Anche i Nobel sbagliano? Il caso della ferroelettricità

Reading Time: 5 minutes

Nei giorni passati è apparsa sui quotidiani nazionali una notizia che è stata ripresa anche da diverse testate di divulgazione scientifica (qui, qui e qui, per esempio). In questa estate torrida e piuttosto noiosa, è stata data enfasi ad una comunicazione apparsa sulla rivista Nature firmata da un gruppo di ricerca, tra cui alcuni Italiani (qui). Questi colleghi hanno parzialmente smentito quanto riportato in un articolo su Nature del 2012 (qui) di cui uno degli autori è il famoso J. Frazer Stoddart che nel 2016 è stato insignito del premio Nobel per la sintesi delle macchine molecolari (ne ho parlato qui).

Cerchiamo di vederci chiaro.

Il principio di autorità

Innanzitutto, voglio evidenziare che nel mondo scientifico non si applica alcun principio di autorità; ciò che viene affermato da ognuno è messo sotto la lente di ingrandimento ed analizzato da tutti quanti sono interessati a quel determinato settore. La conseguenza è che, con una adeguata preparazione scientifica, è possibile confutare anche i modelli elaborati da scienziati che sono insigniti del famosissimo premio Nobel.

Un esempio delle strane ipotesi messe a punto da premi Nobel e smentite dalla comunità scientifica è la memoria dell’acqua di Montagnier di cui ho già discusso qui, qui, qui e qui.

La ferroelettricità

Sapete cos’è la ferroelettricità?

Se interroghiamo l’Enciclopedia Britannica (famosa enciclopedia molto in uso quando ero piccolo), si legge:

la ferroelettricità è una proprietà di certi cristalli non conduttori, o dielettrici, che esibiscono una polarizzazione elettrica spontanea (separazione tra il centro delle cariche positive e quello delle cariche negative tale che una faccia del cristallo è caricata positivamente mentre l’altra negativamente) la cui direzione può essere invertita mediante l’applicazione di un appropriato campo elettrico. […] I materiali ferroelettrici, come il titanato di Bario ed i sali di Rochelle, sono fatti da cristalli in cui le unità strutturali sono piccoli dipoli elettrici; in altre parole, in ogni unità, il centro delle cariche negative è separato da quello delle cariche positive. In alcuni cristalli, questi dipoli elettrici si allineano a formare dei cluster indicati come domìni. Questi ultimi sono orientati predominantemente in una data direzione sotto l’azione di un intenso campo elettrico. L’inversione della direzione del campo elettrico inverte anche l’orientazione preferenziale dei domìni anzidetti. Tuttavia, il cambiamento di direzione dei domìni avviene con ritardo rispetto al cambiamento della direzione del campo elettrico applicato. Questo ritardo è anche indicato come isteresi ferroelettrica.

Se masticate l’Inglese e volete sapere più in dettaglio qualcosa sui materiali dielettrici e sulla loro interazione con i campi elettrici, potete seguire la lezione del Prof. Lewin famoso per le scenografie delle sue lezioni di fisica:

Il corso completo di fisica del Prof. Lewin è qui.

Ma torniamo a noi.

I materiali ferroelettrici ed il lavoro del premio Nobel Stoddard e collaboratori

I materiali ferroelettrici sono molto interessanti perché possono essere utilizzati per la costruzione di sensori, banchi di memoria e nella fotonica.

Nel 2012 appare su Nature un articolo (in realtà una Letter) dal titolo: “Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes“. Tra gli autori J. Frazer Stoddart che, come già evidenziato, nel 2016 è stato insignito del premio Nobel per la sintesi delle macchine molecolari. In effetti le macchine molecolari non sono altro che un tipo particolare di sistemi supramolecolari esattamente come i “supramolecular networks” di cui si parla nell’articolo sulla ferroelettricità del 2012.

Cosa hanno fatto questi autori?

Hanno sintetizzato dei complessi organici a trasferimento di carica [1] combinando a due a due i composti indicati da 1 a 4 in Figura 1 attraverso la tecnica conosciuta come Lock-Arm Supramolecular Ordering (LASO) [2].

Figura 1. Complessi molecolari con proprietà ferroelettriche: 1-2, 1-3 e 1-4 (Fonte della figura a questo link)

I complessi ottenuti e designati con le sigle  1-2, 1-3 ed 1-4 di Figura 1 hanno presentato delle eccezionali proprietà ferroelettriche a temperatura ambiente.

Tutto normale. Un gruppo di studiosi ha fatto una scoperta che può avere degli interessanti sviluppi tecnologici ed ha scritto un rapporto che è stato accettato per la pubblicazione su una delle riviste più importanti del panorama scientifico.

Il lavoro degli Italiani

La notizia non è il lavoro di Stoddard e Co. per quanto esso possa essere importante sotto l’aspetto scientifico. La notizia che ha destato l’attenzione dei giornalisti nostrani è che un gruppo di ricercatori, tra cui diversi  Italiani, ha riprodotto le sintesi riportate nello studio di Stoddard (qui). Le analisi hanno mostrato che i complessi ottenuti erano del tutto simili a quelli la cui sintesi era riportata nel lavoro del 2012. Tuttavia, quando sono state misurate le proprietà ferroelettriche dei complessi ottenuti, è stato scoperto che due dei tre complessi a trasferimento di carica non mostravano le proprietà descritte da Stoddard e collaboratori (Figura 2).

Figura 2. Assenza di ferroelettricità (Fonte a questo link)

Naturalmente la non riproducibilità delle proprietà ferroelettriche di prodotti ottenuti da un premio Nobel ha trovato la giusta visibilità sulla stessa rivista che nel 2012 aveva ospitato le proprietà ferroelettriche a temperatura ambiente dei composti anzidetti.

Ma andiamo oltre, perché quasi nessuno ha riportato della risposta di Stoddard e collaboratori.

In coda alla comunicazione dei ricercatori Italiani (qui) è riportata  anche la confutazione scritta dai responsabili del gruppo di ricerca che ha descritto le proprietà ferroelettriche a temperatura ambiente dei materiali 1-2, 1-3 ed 1-4 di Figura 1. Stoddard et al. rispondono che i processi di cristallizzazione descritti da D’avino et al. hanno prodotto dei cristalli con dei difetti ai quali sarebbe imputabile la non osservazione delle proprietà ferroelettriche. La risposta di Stoddard et al . si conclude con un interessantisimo invito:

“We offer to share our materials and devices, and to host the authors of the accompanying Comment at Northwestern University in an effort to clarify all discrepancies in reproducibility”
Conclusioni

Il titolo che ho deciso di dare a questa nota è “anche i Nobel sbagliano?”. In realtà non c’è stato alcun errore. L’episodio che ho descritto in questa nota e che con eccessiva enfasi è stato comunicato dai maggiori quotidiani e siti di divulgazione nostrani, fieri che degli italiani abbiano smentito un premio Nobel, dimostra solo una cosa: il mondo scientifico è estremamente democratico. Chiunque può permettersi di fare uno studio e smentire ciò che è stato detto da qualche nome famoso. Ciò è quanto è sempre accaduto. E’ proprio questo a consentire l’avanzamento delle nostre conoscenze. Tuttavia, non basta buttare lì la prima cosa che passa per la testa oppure ritenere che una qualsiasi maggioranza di persone possa influenzare in qualche modo una evidenza scientifica. Per poter aprire una discussione produttiva come quella riportata nelle pagine di Nature, occorre dedizione allo studio e preparazione. Senza questi ingredienti non è possibile instaurare alcun dialogo con nessuno.  Bravi certamente i colleghi Italiani. Ma bravi tutti quelli che si dedicano con coscienza ed abnegazione allo sviluppo delle nostre conoscenze.

Non si può dialogare con scienziati della domenica o pseudo intellettuali come quelli che popolano le fila di chi è a favore della biodinamica, dell’omeopatia o dell’antivaccinismo. Queste persone non hanno alcuna caratura intellettuale ed una qualsiasi apertura al dialogo le metterebbe sullo stesso piano di chi lavora seriamente in ambito scientifico.

Note ed approfondimenti

[1] Un complesso a trasferimento di carica è un sistema in cui una molecola (o un dominio molecolare) ricca di elettroni interagisce con un sistema chimico (molecola, dominio molecolare o metallo di tansizione) povero di elettroni in modo tale da formare un legame in cui si realizza un trasferimento di carica negativa dal donatore di elettroni all’accettore di elettroni. Per saperne di più potete cliccare qui.

[2] La Lock-Arm Supramolecular Ordering, indicata con l’acronimo LASO, è una procedura per la sintesi di complessi molecolari a trasferimento di carica. Si tratta di un approccio di tipo modulare in cui moduli molecolari ricchi di elettroni vengono fatti co-cristallizzare in presenza di altri moduli molecolari poveri di elettroni. Entrambi i moduli (donatori ed accettori di elettroni) sono costruiti in modo tale da avere delle braccia flessibili attraverso le quali essi sono in grado di interagire mediante legami a idrogeno.  L’efficienza del processo di cristallizzazione è assicurata proprio dalla flessibilità della braccia anzidette che consentono la massima complementarietà tra  i moduli. L’azione cooperativa del legame a trasferimento di carica e dei legami a idrogeno consente di ottenere sistemi binari in cui le proprietà donatore-accettore sono interscambiabili così da ottenere proprietà ferroelettriche migliorate rispetto a complessi ottenuti con strategie sintetiche differenti. Per saperne di più cliccate qui.

Fonte dell’immagine di copertina: https://www.researchgate.net/publication/257972728_Statistical_mechanical_origin_of_hysteresis_in_ferroelectrics

 

L’importanza della stupidità nella scienza

Reading Time: 5 minutes

Vi siete mai chiesti cosa spinga una persona ad occuparsi di scienza? È l’appagamento nel sentirsi stupidi seguito, certamente, da quello di essere il primo ad aver trovato una risposta ad un problema prima di allora giudicato insormontabile. La capacità di poter indirizzare la stupidità verso le sue forme più produttive, permette l’avanzamento delle conoscenze. Il ruolo delle scuole e delle università è quello di plasmare le menti alla stupidità produttiva ovvero a convincersi che fare domande a se stessi come alla natura non è mai stupido, né indizio di ignoranza, ma solo sete di conoscenza. Non esistono domande stupide, ma solo risposte inadeguate.

L’importanza della stupidità nella scienza
Di Martin A. Schwartz
Pubblicato su Journal of Cell Science, 2008, 121, 1771
Traduzione (libera) di P. Conte

Ho recentemente rivisto dopo tanti anni una vecchia amica. Siamo stati studenti di dottorato nello stesso periodo, entrambi in ambito scientifico, sebbene in aree di interesse differenti. Tuttavia, dopo un po’, lei è andata via per iscriversi alla Scuola di Legge di Harvard ed è, attualmente, un avvocato anziano per una grande organizzazione ambientale.

Ad un certo punto la nostra conversazione è andata al perché lei abbia lasciato i suoi studi di dottorato. Con mia enorme sorpresa, mi ha detto che si sentiva stupida. Dopo un paio di anni dal sentirsi continuamente stupida ogni santo giorno, si è sentita pronta per fare qualcos’altro.

Io ho sempre pensato che lei fosse una delle menti più brillanti che abbia mai conosciuto e, del resto, la sua carriera successiva ha supportato questa mia opinione. Tuttavia, quello che mi ha detto mi ha fatto riflettere. Ed ho cominciato a pensarci sopra. Ed il giorno dopo, ad un certo punto, qualcosa mi ha colpito.

La scienza fa sentire stupido anche me, solo che io mi sono abituato a sentirmi tale. Mi sono così abituato a sentirmi stupido che vado alla continua ricerca di nuove opportunità per sentirmi stupido. Non so cosa potrei fare senza quella sensazione e sono arrivato a pensare che questo sia un modo di essere.

Lasciatemi spiegare.

Per quasi ognuno di noi, uno dei motivi per cui a scuola la scienza ci piaceva era che eravamo bravi in tale materia. Ma questa non può essere l’unica ragione. Il fascino della comprensione e l’emozione della scoperta devono essere altri ingredienti fondamentali. Tuttavia, la scienza fatta a scuola significa seguire le lezioni; studiare bene i compiti significa dare le risposte corrette ai test. Se si conoscono le risposte, tutto va bene e ti senti intelligente.

Un lavoro di dottorato, in cui bisogna portare avanti un progetto di ricerca, è tutt’altra cosa. Per me è stata un’impresa scoraggiante: come avrei potuto dar forma alle domande che avrebbero portato a risposte corrette? Come avrei potuto disegnare ed interpretare un esperimento in modo che le conclusioni fossero assolutamente convincenti? Come avrei potuto prevedere le difficoltà ed aggirarle oppure, non riuscendoci, riuscire a superarle nel momento in cui si fossero presentate?

Il mio progetto di dottorato era interdisciplinare e ogni volta che incontravo un problema, andavo a tormentare chiunque nel mio dipartimento e nella mia facoltà ritenessi un esperto nel campo che mi interessava. Mi ricordo ancora il giorno quando Henry Taube (che vinse il Nobel un paio di anni dopo) mi disse che non aveva una risposta al problema che io avevo riscontrato nel suo settore scientifico. Io ero uno studente del terzo anno e immaginavo che Taube sapesse almeno 1000 volte meglio di me (e con ciò approssimavo per difetto) quello che sapevo io. Se egli non avesse avuto una risposta, nessuno avrebbe potuto averla.

Ecco ciò che mi colpì: nessuno sapeva. Ed ecco perché era un problema di ricerca. Ed era il MIO problema di ricerca. Si supponeva che fossi io a risolverlo. Una volta resomi conto di ciò, ho trovato una risposta in un paio di giorni. Non era così difficile, dopotutto, dal momento che dovevo solo provare un paio di cose.

La lezione cruciale è stata che la quantità di cose che non conoscevo, non era semplicemente vasto, era del tutto infinito. Prendere coscienza di questo fatto, invece di scoraggiarmi, mi ha dato nuova forza. Se la nostra ignoranza è infinita, la sola cosa da fare è operare per il meglio che possiamo.

Mi sento di dire che i nostri programmi di dottorato offrono agli studenti un disservizio in due modi. Innanzitutto, penso che gli studenti non si rendano conto di quanto dura sia la ricerca scientifica e quanto sia molto, ma molto importante effettuare questa ricerca. Fare ricerca è molto più duro dello studiare e seguire il più pesante dei corsi. Ciò che rende la ricerca veramente difficile è la totale immersione nell’ignoto. Semplicemente, noi non sappiamo quello che stiamo facendo. Noi non possiamo essere sicuri se stiamo dando la risposta corretta o facendo l’esperimento giusto fino a che non diamo una risposta o otteniamo un risultato. Certamente, la scienza diventa ancora più difficile a causa della competizione per recuperare fondi e per la lotta per poter pubblicare su giornali importanti. In ogni caso, a parte tutto ciò, fare ricerca è intrinsecamente difficile. Cambiare la politica dipartimentale, istituzionale o nazionale, non la rende meno difficile. In secondo luogo, noi non facciamo un buon lavoro quando non lasciamo capire agli studenti come essere produttivamente stupidi. In altre parole, se noi non ci sentiamo stupidi vuol dire che non stiamo neanche provando a fare ricerca. Non sto parlando della stupidità relativa in cui gli studenti di una classe leggono gli appunti, pensano un poco e superano brillantemente le prove, mentre un altro non ci riesce. E nemmeno sto parlando di tutte quelle persone brillanti che lavorano in settori che non corrispondono alle loro propensioni o talenti.

La scienza implica il concetto di stupidità assoluta. Quel tipo di stupidità che è un fatto esistenziale e che ci spinge ad inoltrarci in un mondo completamente sconosciuto in cui non sappiamo cosa potrà mai accadere.

Gli esami ed i test danno l’idea che bisogna sempre avere la risposta giusta, e che il “non lo so” sia solo una questione di impreparazione. In realtà, gli esami non devono servire per capire se gli studenti sanno la risposta giusta. Se è così, allora lo scopo degli esami è sbagliato. Il punto dei test e degli esami è individuare la debolezza degli studenti, in parte per indirizzare i loro sforzi ed in parte per comprendere se la conoscenza degli studenti si arena ad un livello sufficientemente elevato per poter loro affidare un progetto di ricerca.

Stupidità produttiva significa scegliere di essere ignoranti. Focalizzarsi su problemi importanti ci pone nella posizione molto sgradevole dell’essere ignoranti.

Una delle cose più belle della scienza è che ci permette di fare pasticci di ogni genere, di sbagliare continuamente, ma, cionondimeno, farci sentire bene fintantoché riusciamo ad imparare qualcosa di nuovo ad ogni errore.

Non c’è alcun dubbio. Questa può essere una cosa veramente difficile per gli studenti abituati alla risposta giusta. Non c’è alcun dubbio. Livelli ragionevoli di confidenza e resilienza emozionale aiutano. Ma penso che l’educazione scientifica possa rendere molto più semplice una transizione veramente importante: passare da ciò che altre persone hanno scoperto, a ciò che noi stessi siamo in grado di scoprire.

Più ci abituiamo ad essere stupidi, più profondamente possiamo inoltrarci nei territori sconosciuti del sapere umano per poter fare scoperte veramente grandi..

Pubblicato il 19.11.2015 sulla mia pagina Facebook

Fonte dell’immagine di copertinahttps://www.associazionelucacoscioni.it/notizie/rassegna-stampa/esiste-nel-diritto-internazionale-un-diritto-umano-alla-scienza/

Glifosato sì, glifosato no: è veramente un pericolo?

Reading Time: 5 minutes

Oggi sembra che vada di moda essere innocentisti o colpevolisti in campo agricolo. Mi spiego. C’è una vasta schiera di persone che si oppone, in modo a dir poco religioso, ai fitofarmaci, mentre altre, sempre religiosamente, si pongono a favore del loro uso. In realtà, nessuno dei due estremi è quello corretto.  Non basta dire “i fitofarmaci tout court sono nocivi”, oppure “cosa vuoi che sia? La loro concentrazione è al di sotto dei limiti previsti per legge”.

Le cose sono più complicate di quello che si pensa e vanno contestualizzate.

Cominciamo col dire che attualmente la popolazione mondiale ammonta a 7 miliardi di persone, nel 2050 sarà di almeno 10 miliardi e per il 2100 ancora di più. La superficie terrestre in grado di supportare l’attività agricola diminuisce progressivamente in funzione del fatto che parte dei suoli arabili diviene sede per le abitazioni e le infrastrutture. Da ciò consegue che l’uso di fitofarmaci diventa necessario se si vuole produrre alimenti per una popolazione in aumento esponenziale su una superficie agricola in costante riduzione.

L’agricoltura di ogni tipo (sia quella intensiva che fa uso di fitofarmaci che quella biologica che, invece, solo apparentemente non fa uso di fitofarmaci) è a forte impatto ambientale perché non solo accelera l’erosione dei suoli innescando i processi di desertificazione, ma contamina anche acqua ed aria, attraverso l’immissione di sostanze nocive (per esempio i principi attivi dei fitofarmaci stessi o i loro prodotti di degradazione) la cui attività influenza la vita non solo delle piante ma anche della micro, meso e macro fauna. A questo scopo l’unico modo di produrre alimenti per la popolazione mondiale in costante aumento è quello di far uso di pratiche agricole sostenibili, ovvero di pratiche che facciano uso oculato delle conoscenze scientifiche accumulate negli anni in merito all’attività di tutti i composti usati in agricoltura ed in merito ai meccanismi di erosione e contaminazione (non fa certamente parte del bagaglio di conoscenze scientifiche l’agricoltura biodinamica che, di fatto, non è altro che un’enorme sciocchezza. Ma questo merita altro approfondimento).

È in questo ambito che va inquadrato  il discorso sul glifosato, principio attivo del noto fitofarmaco chiamato “roundup” brevettato all’inizio degli anni 70 del XX secolo dalla Monsanto, azienda chimica statunitense, oggi ritenuta capziosamente come il satana industriale nemico dell’ambiente.

Struttura del glifosato (Fonte: http://www.ilfattoalimentare.it/glifosato-echa-non-cancerogeno.html)

Il glifosato è un erbicida la cui azione è quella di inibire gli enzimi coinvolti nella biosintesi degli amminoacidi fenilalanina, triptofano e tirosina (due di essi, fenilalanina e triptofano, sono essenziali per l’uomo e possono essere assunti solo attraverso la dieta) oltre che di composti quali acido folico, flavonoidi, vitamina K e vitamina E importanti metaboliti vegetali.

Proprio perché i complessi enzimatici coinvolti nell’azione del glifosato sono tipici delle piante, si è sempre ritenuto che tale erbicida fosse innocuo per gli animali, in particolare l’uomo. Ed invece studi recenti sembrano  dimostrare che il glifosato può essere causa dei linfomi non-Hodgkin  (ovvero di una classe di tumori maligni del tessuto linfatico) (1, 2), sebbene studi epidemiologici completi non siano stati ancora fatti; interferisce in vitro con la trasmissione dei segnali del sistema endocrino (3, 4); provoca danni al fegato ed ai reni dei ratti attraverso la distruzione del metabolismo mitocondriale (5); sequestra micronutrienti metallici come zinco, cobalto e manganese (cofattori enzimatici in molte reazioni metaboliche)  producendo, quindi, danni metabolici generali specialmente a carico delle funzioni renali ed epatiche (6).

Tutti gli studi citati (molti altri sono elencati nel riferimento (7)) si basano su esperimenti condotti o in vivo o in vitro ma facendo uso di quantità molto elevate di glifosato. Ma cosa significa molto elevato? Quali sono le quantità di glifosato che possono portare problemi alla salute umana? Qui già iniziano le prime contraddizioni. La EPA Statunitense ha stabilito che la quantità di glifosato massima nell’organismo debba corrispondere a 1.75 mg per kg al giorno. Significa che un americano dalla corporatura media di 80 kg può assumere ogni giorno 140 mg di glifosato. Però se lo stesso americano venisse in Europa si ritroverebbe con un livello di glifosato nel suo organismo molto più alto di quello consentito. Infatti, la legislazione adottata dalla Comunità Europea prevede un contenuto massimo di glifosato pari a 0.3 mg per kg al giorno, ovvero l’individuo di cui sopra può assumere un massimo di 24 mg di glifosato al giorno. È anche vero, però, che attualmente la Comunità Europea sta valutando l’innalzamento del limite a 0.5 mg per kg al giorno, ma resta, comunque, una quantità molto al di sotto di quella ammessa negli Stati Uniti dove l’ammontare di glifosato usato in agricoltura è passato da 4 milioni di kg del 1987 a 84 milioni di kg nel 2007 (7).

Perché ci sono differenze nei limiti di glifosato che un essere umano può assumere ogni giorno?

Bisogna dire che i limiti di assunzione vengono autorizzati da enti governativi differenti (USA ed EU, nella fattispecie) che basano le loro decisioni sulla letteratura disponibile. Il problema del glifosato, però, è che la letteratura  usata non è quella  costituita da lavori scientifici resi pubblici dagli studiosi che si occupano di tale erbicida (7). I riferimenti usati dagli enti governativi sono documenti forniti dalle aziende private produttrici di fitofarmaci che contengono solo risultati relativi a studi secretati (ovvero soggetti al segreto industriale). A quanto risulta, invece, la letteratura più tradizionale, quella che è pubblica, suggerisce che il limite massimo ammissibile di glifosato in un organismo umano dovrebbe essere di circa 0.03 mg per kg al giorno, ovvero ben 10 volte in meno rispetto a quanto previsto dalla Comunità Europea e circa 60 volte in meno rispetto a quanto consigliato dalla Statunitense EPA.

A chi credere? Agli enti governativi o alla letteratura scientifica? La realtà è che mancano studi epidemiologici completi per poter stabilire con esattezza quali siano i limiti ammissibili per il glifosato. Anche i lavori resi pubblici dagli specialisti del settore sono, in qualche modo, incompleti e vanno presi con molta attenzione e senso critico. È per questo che sarebbe meglio applicare il principio di precauzione fino a quando la quantità di dati disponibili in letteratura non consentirà di arrivare a comprendere con precisione quali sono i reali effetti del glifosato sulla salute umana.

Di certo le persone più esposte ai danni dell’erbicida sono i lavoratori del settore agricolo (8). Solo in subordine risultano esposti i consumatori. Questo perché i controlli sulla quantità di fitofarmaci e loro residui sui prodotti alimentari sono abbastanza stringenti. In ogni caso, per prevenire la presenza di glifosato e suoi residui negli alimenti (in realtà non solo di tale erbicida, ma di tutti i possibili fitofarmaci dannosi o potenzialmente tali per la salute dell’uomo) occorre utilizzare una corretta pratica agricola.

Nel caso specifico del glifosato, la corretta pratica agricola consiste nell’applicazione di tale erbicida o in fase di pre-semina o in fase di post-raccolta (ovvero nei momenti in cui il suolo viene lasciato “riposare” tra un raccolto e l’altro) e non come attualmente in voga in fase di pre-raccolta. Infatti, è noto da tempo (7) che il glifosato viene intrappolato dalla sostanza organica dei suoli (9, 10) e successivamente degradato dalla fauna microbica in composti meno impattanti sulla salute umana (11). Al contrario, nelle applicazioni in “tarda stagione” (ovvero poco prima della raccolta) non si dà il tempo al glifosato di poter essere degradato, con la conseguenza che l’erbicida (o suoi sottoprodotti tossici) possono essere individuati all’interno degli alimenti (7)

Conclusioni

  1. L’uso dei fitofarmaci, e del glifosato in particolare, è reso necessario per ottimizzare la produzione agricola in un sistema, quello terrestre, che vede un sovrappopolamento con conseguente riduzione delle superfici arabili
  2. Non ci sono dati certi in merito alla tossicità del glifosato sulla salute umana se non nei casi particolari relativi ai lavoratori del settore agricolo che sono esposti a forti dosi dell’erbicida durante la loro attività lavorativa
  3. Non applicazioni pre-raccolta, ma pre-semina o post-raccolta dovrebbero essere effettuate per minimizzare la quantità di glifosato (e suoi residui) all’interno dei prodotti destinati ai consumatori finali
  4. Un incremento della ricerca in ambito fitofarmacologico è necessario per individuare gli effetti dei fitofarmaci, in generale, e del glifosato, in particolare, sulla salute umana. Studiare il glifosato, però, richiede laboratori attrezzati e studiosi preparati. Tutto questo ha un prezzo. Se le comunità dei consumatori vogliono avere informazioni più approfondite e dettagliate sul ruolo del glifosato sulla salute umana, è bene che investano in questo tipo di ricerca. Investimenti nella ricerca dovrebbero essere finanziati anche dalle aziende produttrici di fitofarmaci in modo chiaro e non soggetto a segreto industriale. Solo in questo modo tutti (dai consumatori alle grandi aziende agricole e non) possono trarre vantaggi dalla ricerca scientifica.

Riferimenti

(1) Schirasi and Leon, Int. J. Environ. Res. Public Health, 2014, 11(4): 4449-4457

(2) Associazione Italiana Ricerca sul Cancro: http://www.airc.it/tumori/linfoma-non-hodgkin.asp

(3) Thongprakaisang et al., Food Chem. Toxicol. 2013, 59C: 129-136

(4) Romano et al., Arch. Toxicol. 2012, 86(4): 663-673

(5) Mesnage et al.,  Food Chem. Toxicol. 2015, 84: 133-153

(6) Kruger et al., J. Environ. Anal. Toxicol., 2013, 3: 1000186

(7) Myers et al., Environ. Health, 2016, 15: 19- 31

(8) Schinasi et al., Int. J. Environ. Res. Public Health, 201411(4): 4449-4527

(9) Piccolo et al., J. Agric. Food Chem., 1996, 44:  2442-2446

(10) Day et al., Environ. Technol., 1997, 18: 781-794

(11) Shushkova et al., Microbiology, 2012,  81(1): 44–50

Articolo pubblicato anche su www.laputa.it: https://www.laputa.it/blog/glifosato-pericolo-ambiente-innocuo-uomo/

Omeopatia e fantasia. Parte II

Reading Time: 8 minutes

Qualche settimana fa ho dedicato una nota dal titolo “Omeopatia e fantasia” (clicca qui) ai risultati di Benveniste e Montagnier in merito ad uno dei cavalli di battaglia più incisivi di quelli che io definisco gli “amici dell’omeopatia”, ovvero la memoria dell’acqua. Ho messo in evidenza come il lavoro di Benveniste sia stato smentito dagli editor di Nature (rivista su cui il concetto di memoria dell’acqua fu pubblicato per la prima volta nel 1988) così come il lavoro di Montagnier sia risultato affetto da limiti sperimentali che hanno reso le conclusioni ivi contenute del tutto inaffidabili.

Tuttavia ho anche concluso che una anomalia chimica come la memoria dell’acqua non è passata inosservata e, dopo le pubblicazioni di Benveniste e Montagnier – nonostante tutti i limiti di cui ho discusso, il mondo scientifico non se ne è stato con le mani in mano.

Tutti noi lavoriamo per scrivere i nostri nomi nei libri di storia della scienza. Se “annusiamo l’affare”, ci buttiamo a pesce per essere tra i primi, se non i primi, a descrivere il modello più adatto per spiegare certi fenomeni strani. La conseguenza è che la letteratura è piena di studi i cui autori descrivono i loro infruttuosi tentativi di trovare la “pietra filosofale”. E’ quanto accaduto anche per la memoria dell’acqua. Ma andiamo con ordine ed applichiamo il metodo scientifico di cui ho già scritto qui, qui e qui.

La domanda

Alla luce dei risultati di Benveniste, immaginiamo che  un principio attivo lasci la sua impronta all’interno del solvente che lo contiene e che tale impronta permanga nel sistema dopo una sequenza di succussioni e diluizioni successive. Questa impronta deve essere fatta da molecole di acqua che si muovono a velocità differenti, ovvero ci si deve aspettare che le molecole di acqua  sui bordi dell’impronta debbano essere meno mobili di quelle più lontane dall’impronta.

Supponiamo ora che sia valido  quanto affermato da Montagnier in merito alla presenza di nano-strutture di acqua tenute assieme da radiazioni elettromagnetiche. Ci dovremmo aspettare anche in questo caso la presenza di acqua che si muove a differenti velocità. Infatti le molecole di acqua impegnate nella formazione di nano-strutture, trovandosi in domini chimici piuttosto ingombranti rispetto alle dimensioni di una singola molecola di acqua, si devono muovere più lentamente di quelle che sono posizionate in zone più lontane dalle predette nano-strutture.

E’ possibile trovare delle evidenze sperimentali che possano validare le ipotesi suddette formulate sulla base di studi ritenuti in ogni caso inaffidabili dalla comunità scientifica?

Gli esperimenti in risonanza magnetica nucleare

La risonanza magnetica nucleare (NMR) permette di studiare il comportamento della materia in presenza di campi magnetici ad intensità differente. Non è questa la sede per entrare nei dettagli della tecnica che possono essere trovati altrove [1].

In modo molto semplicistico possiamo dire che al variare dell’intensità del campo magnetico è possibile misurare la velocità con cui si muovono le molecole di acqua confinate in specifici intorni chimici. In particolare, per intensità basse del campo magnetico applicato, si possono monitorare le velocità di molecole di acqua che si muovono lentamente. Man mano che aumenta l’intensità del campo magnetico applicato si può monitorare la velocità di molecole di acqua che si muovono con velocità progressivamente più elevata.

Nel 1999, Rolland Conte et al. [2] pubblicano una “Theory of high dilutions and experimental aspects” dove vengono riportati dati sperimentali a supporto di una teoria delle “impronte” che sembra validare la presunta efficacia dell’omeopatia. Tuttavia, le evidenze sperimentali riportate in quel libro sono state completamente smentite dai lavori di Milgrom et al. [3] e Demangeat et al. [4]. Questi autori, infatti, hanno evidenziato, mediante applicazione della tecnica NMR, che i risultati di Rolland Conte e collaboratori sono ascrivibili ad artefatti derivanti da impurezze rilasciate dalle pareti dei recipienti di vetro usati per gli esperimenti. Nessuna “impronta” rilasciata dal soluto nel solvente e presente anche dopo un certo numero di diluizioni e succussioni, è stata  rilevata da Aabel et al. [5] che scrivono:

there is no experimental evidence that homeopathic remedies make any kind of imprint on their solvent, which can be detected with nuclear magnetic resonance”.

Alle stesse conclusioni giunge anche Anick [6] che riporta:

no discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity 1H-NMR spectroscopy. The results failed to support a hypothesis that remedies made in water contain long-lived non-dynamic alterations of the H-bonding pattern of the solvent”.

Le evidenze di Milgrom et al., Demangeat et al., Aabel et al. e Anick, sono state recentemente confermate anche da Baumgartner et al. [7] che riportano:

No clear pattern emerged with respect to a difference between homeopathic preparations and controls or between homeopathic preparations”.

Da quanto appena riportato, si comprende che l’ipotesi sulla memoria dell’acqua è stata falsificata in senso popperiano. In altre parole l’uso di tale ipotesi consente di fare delle previsioni che, poi, non sono confermate dalla realtà sperimentale.

Quale conclusione si può trarre da questa lezione? La memoria dell’acqua semplicemente non esiste.

Andiamo oltre

Altre realtà sperimentali

Concentriamoci ora sul fenomeno della succussione ovvero dell’agitazione meccanica e violenta che, secondo Hannhemann, dinaminizzerebbe l’acqua rendendola capace di accumulare e potenziare l’essenza del principio attivo rendendolo efficace anche alle estreme diluizioni omeopatiche.

Tra le tecniche utilizzate per lo studio degli effetti della succussione sulla struttura dell’acqua sono da annoverare conduttimetria e calorimetria. La conduttimetria è un tipo di analisi attraverso cui si valuta la capacità dell’acqua di condurre la corrente elettrica. La conduttimetria, per esempio, consente di misurare l’effetto Grotthus di cui ho parlato qui. La calorimetria è una tecnica che consente la misura della quantità di energia coinvolta nei processi chimici. In altre parole,  l’idea alla base di queste misure è che i processi di diluizione e succussione che portano alla formazione di “impronte”, modificano la rete di legami a idrogeno in cui le molecole di acqua sono coinvolte. Queste modifiche sono individuabili sia attraverso la misura dell’energia (ovvero calore) coinvolta durante le trasformazioni che attraverso le alterazioni temporali delle proprietà conduttimetriche [8].

Sia le indagini conduttimetriche che quelle calorimetriche in cui si conclude che la succussione permette la formazione di strutture acquose coinvolte nelle proprietà dei rimedi omeopatici, sono state smentite in lavori apparsi recentemente in letteratura. Per esempio, Horatio Corti [9] riporta che tutti i lavori in cui si fa uso di conduttimetria soffrono di fallacie metodologiche. Per esempio, quando si descrive la succussione si scrive “violent agitaton”. Cosa vuol dire “agitazione violenta”? Ciò che è “violento” per me potrebbe non esserlo per altri. Sotto il profilo metodologico è sempre – e ribadisco sempre – necessario riportare le condizioni esatte con cui vengono preparati i campioni per le analisi. La base del metodo scientifico è quella di consentire a tutti i ricercatori interessati, di ripetere, se necessario, gli esperimenti fatti dai propri colleghi. Se mancano informazioni, gli esperimenti sono irripetibili ed irriproducibili; i fenomeni di cui si tenta di dare una spiegazione non sono osservabili; quei fenomeni non possono essere descritti e ricadono nell’ambito della pseudo scienza.

Si potrebbe argomentare che in alcuni lavori sia stato indicato che la succussione consiste:

in a single succussion process, 50–500 vertical strokes are given at the frequency of 0.83 Hz to the vessel containing the solution. In the case of the vortex, the time the vortex was present varied from 20 to 120 s” [10].

In altre parole, la succussione può essere effettuata in due modi. Una prima modalità consiste nell’agitare da 50 a 500 volte dall’alto verso il basso (ovvero in verticale) con una frequenza di 0.83 Hz il contenitore in cui vengono effettuate le diluizioni. Una seconda modalità consiste nell’usare un miscelatore “vortex” per un intervallo di tempo variabile da 20 a 120 s.

Sebbene quanto riportato possa sembrare ineccepibile sotto l’aspetto scientifico, in realtà le informazioni non sono sufficienti affinché la preparazione dei campioni possa essere considerata riproducibile. Infatti, manca l’indicazione relativa alla quantità di energia meccanica coinvolta nel processo di succussione.

In altri studi sui processi di succussione e diluizione, vengono prese in considerazione miscele acqua/biossido di silicio [8]. Ebbene, il biossido di silicio è un composto chimico, presente anche nel vetro, del tutto insolubile in acqua. In funzione delle dimensioni delle particelle di biossido di silicio, si può parlare di dispersione colloidale (particelle di dimensione compresa tra 2 x 10-9 e 2 x 10-6 m, ovvero tra 2 nm e 2 micron) o di sospensione (particelle con dimensione > 2 x 10-6 m, ovvero > 2 micron). È evidente, quindi, che le miscele biossido di silicio/acqua non sono “soluzioni” propriamente dette.

Non essendo delle soluzioni, ma delle dispersioni colloidali o addirittura delle sospensioni, le miscele acqua/biossido di silicio non possono essere campionate in modo riproducibile dal momento che la distribuzione del particolato solido nell’intera miscela dipende fortemente dalla turbolenza del sistema. Si tratta, in definitiva, anche in questo caso di un sistema irriproducibile che non consente ad altri ricercatori di poter controllare la validità delle osservazioni fatte da chi “esalta” la capacità “dinamizzatrice” della succussione.

Cosa dire poi dell’uso di bottiglie scure usate per la conservazione dei campioni? [11]  Il colore delle bottiglie è dovuto a composti contenenti nickel, ferro o altri ossidi di metalli di transizione che possono essere rilasciati nelle soluzioni. Queste impurezze, della cui presenza è stato già discusso nel paragrafo precedente in merito ai risultati NMR, possono inficiare sia le misure conduttimetriche che quelle calorimetriche.

Non si può, poi, non ricordare anche che  le “agitazioni violente” incrementano la solubilità dei gas in acqua portando alla formazione di nanobolle la cui presenza inficia ogni possibile tipo di analisi si decida di effettuare.

Non è un caso, quindi, che Verdel e Bukovec [12] affermino che quando tutte le possibili fonti di errori sono sotto controllo:

we found no differences in conductivities of aged mechanically treated solutions and aged untreated solutions

ovvero la succussione non produce effetti rispetto a soluzioni controllo.

Verdel e Bukovec evidenziano anche che le modifiche temporali nelle misure conduttimetriche dell’acqua possono essere ricondotti ad una proprietà anomala della stessa indicata come tissotropia. La tissotropia è una particolare caratteristica fisica di alcuni gel o liquidi per la quale la viscosità è più elevata in condizioni di riposo, mentre diventa via via più bassa man mano che aumenta l’agitazione meccanica.

Conclusioni I

Questa breve disanima sulle realtà sperimentali in merito all’omeopatia, ha evidenziato che non è vero quanto dicono gli amici dell’omeopatia in merito al mondo scientifico chiuso e sordo alle novità. Si tratta di fantasie di ignoranti che non hanno alcuna idea di come ci si muove nel mondo scientifico.Queste persone, che non hanno idea di cosa sia la Scienza, hanno in mente solo le biografie romanzate di grandi scienziati del passato e pensano che queste biografie romantiche riflettano esattamente il mondo nel quale io stesso mi muovo da circa 25 anni.

Conclusioni II

Anche sotto l’aspetto chimico, l’omeopatia altro non è che una vera e propria scemenza. C’è bisogno di prove per affermarlo? Secondo me, sì. Quando si fanno delle affermazioni in ambito scientifico bisogna sempre parlare con cognizione di causa. Bene hanno fatto i colleghi a fare esperimenti per individuare la validità della cosiddetta memoria dell’acqua. I risultati hanno dimostrato in modo ineccepibile che s tratta di una idea affascinante che, tuttavia, non ha alcun riscontro sperimentale. Si può accantonare senza alcuna difficoltà.

Conclusioni III

Ci sarà sicuramente qualcuno che penserà: “va bene. La memoria dell’acqua non è verificata e quindi non si può considerare. Ma l’omeopatia su di me funziona. Ci sarà qualche altro motivo”.

Il funzionamento dell’omeopatia è legato all’effetto placebo, un effetto non biochimico che si realizza solo in alcune condizioni e che, comunque, non consente di risolvere problemi seri. Ma questo sarà l’oggetto di un’altra nota.

Riferimenti e note

[1] D. Goldenberg (2016) Principles of NMR Spectoscopy, University Science Books; R. Kimmich (2011) NMR: Tomography, Diffusometry, Relaxometry. Springer 2nd ed.

[2] R.R. Conte et al. (1999) Theory of high dilutions and experimental aspects. Paris: Polytechnica. Tradotto e pubblicato da Dynsol Ltd, Huddersfield

[3] LR Milgrom et al. (2001) On the investigation of homeopathic potencies using low resolution NMR T2 relaxation times: an experimental and critical survey of the work of Rolland Conte et al. British Homeopathic Journal, 90: 5-12

[4] JL Demangeat et al. (2004) Low-field NMR water proton longitudinal relaxation in ultrahigh diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Applied Magnetic Resonance. 26: 465-481

[5] S Aabel et al. (2001) Nuclear magnetic resonance (NMR) studies of homeopathic solutions. British Homeopathic Journal, 90: 14-20

[6] DJ Anick (2004) High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water.  BMC Complementary and Alternative Medicine, 4: 15 DOI: 10.1186/1472-6882-4-15

[7] S. Baumgartner et al. (2009) High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quarrtz, sulfur, and copper sulfate. Naturwissenschaften, 96: 1079-1089

[8] V. Elia et al. (2004) New physico-chemical properties of extremely diluted aqueous solutions. A calorimetric and conductivity study at 25°C, Journal of Thermal Analysis and Calorimetry, 78: 331–342; V. Elia et al. (2005) Hydrohysteretic phenomena of “Extremely Diluted Solutions” induced by mechanical treatments: a calorimetric and conductometric study at 25 °C. Journal of Solution Chemistry, 34: 947-960; V. Elia et al. (2007) The “Memory of Water”: an almost deciphered enigma. Dissipative structures in extremely dilute aqueous solutions. Homeophaty 96: 163–169; V. Elia et al. (2008) New physico-chemical properties of extremely dilute solutions. A conductivity study at 25 °C in relation to ageing. Journal of Solution Chemistry, 37: 85–96

[9] H.R. Corti (2008) Comments on “New Physico-Chemical Properties of Extremely Dilute Solutions. A Conductivity Study at 25 °C in Relation to Ageing”, Journal of Solution Chemistry 37: 1819–1824

[10] V. Elia et al. (2005) Hydrohysteretic phenomena of “Extremely Diluted Solutions” induced by mechanical treatments: a calorimetric and conductometric study at 25 °C. Journal of Solution Chemistry, 34: 947-960

[11] V. Elia et al. (2004) New physico-chemical properties of extremely diluted aqueous solutions. A calorimetric and conductivity study at 25°C, Journal of Thermal Analysis and Calorimetry, 78: 331–342

[12] N. Verdel e P. Bukovec (2014) Possible further evidence for the thixotropic phenomenon of water, Entropy 16: 2146-2160

Fonte dell’immagine di copertinaultimi studi

Meccanismo di Grotthuss

Reading Time: 4 minutes

Avete mai sentito parlare del meccanismo di Grotthuss? In genere, sono pochi a conoscere questa locuzione, anche tra i chimici. A cosa ci si riferisce?

Si parla di acqua e del modo con cui diffondono gli ioni ioni H+ (ione idrogeno o idrogenione) e OH (ione ossidrile o ossidrilione) all’interno del sistema acqua.

E’ noto che un acido in acqua dà luogo al seguente equilibrio:

che può essere spostato verso i reagenti o verso i prodotti a seconda della forza dell’acido stesso.

Allo stesso modo una base in acqua dà un equilibrio descrivibile secondo la seguente equazione chimica:

anche esso spostato a destra (verso i prodotti) o a sinistra (verso i reagenti) a seconda della forza della base.

La stessa acqua dà luogo ad un equilibrio di autoprotolisi che può essere descritto così:

Ciò che in genere si insegna agli studenti del primo anno dei corsi di laurea scientifici in cui si studia la chimica è che tutti gli ioni in soluzione acquosa sono solvatati, ovvero sono circondati da un certo numero di molecole di acqua. Anche gli ioni H+ e OH sono solvatati.

La struttura contenente il minimo numero di molecole di acqua per l’idrogenione e l’ossidrilione è:

In altre parole, lo ione H ha formula minima  H9O4+ mentre lo ione OH ha formula minima H7O4 .

I legami tratteggiati indicano interazioni di carattere elettrostastico. Sono i legami a idrogeno.

Quando si parla di interazioni elettriche si pensa sempre ad interazioni che si realizzano tra cariche dello stesso segno che si respingono o cariche di segno opposto che si attraggono. Nel caso specifico delle interazioni tra l’idrogenione e le molecole di acqua o l’ossidrilione e le molecole di acqua, l’interazione si stabilisce tra la carica positiva dell’idrogenione e le cariche negative presenti sugli atomi di ossigeno delle molecole di acqua; tra la carica negativa dell’ossidrilione e le cariche positive localizzate sugli atomi di idrogeno delle molecole di acqua.

I legami a idrogeno anzidetti, in realtà, non sono esclusivamente di natura elettrostatica. Esiste un altro modo per descriverli. Si possono prendere in considerazione gli orbitali molecolari. In altre aprole, si può dire che uno degli orbitali contenenti gli elettroni di non legame (ovvero una coppia solitaria) dell’atomo di ossigeno di una molecola di acqua, si combina con l’orbitale povero di elettroni dello ione idrogeno per la formazione della specie chimica  H3O+ . Quest’ultima a sua volta è caratterizzata da una vacanza elettronica (ovvero una carica positiva) delocalizzata sull’intera struttura, o meglio sui tre atomi di idrogeno legati all’ossigeno centrale. Una seconda molecola di acqua può interagire con la specie H3O+ attraverso la combinazione di un orbitale molecolare che contiene una delle coppie elettroniche solitarie dell’atomo di ossigeno con l’orbitale vuoto di uno degli atomi di idrogeno dello ione H3O+ . Queste interazioni, di natura covalente, si realizzano anche con gli altri atomi di idrogeno dello ione H3O+ .

Un discorso analogo va fatto per quanto riguarda l’interazione tra lo ione ossidrile e le molecole di acqua. La differenza rispetto a quanto accade tra acqua ed H3O+ è che nel caso dell’ossidrilione, l’orbitale ricco di elettroni è quello dello ione OH mentre quello povero di elettroni è l’orbitale presente negli atomi di idrogeno delle molecole di acqua.

Considerando quanto appena detto, ne viene che nel legame

può avvenire lo scambio

Ovvero quello che prima era un legame covalente diventa legame a idrogeno; quello che prima era un legame a idrogeno diventa legame covalente.

Quando lo scambio predetto si realizza sull’intera rete di legami a idrogeno del sistema acquoso, si ottiene la diffusione della carica positiva all’interno dell’acqua. La figura qui sotto chiarisce il movimento della carica elettrica come conseguenza dello scambio di cui si è parlato fino ad ora.

 

Un discorso analogo si può fare per la diffusione dello ione ossidrile all’interno della rete dei legami a idrogeno con le molecole di acqua:

Conclusioni I

Alla luce di quanto indicato, si evince che la diffusione degli ossidrili e degli idrogenioni in acqua non segue solo un meccanismo basato sul gradiente di concentrazione, ma anche quello fondato sullo scambio chimico conosciuto come meccanismo di Grotthus, dal nome del chimico Tedesco che per primo descrisse questo fenomeno che può essere valutato sperimentalmente attraverso tecniche di spettroscopia e conduttimetria.

Conclusioni II

Come si legge in questa “pillola di scienza”, la chimica può risultare veramente complessa se non si possiede padronanza con un certo tipo di linguaggio e con un certo modo di pensare. Nel rileggere questa nota mi sono reso conto di non aver utilizzato un linguaggio elementare. Me ne scuso con i miei lettori meno addentro al linguaggio chimico. Non sempre è facile fare lo “storytelling” di argomenti scientifici, specialmente quando questi necessitano di conoscenze di base non proprio banali.

Il lettore più curioso potrebbe chiedersi se questo meccanismo abbia una qualche utilità pratica oltre al piacere intellettuale di aver apportato una conoscenza di base al nostro bagaglio culturale. Ebbene sì. Questo meccanismo può spiegare la cinetica degli ioni (in questo caso H+ e OH ) nelle matrici ambientali come suoli ed acque. La dinamica degli ioni nei suoli è direttamente correlata alla fertilità. Come conseguenza, approfondire i meccanismi con cui le specie chimiche si “muovono” all’interno del suolo può aiutare a comprendere in che modo possiamo agire non solo per migliorare la fertilità dei suoli, ma anche per il recupero di ecosistemi stressati da attività agricole intensive necessarie alla nostra produzione alimentare.

Note e considerazioni

Gli orbitali molecolari che contengono le coppie solitarie degli atomi di ossigeno dell’acqua sono indicati come HOMO, ovvero “Highest Occupied Molecular Orbital”, orbitale molecolare a più alta energia occupato. Quelli non occupati presenti sugli atomi di idrogeno sono indicati come LUMO, ovvero “Lowest Unoccupied Molecular Orbital”, orbitale molecolare a più bassa energia non occupato.

Per saperne di più

La conduttanza ed il meccanismo di Grotthuss

La chimica dello ione idrogeno

Fonte dell’immagine di copertinahttp://www.chimica-online.it/download/legame-a-idrogeno.htm

Omeopatia e fantasia

Reading Time: 6 minutes

Omeopatia e fantasia. La proposta di Benveniste
Nel 1988 il gruppo di ricerca gestito dal Professor Benveniste pubblica su Nature un lavoro nel quale si evidenzia come l’attività di certi anticorpi permane anche dopo le diluizioni estreme tipiche dei rimedi omeopatici. L’ipotesi formulata per spiegare questi risultati inattesi è che l’impronta degli anticorpi venga in qualche modo “memorizzata” all’interno della struttura dell’insieme di molecole di acqua. Sarebbe questa “traccia” lasciata dagli anticorpi a indurre gli effetti biochimici dei rimedi omeopatici, secondo i fautori dell’omeopatia. Ipotesi indubbiamente affascinante ma che, essendo basata su affermazioni straordinarie, richiede prove straordinarie.
Ho già avuto modo di spiegare che gli stessi editor di Nature si riservarono la possibilità di verificare la validità delle procedure utilizzate per l’ottenimento di quei risultati che apparentemente avrebbero dovuto consentire la riscrittura completa di tutti i libri di testo di chimica e fisica.
I risultati dell’indagine condotta dal comitato di esperti di Nature non hanno lasciato dubbi: il lavoro del gruppo gestito da Benveniste sopravvaluta gli effetti che gli autori riportano nelle loro conclusioni, manca di riproducibilità, manca di una seria valutazione degli errori sperimentali sia casuali che sistematici (per esempio gli autori non hanno fatto sforzi per eliminare i pregiudizi di conferma) e le condizioni del laboratorio non offrono sufficienti garanzie per una interpretazione oggettiva, e quindi credibile, dei dati
Nonostante la bocciatura, gli amici dell’omeopatia tornano periodicamente alla carica con la memoria dell’acqua.

Omeopatia e fantasia. La proposta di Montagnier
Subito dopo aver vinto il Nobel per la scoperta del virus HIV, quello responsabile dell’AIDS, Luc Montagnier pubblica un lavoro dal titolo “Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences”. I risultati di questo lavoro hanno eccitato, e tuttora eccitano, i fautori dei rimedi omeopatici. Infatti, Montagnier riporta che alcune sequenze di DNA sarebbero in grado di emettere delle radiazioni elettromagnetiche a bassa frequenza capaci di produrre degli insiemi nano-strutturati di molecole di acqua che permarrebbero in soluzione anche in assenza delle sequenze di DNA che li hanno prodotti. I nano-aggregati sarebbero a loro volta in grado di emettere le stesse onde elettromagnetiche delle sequenze di DNA. Si ottiene, in definitiva, una trasmissione delle informazioni contenute nelle sequenze di DNA a tutta la soluzione.
La novità del lavoro di Luc Montagnier è legata al fatto che la trasmissione elettromagnetica descritta occorre anche in assenza di soluto. In altre parole, i frammenti di DNA che innescano la trasmissione sembrano lasciare il loro “ricordo” all’interno della soluzione. Questo ricordo è riconducibile alle nano-strutture acquose che contengono l’informazione lasciata dal DNA. Montagnier si spinge anche oltre. Egli, infatti, ipotizza che tutte le patologie possano essere di origine batterica o virale, anche quelle per cui attualmente non sono riconosciute cause di questo tipo, come per esempio l’autismo. Secondo Montagnier, le non determinabili quantità di DNA immerse nel nostro organismo da questi “vettori” trasmetterebbero, attraverso l’acqua presente nel nostro sangue, le informazioni relative alle patologie di cui cadiamo preda.

Bello vero? L’ha detto un premio Nobel. Chi sono io per contraddire uno che è arrivato nell’Olimpo degli scienziati? Devo essere umile ed accettare le parole di Montagnier.

Sapete qual è il problema? Che io non solo non sono umile quando si parla di scienza, ma lo sono ancora meno quando si parla di chimica. Divento veramente antipatico se chi mi dice queste cose è uno che non solo non conosce la chimica, ma si dice pure simpatizzante dell’omeopatia. Se poi è un chimico (o in generale uno scienziato) simpatizzante dell’omeopatia, allora divento un antipatico intransigente e passo a trattare questo scienziato per quello che è: un ignorante assoluto.

Ma vediamo perché.

Cosa non va nel lavoro di Montagnier (parte I)
Se si legge il lavoro di Montagnier si nota subito una cosa. Esso è stato inviato alla rivista il 3 Gennaio, revisionato dopo suggerimenti ricevuti da revisori anonimi il 5 Gennaio e pubblicato in via definitiva il 6 Gennaio 2009. Tre giorni per inviare, revisionare e pubblicare un lavoro scientifico in cui si riportano delle informazioni che possono cambiare radicalmente le nostre conoscenze chimiche e fisiche, è eccezionale. L’ipotesi di Montagnier, infatti, tenderebbe a ridisegnare completamente tutto quanto sappiamo sull’acqua. I modelli che abbiamo usato fino ad ora e che funzionano perfettamente devono essere o rivisti o abbandonati.
Una rivista che pubblica così velocemente è encomiabile. Vuol dire che essa è molto efficiente nella scelta dei revisori anonimi e nel successivo processo di revisione ed editing. I revisori si sono, evidentemente, dichiarati disponibili a leggere e commentare il lavoro di Montagnier in tempi veramente ridotti. Si sono detti disponibili a sottrarre tempo prezioso al loro lavoro di ricerca e didattica per una incombenza che è fondamentale nel mondo scientifico: la peer review o revisione tra pari. Questo va bene. Anche a me capita di fare revisioni solo uno o due giorni dopo aver ricevuto la richiesta da parte delle riviste del mio settore.
Cosa dire, però, del servizio editoriale della rivista? Indubbiamente si è dimostrato particolarmente efficiente. Infatti, poche ore dopo aver ricevuto i commenti dei revisori, l’editore ha contattato gli autori che immediatamente hanno provveduto alle eventuali revisioni suggerite. Infine, nel giro di altre poche ore il lavoro è stato formattato secondo gli schemi della rivista, le bozze inviate agli autori, corrette e restituite alla rivista che ha poi pubblicato immediatamente il lavoro.
Posso dire che sono invidioso? A me è capitato che le uniche volte in cui le informazioni in merito ad un mio lavoro siano arrivate entro 48 ore dall’invio ad una rivista è perché il lavoro non era stato considerato pubblicabile sulla rivista stessa. Ma io non sono un Nobel e devo essere umile.
Peraltro io non sono neanche editor-in-chief né chairman dell’editorial board delle riviste su cui pubblico come, invece, lo è Luc Montagnier. Basta andare sul sito de “Interdisciplinary Sciences: Computational Life Sciences” della Springer e cercare nell’editorial board staff per trovare il nome di Montagnier associato alla carica di Chairman dell’editorial board staff. Non è che l’efficienza precedentemente discussa potrebbe essere dovuta al fatto che il Professor Montagnier abbia agito contemporaneamente come autore, editore e revisore del suo stesso lavoro? Se fosse così, sarebbe un plateale caso di scienza patologica legato ad un comportamento an-etico.
Ma io non sono nessuno e devo essere umile. Soprattutto queste mie elucubrazioni sanno di complottismo. Ed allora entriamo nel merito.

Cosa non va nel lavoro di Montagnier (parte II)
Da una lettura accurata del lavoro si evince che Montagnier fa ampio uso della tecnica PCR (polymerase chain reaction che in Italiano è conosciuta come reazione di amplificazione a catena). Si tratta di una tecnica che consente di amplificare (ovvero ottenere in gran quantità ed in poche ore) una specifica sequenza di DNA. Il limite di questa tecnica risiede nel fatto che occorre molta attenzione perché il rischio di contaminazione dei campioni è molto alto. Per esempio, l’amplificazione del DNA umano risulta facilitata dal fatto che frammenti di pelle sono presenti un po’ ovunque. Essi tendono ad accumularsi, anche se non ce ne accorgiamo, nei tubicini Eppendorf (citati nel lavoro di Montagnier) utilizzati proprio per la reazione di amplificazione a catena. Una volta che il DNA, o suoi residui, sono stati amplificati, non è possibile riconoscere quale parte del campione prodotto viene dal contaminante e quale, invece, dal sistema nucleotidico che si intendeva realmente amplificare. Un altro limite della tecnica è che possono avvenire delle reazioni collaterali tra i reagenti utilizzati che producono delle sequenze di DNA indistinguibili da quelle che realmente interessano. Per poter essere certi che la PCR abbia condotto ai risultati sperati è necessario effettuare dei controlli negativi, ovvero dei test che consentano di escludere senza ombra di dubbio che le reazioni occorse durante l’amplificazione non prodotto contaminazione. Nel lavoro di Montagnier non c’è alcuna descrizione di tali controlli. I suoi risultati possono essere inficiati da ogni possibile tipo di contaminazione. In altre parole tutto ciò che è stato detto in merito al lavoro di Benveniste si può riprendere e ripetere per quello di Montagnier.

Conclusioni
Anche se i lavori cardine cui fanno riferimento gli amici dell’omeopatia sono fallaci sotto l’aspetto metodologico, ci sarà sempre qualcuno che dirà: “va bene. I lavori che hai preso in considerazione hanno dei punti deboli, ma l’omeopatia funziona. Bisogna solo cercare il perché”.
Non è così, mio caro lettore ignorante e seguace della fede omeopatica. L’omeopatia funziona solo nella tua testa. I rimedi omeopatici non hanno alcun effetto se non quello placebo. E quest’ultimo funziona solo se sei in stato di veglia, cosciente e se nessuno ti dice che quanto assumi è solo acqua e zucchero. Insomma, il rimedio omeopatico su di te funziona perché, anche se non lo vuoi ammettere (e chi lo vorrebbe?), sei un ipocondriaco, cioè un malato immaginario. Questa tua condizione, che ti piaccia o no, ti rende facile preda di maghi, fattucchiere, imbonitori e venditori di olio di serpente.

Post-Conclusioni
Il mondo scientifico non è rimasto indifferente all’ipotesi di Montagnier. Esistono un po’ di lavori con i quali gli scienziati hanno cercato di individuare le nano-strutture acquose. Ma questa è storia per un altro post.

 

Medicina e Pseudoscienze: considerazioni dei relatori

Reading Time: 2 minutes
Medicina e Pseudoscienze

All’inizio di Aprile 2017 si è tenuto il primo Congresso nazionale su Medicina e pseudoscienze a cui ho partecipato anche io con una relazione dal titolo: “Dall’omeopatia alle cure miracolose per il cancro nell’era delle pseudoscienze. La comunicazione scientifica 2.0

Le mie impressioni conclusive:

Oggi più che mai è necessario che tutti quelli che – a vario titolo – sono coinvolti professionalmente nella ricerca scientifica escano dalle aule universitarie e si sforzino di spiegare che i vaccini sono farmaci per la prevenzione di patologie mortali.
Se abbiamo debellato il vaiolo, se riusciamo a tenere sotto controllo malattie come il morbillo, la rosolia o, peggio, la poliomelite ed il tetano, lo dobbiamo alle vaccinazioni. Si tratta di patologie che hanno mietuto e mietono milioni di morti. Sono sempre lì, dietro l’angolo, pronte a colpire mortalmente, se distogliamo la nostra attenzione. Non possiamo rischiare pandemie come avvenuto in passato. Ne va della vita di tutti noi, dei nostri figli e nipoti.
Dobbiamo capire che le vaccinazioni ci aiutano a tenere alta la guardia contro nemici invisibili; che i medici non sono contro di noi e non ordiscono alcun complotto mondiale a danno nostro; sono operatori che hanno deciso di sacrificare la propria vita per “essere sui pezzi” ventiquattro ore al giorno, facendo pesare le loro scelte non solo su di loro, ma anche sulle proprie famiglie. Non sono demoni; lo sono, invece, quelli che sconsigliano le vaccinazioni anteponendo il proprio “io” al “noi”.

Conclusioni:

Solo chi è concentrato su se stesso non riesce a capire che, non vaccinando, non protegge se stesso e gli altri, aprendo lo spiraglio attraverso cui patologie solo “sopite” possono risvegliarsi e farci precipitare in un incubo dal quale sarà difficile risvegliarsi. Ben vengano, quindi, le settimane dell’immunizzazione. Spero che queste si ripetano su basi periodiche.

Le impressioni e le considerazioni finali di tutti i relatori del congresso le potete trovare qui, qui e qui.

La scienza è malata?

Reading Time: 4 minutes

Le notizie che compaiono ultimamente in merito a fatti che di scientifico hanno poco o nulla, mi portano a delle riflessioni.

Faccio parte del mondo scientifico. Ho fatto questa scelta di vita fin dai tempi del liceo pensando di accedere ad un mondo fatto di sogni dove poter realizzare il mio spirito “salgariano” di avventure nel mondo del microscopico, di ciò che non si può vedere se non con la fantasia.

Durante la mia vita scientifica ho incontrato tante persone meravigliose, ma altrettante abbiette e degne solo di disprezzo.

Ancora mi ricordo delle sensazioni che ho provato quando Morris Schnitzer, il padre della chimica delle sostanze umiche, si alzò dalla platea per salire sul palco dove avevo appena finito la mia presentazione in cui lo attaccavo pesantemente, per stringermi la mano e complimentarsi con me. Io avevo 31 anni, lui era sulla settantina. In quel momento ho avuto sentimenti contrastanti ed ho capito quello che deve essere un vero scienziato. Mi sono sentito orgoglioso per quel riconoscimento che mi veniva dalla vecchia guardia, ma nello stesso tempo mi sono sentito umiliato perché quella persona non meritava l’attacco ad alzo zero che avevo fatto. Tra i due, io avevo un deficit di signorilità; il Prof. Schnitzer, dall’alto della sua esperienza, sapeva che prima o poi sarebbe arrivato un giovane a far progredire il campo di cui lui era stato fondatore; se lo aspettava perché questo è il mondo scientifico. Ci si fanno domande, si cerca di dare una risposta. È quella giusta? Non lo so. Di sicuro lo è sulla base delle conoscenze del momento, fino a che qualcuno non si alza e dice “guardiamo le cose da un altro punto di vista” e nasce qualcosa di nuovo.

Credo che questo sia ciò che tutti noi, che apparteniamo a questo mondo, dovremmo fare. Non a tutti è dato fare delle rivoluzioni, ma tutti possiamo, e dobbiamo, contribuire a che ciò si verifichi. Anche il lavoro oscuro di chi non sarà mai ricordato è preziosissimo. È proprio sul lavoro di questi “stregoni” oscuri che si costruiscono le basi per l’avanzamento delle conoscenze.

Eppure siamo tutti umani. Quando il proprio egocentrismo prevale sul mondo ideale fatto principalmente di sogni, accadono cose spiacevoli. Accade che un Wakefield si inventi dei dati su una correlazione inesistente vaccini/autismo; accade che uno Schoen si inventi di sana pianta dati sperimentali sui superconduttori organici; accade che dei Fleischmann e Pons interpretino dei fenomeni casuali invocando quella che potrei definire la pietra filosofale della chimica nucleare; accade che qualcuno si inventi dati sulla tossicità, finora inesistente, degli organismi geneticamente modificati; accade che qualcuno, operando come revisore, bocci un lavoro per sostituire il nome del legittimo autore col proprio; accade anche che, approfittando della propria posizione dominante, editors di riviste più o meno importanti impongano citazioni, anche fuori luogo, ad autori di studi inviati a quelle stesse riviste. Lo scopo è  incrementare in modo artificioso il valore di quei parametri che il mondo scientifico ha deciso di utilizzare per classificare la qualità delle diverse tipologie di ricerca.

Sono utili questi parametri? La risposta a questa domanda non è facile perché una risposta affermativa implicherebbe che esistono ricerche di serie A e ricerche di serie B. Significherebbe, nel mondo ideale, classificare la conoscenza né più né meno come fece Gentile con la sua riforma nel 1923: la ricerca tecnico-scientifica non è conoscenza; la cultura e la conoscenza è solo quella umanistica. Non si terrebbe, quindi, conto del fatto che tutti i saperi, da quelli matematici, fisici, chimici, a quelli storici, letterari etc, contribuiscono all’accrescimento della qualità della vita umana.

Una risposta negativa alla domanda succitata implicherebbe una scarsa considerazione della realtà in cui ci troviamo a vivere. Le risorse economiche ed umane sono limitate. Cosa e chi finanziare prima? Da qui la necessità di valutazioni quanto più oggettive possibili per poter stabilire, per esempio, che la salute umana viene prima della grotta di Platone.

Come in tutte le cose, però, in medio stat virtus.  Una ricerca sulla SLA è certamente importante per tantissime persone che soffrono le pene dell’inferno, ma altrettanto importante è poter rispondere alle tante domande sul ruolo che noi esseri umani abbiamo nel mondo in cui viviamo. Finanziare studi di un certo tipo prima di altri di diversa natura, va bene, ma tutta la conoscenza deve essere supportata. Non esiste una cultura di serie A ed una di serie B.

Purtroppo, devo aggiungere, la ricerca economy-driven sta generando mostri.  Carriere di sognatori sono nelle mani di pochi individui senza scrupoli che pur di lasciare un segno nei libri di storia pensano che ogni mezzo sia lecito per raggiungere l’obiettivo. Piuttosto che lavorare per migliorare la qualità delle proprie conoscenze, del proprio modo di porsi di fronte a chi conosce meno, pensano ad alterare artificialmente dati e numeri in modo da innalzare i parametri che servono per salire sempre più in alto nelle classifiche in modo da avere privilegi che non meritano.

Il mondo scientifico non differisce dalla società civile. In realtà ne è lo specchio fedele. Nella società civile ci sono milioni di persone che operano tutte assieme per migliorare la qualità del sistema in cui devono vivere. Tuttavia, ci sono anche migliaia di imbroglioni ed imbonitori che operano attuando atteggiamenti mafiosi e truffaldini. Allo stesso modo, nella società scientifica ci sono migliaia di persone oneste che operano facendo del loro meglio e cercando di apportare miglioramenti per il bene di tutti. Tuttavia, ci sono pochi mediocri che fanno tanto rumore e che operano imbrogliando. Approfittano delle loro posizioni dominanti per imporre il loro punto di vista mediocre quanto loro.

La scienza è malata? Non più di quanto lo sia la società civile. La cosa importante è non sottomettersi e combattere contro le intimidazioni ed i ricatti. C’è chi nella società civile ci ha rimesso la vita. Ricordo i tanti Falcone e Borsellino che hanno alzato la testa ed hanno detto “NO!”. Anche nel mondo scientifico ci sono tanti che dicono “NO!” e che sono felici di rimanere nell’anonimato e di pagare in prima persona per il loro “NO!” con l’ostracizzazione, la mancanza di fondi, i ricatti morali. Ciò che è importante è inseguire i propri sogni. Il sogno della propria dignità personale viene prima di tutto. Ben vengano le operazioni che tanti fanno per evidenziare ed ostracizzare le mele marce.

Immagine di copertinaPablo Picasso, Scienza e carità, 1897, Barcellona, Museo Picasso

Desomorfina. La droga sintentica conosciuta col nome di krokodril

Reading Time: 2 minutes

E’ recente la notizia che in Russia (ed ora a quanto sembra anche in Italia) stia “spopolando” una droga dagli effetti devastanti sull’organismo. Si tratta della desomorfina, meglio conosciuta col nome di krokodril.

La notizia, in realtà, apparve già qualche anno fa su una rivista on line di dubbia qualità, ma più recentemente è stata oggetto di un’inchiesta di Le Iene,  e di articoli su varie testate giornalistiche come Il Giornale ed Il Corriere della Sera.

In tutti i casi si riportano di effetti devastanti sull’organismo come tromboflebite, ulcerazioni, cancrena e necrosi fino ad arrivare anche alla morte.

Cos’è la desomorfina?

 

Figura 1 Struttura molecolare della morfina e della desomorfina

La desomorfina è un derivato della morfina, un metabolita (alcaloide) contenuto nell’estratto di papavero (Papaverum sonniferum). Differisce dalla morfina per un gruppo ossidrilico (-OH) ed un doppio legame (vedere il cerchio nella Figura 1). Da un punto di vista sintetico si ottiene a partire dalla codeina che è la forma metilata della morfina.

La sintesi

In Figura 2 (ripresa da Wikipedia) si riporta lo schema sintetico della desomorfina a partire dalla codeina.

Figura 2 Schema sintetico della desomorfina

Il processo sintetico prevede una prima trasformazione della codeina in alfa-clorocodeina mediante l’uso del cloruro di tionile (SOCl2). A questo link la scheda di sicurezza del cloruro di tionile.

Il cloruro di tionile ha un punto di ebollizione di 76°C ed una tensione di vapore di circa 12 kPa a 20°C. Questo vuol dire che a temperatura ambiente i suoi vapori possono essere presenti in quantità tossiche per l’organismo. In acqua avviene una decomposizione del cloruro di tionile secondo lo schema sottostante (si formano acido solforoso e acido cloridico):

SOCl2 + 2H2O → H2SO3 + 2HCl              (1)

Dal momento che il nostro organismo è formato per lo più (80%) di acqua, un qualsiasi contatto del SOCl2 con le nostre mucose o con la nostra pelle provoca irritazioni pericolose dovute proprio agli acidi sopra-descritti (per inciso l’HCl è il componente dell’acido muriatico e l’H2SO3 uno dei componenti delle piogge acide). A causa delle irritazioni prodotte dal cloruro di tionile, il primo istinto è quello di usare acqua per ripulirsi. Ciò, invece, è assolutamente deleterio perché non farebbe altro che spostare la reazione (1) a destra con conseguente aggravio delle conseguenze sulle mucose o sulla pelle.

Da tutto questo una prima conclusione: gli effetti della desomorfina sono dovuti alla presenza di cloruro di tionile residuo della sintesi sopra descritta.

Dopo l’alogenazione , avviene una riduzione catalitica seguita da dealogenazione. Questo processo, in genere, si fa usando idrogeno (H2) oppure, molto più economicamente, boridruro di sodio (NaBH4). Benché riducente blando, il boridruro di sodio (scheda di sicurezza a questo link) è mortale per inalazione ed ingestione ed irritante per la pelle e le mucose. In questo caso si può utilizzare acqua per neutralizzarlo.

Ecco la seconda possibile fonte di pericolosità del Kokrodil. Eventuali tracce di boridruro di sodio (o di un qualsiasi altro agente riducente) possono indurre all’assunzione di acqua che mescolata al SOCl2 di cui sopra comporta rischi notevoli.

Ultimo step della sintesi è la demetilazione. I gruppi eterei si idrolizzano solo in ambiente fortemente acido. Anche in questo caso, lavaggi non efficaci delle miscele di reazione possono lasciare tracce degli acidi forti usati nella sintesi che potrebbero portare alle proprietà irritanti del Kokrodil.

Conclusioni

Da tutto quanto riportato in questa nota si evince che gli effetti deleteri del krokodril non sono dovuti alla desomorfina come tale, ma  alla presenza  di impurezze varie derivanti dalla sintesi di questa droga chiamata anche “droga dei poveri”.

Nota. Questo breve articoletto sulla desomorfina nasce grazie a una discussione avvenuta nel 2012 nel gruppo Facebook Fisica Quantistica ed Assurdità

Perché le dita raggrinziscono quando restano troppo tempo in acqua?

Reading Time: 2 minutes

Quante volte vi è capitato di restare troppo tempo in acqua? E quante volte avete notato che uscendo dal bagno avete le punte delle dita raggrinzite? Vi siete mai chiesti perché? E vi siete mai chiesti qual è il vantaggio evolutivo che possiamo avere da una cosa del genere?

Sembra quasi banale, ma solo nel 2013 è stato pubblicato un lavoro serio in merito a questa questione. Quindi, non possiamo dire che le informazioni che sto per dare siano troppo vecchie. Si tratta di qualcosa che è stato spiegato solo ieri. Qui il link.

Veniamo al punto.

La Figura 1 mostra l’anatomia della nostra pelle. Fino a qualche anno fa, si riteneva che il raggrinzimento delle dita fosse dovuto a processi osmotici a carico dello strato corneo più esterno dell’epidermide. In realtà, il raggrinzimento è dovuto ad una riduzione del volume dello strato “polposo” dell’epidermide ed è controllato dal nostro sistema nervoso.

È facile dimostrare che l’aumento del numero di grinze sulla pelle corrisponde ad un aumento di area superficiale della stessa. Ho già riportato una dimostrazione di questo tipo per altri sistemi, ma la tipologia di ragionamento si applica anche per superfici come la pelle che raggrinzisce.

Un elevato valore di area superficialedella pelle sulla punta delle zampette dei gechi spiega, per esempio,  le loro caratteristiche anti-gravitazionali.

Figura 1 Anatomia della pelle. (Fonte: http://health.howstuffworks.com/skin-care/information/anatomy/skin1.htm)

Infatti, grazie alla loro elevata area superficiale, le dita dei gechi sono in grado di realizzare delle interazioni di Van derWaals molto forti con le superfici con cui vengono a contatto. Queste forze di attrazione sono così intense che riescono a vincere la forza peso che tenderebbe a spingere il geco verso la superficie terrestre.

L’aumento di area superficiale delle dita umane, conseguente al raggrinzimento per immersione prolungata in acqua, ha un significato evolutivo preciso secondo i ricercatori della Newcastle University. A quanto pare abbiamo conservato questa caratteristica perché ci serve per poter usare le mani, senza che gli oggetti ci scivolino, in condizioni di elevata umidità o quando siamo sott’acqua. L’aumento di area superficiale, dovuto agli impulsi nervosi che consentono la diminuzione del volume della polpa epidermica, aumenta la capacità di presa grazie all’intensificarsi delle forze di interazione superficiale tra le nostre dita e ciò che afferriamo.

Non c’è che dire. I fenomeni naturali sono sempre affascinanti

Fonte dell’immagine di copertina: https://www.themarysue.com/water-wrinkles-purpose/