilità dei gas disciolti. Le bolle sono delle cavità in cui i gas, insolubili in acqua, vengono intrappolati da molecole di acqua che interagiscono tra loro mediante legami a idrogeno. All’aumentare della temperatura la pressione interna delle bolle diviene via via più grande di quella esterna. La conseguenza è che esse salgono in superficie. Qui i gas contenuti nelle bolle vengono liberati nell’aria mentre l’acqua liquida rimane “attaccata” alla superficie. Più aumenta la temperatura e più aumentano le dimensioni delle bolle (fonte dell’immagine: http://meteolive.leonardo.it/news/In-primo-piano/2/l-acqua-bolle-prima-in-montagna-/38316/)
Le nanobolle, grazie alla tensione superficiale che le contraddistingue, impediscono il congelamento dell’acqua. Tuttavia, la loro rapida rottura determina l’allontanamento dei gas in esse intrappolate con conseguente perdita di energia da parte delle molecole di liquido che in questo modo subiscono il rapido raffreddamento.
L’EFFETTO MPEMBA E LA NEVE ISTANTANEA
L’effetto Mpemba viene invocato per spiegare un fenomeno molto scenografico, ovvero la formazione di neve istantanea quando acqua bollente viene lanciata in area a temperature molto al di sotto di 0 °C.
Acqua calda lanciata in aria quando la temperatura è di -30 °C congela istantaneamente (fonte dell’immagine: http://www.freddofili.it/15104-acqua-calda-congela/)
A questo link un video molto divertente che mostra come l’acqua bollente formi immediatamente la neve quando la temperatura ambientale è ben al di sotto di 0 °C:

CONCLUSIONI
Ma allora l’effetto Mpemba esiste o meno?
A quanto pare la riproduzione controllata in laboratorio di questo effetto non è affatto facile ed anche le spiegazioni date non sono molto soddisfacenti sebbene la modellistica molecolare (ovvero la simulazione al computer del comportamento delle molecole di acqua) sia in grado di fornire risposte dettagliate in merito al comportamento dei legami a idrogeno quando il liquido caldo è sottoposto a congelamento. In effetti la parola fine non è stata ancora raggiunta. Per ora divertiamoci a vedere e sperimentare la formazione di neve istantanea badando a non farci cadere l’acqua bollente addosso (è certo che l’acqua bollente provochi ustioni).
Note
Articolo pubblicato nella mia pagina Facebook il 25 Gennaio 2017 (qui)

Quando anche i professori non supererebbero l’esame di chimica organica

Parliamo di Chimica organica e della struttura del Carbonio.

Esordisco ringraziando il Dr. Luca Minati per aver condiviso questa chicca nella sua bacheca.

Dal 2006 al 2015 ho insegnato la chimica organica all’Università degli Studi di Palermo. Una delle cose di cui mi raccomandavo con gli studenti – ma devo dire che ancora lo faccio, sebbene adesso io insegni la chimica del suolo – è di contare bene il numero di legami intorno agli atomi di carbonio perché il carbonio non può formare più di quattro legami. Insomma è tetravalente.

Sì è vero, recentemente è stato scoperto un carbonio esavalente [1], ma si tratta di un caso particolare e comunque l’esavalenza non è la caratteristica tipica del carbonio coinvolto nelle molecole di interesse biologico.

Angewandte Chemie International Edition è uno dei giornali del settore chimico più quotato. Avere un lavoro pubblicato su questa rivista è uno degli obiettivi dei chimici che lavorano nel mondo della ricerca.

Ebbene anche gli editors e i reviewers delle riviste quotate in merito alla chimica organica possono avere delle defaillances.

La figura a corredo di questa nota è presa dalle Supplementary Information del lavoro: Cheng, Wang (2016) Hydrogel-Assisted Transfer of Graphene Oxides into Nonpolar Organic Media for Oil Decontamination, Angew.Chem. Int.Ed. 2016, 55,6853 –6857. Il lavoro lo trovate nel riferimento [2], mentre le Supplementary Information nel rifermiento [3].

Cosa si vede in questa figura? La bellezza di quattro atomi di carbonio pentavalenti.

Ahi, ahi, ahi! Come è potuto accadere? Devo dire che stavolta non solo gli autori di questo lavoro, ma anche i reviewers e gli editors di questa prestigiosa rivista sono rimandati alla prossima seduta dell’esame di chimica organica.

Commenti su Facebook QUI

L’origine del nome degli elementi

Vi siete mai chiesti da dove originano i nomi degli elementi? Di tanto in tanto me lo sono chiesto anche io. Quando insegnavo la chimica generale e la chimica organica, era divertente sbalordire gli studenti con aneddoti curiosi e carini. Smorza la tensione per la lezione oggettivamente pesante e consente di andare avanti con più leggerezza.

Uno degli aneddoti che mi piaceva raccontare, ancora oggi lo faccio se ne ho la possibilità, è quello relativo all’azoto.

L’azoto è un elemento molto importante in natura. E’ presente in tantissimi composti organici che assolvono a funzioni metaboliche importantissime. E’ presente nelle proteine, nel RNA, nel DNA, in molte sostanze che i chimici definiscono composti naturali e compagnia cantando.

Ma perché si chiama azoto? Il nome è stato coniato da Lavoisier (https://it.wikipedia.org/wiki/Antoine-Laurent_de_Lavoisier) in Francia: “azote”. Significa “senza vita”. Deriva dal greco in cui al termine “zotos” (che viene da zoe, vivere) si associa la alfa privativa, da cui “a-zoto”, ovvero “azoto”. Sembra un paradosso, vero? Un elemento che è fondamentale per il metabolismo, ovvero per i processi alla base della vita, porta un nome che si riferisce alla morte.

Beh, ai tempi di Lavoisier non si conoscevano certo le molecole come si conoscono oggi. Non si conosceva l’importanza di questo elemento nei metaboliti. Si sapeva però che una atmosfera privata di ossigeno provocava la morte, da cui il termine “azote” che in Italiano è diventato “azoto”.

Ma se il nome è “azoto”, perché ha simbolo “N”?
In realtà,questo elemento ha un nome con doppia etimologia. Il termine “azoto” è usato prevalentemente nei paesi non anglosassoni.

Nei paesi anglosassoni “azoto” è indicato con “nitrogen”. Il nome fu coniato nel 1790 da Chaptal (https://it.wikipedia.org/wiki/Jean-Antoine_Chaptal), un altro chimico francese, che capì che l’elemento era uno dei costituenti del nitrato di potassio, un sale, comunemente noto come “salnitro” ed usato come sapone ai tempi dei Romani. “Nitro”-“gen” vuol dire quindi “genitore” del “nitron”, laddove “nitron” è l’antico nome del nitrato di Potassio.

In definitiva benché Paperino in questa vignetta http://bressanini-lescienze.blogautore.espresso.repubblica.… si riferisca ad un certo “nitrogeno” commettendo un errore che molti chimici ritengono grave perché in Italiano N = azoto, posso dire che, in realtà, si tratta solo di un errore veniale perché sia “azoto” che “nitrogeno” sono i nomi che possiamo attribuire all’elemento di simbolo “N” con numero atomico 7 e peso atomico 14 g/mol.