Webinar Europeo sulla risonanza magnetica nucleare a ciclo di campo

Avete voglia di saperne di più sulla risonanza magnetica nucleare a ciclo di campo che di tanto in tanto introduco anche nei miei articoli?

Venerdì 8 maggio 2020  sarà una giornata di studi dedicata proprio a questa tecnica ed alle sue applicazioni in diversi campi: dalla teoria alle applicazioni in campo oncologico a quelle in campo ambientale fino ad arrivare alle applicazioni in ambito energetico.

La giornata organizzata nell’ambito di un progetto COST, si svolgerà in modalità telematica sulla piattaforma WebEx. Per poter avere accesso ai webinar bisogna richiedere l’iscrizione al seguente indirizzo eurelax@matman.uwm.edu.pl chiedendo di partecipare a uno o a più seminari. Vi verrà inviata una mail con le indicazioni da seguire per potervi connettere.

Se volete avere una idea del programma e di come potersi iscrivere potete cliccare sulle immagini qui sotto.

ah…dimenticavo…ci sono anche io. Vi aspetto

 

Credibilità scientifica e h-index

Recentemente sul quotidiano Il Tempo è apparso un articolo dal titolo “Burioni, Pregliasco e Brusaferro . Gli esperti più scarsi del mondo” in cui i nomi di tre medici che ultimamente occupano le prime pagine dei giornali non sono neanche messi in ordine alfabetico. L’articolo che trovate qui è un attacco neanche troppo velato alla credibilità di questi tre professionisti che ci avvertono dei pericoli della pandemia da SARS-Cov-2. L’attacco viene sferrato usando uno dei parametri (non l’unico) utilizzato per la valutazione comparativa dei candidati a posti più o meno importanti nel mondo accademico e della ricerca scientifica: l’h-index.

Cos’è l’h-index?

Per i non addetti ai lavori, si tratta di un indice che serve per valutare l’impatto che il lavoro di uno scienziato ha sulla comunità scientifica di riferimento. Se un lavoro pubblicato è molto importante, esso viene citato tantissimo e l’h-index di quello scienziato aumenta in modo proporzionale al numero delle citazioni che riceve.

Nel mondo da classifiche calcistiche in cui viviamo, questo parametro sembra molto utile, vero?

In effetti sembra così. Il problema è che questo parametro deve essere necessariamente contestualizzato. Prima di usarlo è necessario entrare nel merito del lavoro di uno scienziato. Se così non fosse tutte le commissioni di cui faccio parte e di cui ho fatto parte (inclusa quella relativa all’Abilitazione Scientifica Nazionale del mio settore concorsuale) non avrebbero alcun senso. Se bastasse solo valutare il valore dell’h-index per fare una classifica di idoneità ad una data posizione accademica, non sarebbe necessario rompere le scatole ai docenti universitari per includerli nelle commissioni: basterebbe il lavoro di un semplice ragioniere che non dovrebbe fare altro che accedere ai data base accademici, estrarre il valore dell’h-index e, poi, mettere i nomi dei candidati in ordine di h-index decrescente. Al contrario, se a me serve un ricercatore che abbia esperienza in fisiologia vegetale, non vado a vedere solo il suo h-index, ma vado a valutare anche l’attinenza della sua ricerca con la posizione che egli deve occupare. Se al concorso si presenta un ricercatore in filologia romanza con h-index 40 ed uno in fisiologia vegetale con h-index 20, sceglierò il secondo dei due perché la sua attività di ricerca è più attinente al profilo di cui si sente il bisogno. Da tutto ciò si evince che l’articolo pubblicato su Il Tempo è fallace proprio in questo. Il giornalista, di cui non conosco il nome e neanche mi interessa perché sto valutando solo quello che ha scritto, ha messo a confronto gli h-index di una serie di scienziati più o meno famosi senza andare a vedere se i settori di cui essi si occupano sono congruenti gli uni con gli altri e se i lavori scientifici che hanno pubblicato siano congruenti con la virologia. Questo giornalista si è solo peritato di agire come un tipico ragioniere che legge dei numeri e li mette in fila dal più grande al più piccolo. Alla luce di questa classifica ha concluso che Burioni (persona che conosco personalmente e che stimo moltissimo) è uno scienziato tra i più scarsi del mondo. A questo giornalista non importa neanche minimamente ciò che il Prof. Burioni dice. Ciò che gli importa è che un parametro, che nel mondo universitario noi utilizziamo con tanta oculatezza, collochi questo scienziato in fondo alla classifica che egli ha deciso autonomamente di stilare senza tener in alcun conto delle differenze che possono esistere tra i diversi settori scientifici in cui gli scienziati da egli presi in considerazione si muovono. Ed allora perché non inserire nella stessa classifica anche il Prof. Guido Silvestri che ha un h-index di 66 (qui) e che si muove su posizioni analoghe a quelle di Burioni? Ma…poi…siamo sicuri che Anthony Fauci, con h-index 174 e consigliere di Trump, non sia in linea con quanto dicono Burioni e Silvestri? Il giornalista che ha scritto l’articolo che sto commentando, probabilmente, pensa di no. Non tiene conto del fatto che Trump è una scheggia impazzita, che gli americani hanno eletto a loro rappresentante uno che è fallito ben due volte, e che questa persona non brilli certo in quanto a cultura e preparazione scientifica.

Gli h-index e la credibilità scientifica.

Ora voglio usare gli stessi criteri del giornalista de Il Tempo per fare una mia classifica di scienziati. Partiamo dalla fisica. Penso che io non abbia bisogno di presentare Enrico Fermi. È una gloria italiana che ha dato un contributo notevole alla fisica mondiale. Trovate una sua biografia qui. Il suo h-index è 28 (qui). Incredibile vero? Nonostante abbia vinto un premio Nobel, Enrico Fermi ha un h-index confrontabile con quello di Burioni che il giornalista de Il Tempo ha giudicato scarso. Però in effetti sto confrontando un medico con un fisico, peraltro deceduto già da molto tempo. Non sono paragoni da fare. Andiamo a prendere un altro fisico che è diventato famoso qualche tempo fa, all’inizio degli anni 2000: Jan Hendrik Schön. Ho parlato di questo scienziato qui. Fu uno studioso della superconduttività nei sistemi organici. In odore da Nobel fino a che si scoprì che inventava i dati. Gli è stato ritirato anche il dottorato di ricerca. Ebbene, se andiamo a leggere l’h-index di Schön su Scopus, risulta che esso è pari a 32 (qui). In definitiva, usando i parametri del giornalista de Il Tempo, Enrico Fermi è più scarso di Jan Hendrik Schön. Ma quale tra i due ha maggiore credibilità? Enrico Fermi che ha lavorato seriamente ed ha dato un contributo alla fisica riconosciuto dall’intera comunità scientifica oppure Jan Schön che, invece, ha lavorato in modo poco serio arrivando ad inventarsi i dati pur di avere quella notorietà internazionale che non meritava?
Voglio continuare. Ritorniamo nel campo medico e prendiamo Wakefield. Sì, proprio il medico che è stato radiato dall’ordine dei medici e dalla comunità scientifica per aver inventato di sana pianta la correlazione tra vaccini ed autismo. Il suo h-index è 45 (qui) dovuto principalmente alle oltre 1500 citazioni che il suo lavoro su The Lancet, pubblicato nel 1998 e poi ritrattato una decina di anni dopo, sulla correlazione vaccini-autismo ha ricevuto. Usando i parametri del giornalista de Il Tempo, Burioni è più scarso di Wakefield. Ma voi nelle mani di chi mettereste la vostra salute: di Burioni o di Wakefield? Io non ho dubbi, per quanto mi riguarda: mi affiderei senza ombra di dubbi a Burioni.

Conclusioni

Ho scritto questo articolo per far capire quanta spazzatura ci sia in rete in merito a come vengono usati i numeri che hanno significato solo nell’ambito per cui quei numeri sono stati introdotti. Al di fuori dell’ambito accademico, l’h-index non può essere utilizzato. In ogni caso, anche in ambito accademico va utilizzato non in senso assoluto ma assieme a tutta una serie di parametri che servono per valutare la credibilità di uno scienziato. Usando un linguaggio matematico, l’h-index è condizione necessaria ma non sufficiente a farsi un’idea del lavoro di qualcuno.

Fonte dell’immagine di copertina

Fa freddo lassù?

Checché ne dicano chimici e fisici, le due discipline di cui essi sono rappresentanti sono strettamente correlate tra di loro. A certi livelli sono talmente incuneate l’una nell’altra che è difficile dire quando finisce la chimica e quando comincia la fisica. Prendete per esempio la quantomeccanica. Tutti quelli che ne parlano sono fisici, ma questa branca della fisica può essere considerata anche chimica grazie agli sforzi compiuti da Linus Pauling che, nella prima metà del XX secolo, si “inventò” la chimica quantistica, o quantochimica, per spiegare la natura del legame chimico (Figura 1).

Figura 1. Raccolta dei lavori di Linus Pauling in cui viene identificata la natura del legame chimico.

Fino a che Pauling non si impadronì della quantomeccanica per adattarla alla chimica, la rottura e la formazione dei legami chimici rimase in una sorta di limbo che faceva dei chimici dei veri e propri praticoni, abilissimi nel “maneggiare” le molecole, ma ancora lontani dal poter prima progettare e poi realizzare in laboratorio quanto avevano in mente.

Perché vi scrivo tutto questo?

Dovete sapere che in questo periodo di quarantena sono costretto a fare lezione per via telematica. Mi manca fortissimamente il contatto con gli studenti ed il poter trasferire le mie conoscenze non solo con le parole ma anche con la prossemica e con l’attività di laboratorio. In questo contesto sto studiando le lezioni che devo fare nelle prossime settimane per il mio corso di “Recupero delle aree degradate”. Una delle ultime lezioni riguarda la contaminazione atmosferica. È proprio ripassando le diapositive che presenterò tra un paio di settimane che ho realizzato anche a me stesso ciò che dico normalmente agli studenti dei miei corsi: chimica e fisica sono parenti stretti; non si può capire la chimica se non si conosce la fisica e non si può comprendere a fondo la fisica se non si hanno anche conoscenze chimiche. Sono sicuro che i miei amici fisici dissentiranno da quanto ho appena scritto, ma lasciatemi dire che chi afferma che per conoscere la fisica non c’è bisogno della chimica ha profonde falle cognitive. È come dire che la conoscenza umanistica non serve a chi si occupa di scienza. In realtà, la conoscenza umanistica aiuta a pensare, a mettere ordine nelle proprie idee, nel proprio modo di esprimersi e nel modo di presentare ciò che sappiamo.

Ma andiamo con ordine.

La fisica dell’atmosfera è direttamente legata alla sua chimica.
Nella Figura 2 si evidenzia la geografia dell’atmosfera con l’indicazione dei cambiamenti di temperatura (quindi una proprietà fisica) che si osservano man mano che ci allontaniamo dalla superficie terrestre.

Figura 2. Geografia dell’atmosfera con indicazioni dei cambiamenti di temperatura che si osservano al variare dell’altezza.

Usando il linguaggio tipico della Scienza del Suolo, la Figura 2 mostra il profilo dell’atmosfera nel quale è possibile individuare diversi orizzonti. L’orizzonte più vicino al suolo ha un’altezza di circa 16 km. Esso viene indicato col termine di troposfera in cui il suffisso “tropo” è di derivazione greca e vuol dire “mutazione”, “cambiamento”. La composizione chimica della troposfera è abbastanza complessa. Essa è costituita non solo da ossigeno ed azoto molecolari, ma anche da vapor d’acqua, anidride carbonica e tutte le altre varie anidridi come quelle di azoto e zolfo che hanno sia origine antropica che origine naturale. Per effetto dell’energia termica rilasciata dal suolo, le molecole di gas più vicine ad esso si riscaldano, diminuiscono di densità e si muovono verso l’alto venendo sostituite dalle molecole di gas più fredde e più dense che si trovano ad altezze maggiori. Si realizzano, quindi, delle correnti ascensionali (Figura 3) che sono sfruttate, per esempio, dai deltaplanisti o da chi è appassionato di volo senza motore.

Figura 3. Schema delle correnti ascensionali che si realizzano per effetto del riscaldamento al suolo delle molecole di gas atmosferico.

È proprio grazie all’energia termica rilasciata dal suolo che possiamo spiegare perché nella troposfera la temperatura diminuisce con l’altezza. Infatti, più vicini siamo al suolo, più risentiamo del calore emesso dalla superficie terrestre. Più ci allontaniamo dal suolo, più si riduce la temperatura per effetto della dissipazione del calore che proviene dalla superficie terrestre.
Tra 16 e 50 km di altezza c’è l’orizzonte atmosferico che viene definito stratosfera. In questo orizzonte c’è una concentrazione media di ozono che è dell’ordine delle decine di parti per milioni (v/v) contro i 0.04 ppm medi presenti nella troposfera. Questa elevata concentrazione di ozono rende conto dell’aumento di temperatura che si osserva man mano che ci si allontana dalla superficie terrestre e si passa dai 16 ai 50 km di altezza. Infatti, le radiazioni luminose provenienti dal suolo, da un lato, consentono la degradazione dell’ozono (O3) ad ossigeno molecolare (O2) ed ossigeno radicalico (O∙) in una reazione esotermica, dall’altro consentono un aumento dell’energia cinetica dei gas della stratosfera con conseguente aumento dell’energia termica.
Tra 50 ed 85 km c’è l’orizzonte che chiamiamo mesosfera. In questo orizzonte si osserva di nuovo una diminuzione di temperatura all’aumentare dell’altezza. Infatti, la temperatura della mesosfera può arrivare fino a -90°C. Questa diminuzione di temperatura è legata alla riduzione della densità dei gas ivi contenuti. L’energia termica proveniente dal Sole, pur incrementando l’energia cinetica delle molecole di gas, non è, tuttavia, in grado (a causa della bassa concentrazione di tali gas) di portare ad un aumento della temperatura.
L’orizzonte incluso tra 85 e 500 km di altezza prende il nome di termosfera. La composizione chimica della termosfera vede la presenza di molecole di ossigeno e molecole contenenti azoto. La radiazione elettromagnetica proveniente dal sole consente la ionizzazione delle molecole anzidette in reazioni di tipo esotermico. L’esotermicità delle reazioni appena citate, associate all’aumento dell’energia cinetica dei sistemi gassosi presenti nella termosfera, portano ad un aumento della temperatura che può arrivare fino a 1200 °C. Gli ioni presenti nella termosfera non solo sono in grado di far “rimbalzare” le onde radio consentendo, quindi, le comunicazioni sul globo terrestre, ma sono anche responsabili delle aurore boreali. Infatti, essi assorbono energia solare riemettendola sotto forma di radiazioni luminose che danno luogo alle meravigliose scenografie che si osservano nell’emisfero Nord del nostro pianeta (Figura 4).

Figura 4. Aurora boreale (Fonte).
Conclusioni

Fa freddo lassù? La risposta corretta è: dipende. Dipende dall’altezza a cui ci troviamo e dalla chimica degli orizzonti del profilo atmosferico. Come dicevo più su, questo post nasce dal desiderio di condividere con voi le meraviglie di due discipline interconnesse tra loro: la chimica e la fisica. Come potete intuire leggendo questo breve articolo, le conoscenze chimiche riescono a spiegare i fenomeni fisici che si osservano nell’atmosfera. Spero possiate perdonare le inesattezze che sicuramente ho scritto e che tutto ciò possa innescare una discussione interessante.

Altre letture

Fundamentals of physics and chemistry of atmosphere

Fonte dell’immagine di copertina

 

 

Come funzionano le maschere filtranti

In questi giorni di crisi in cui siamo costretti ad essere chiusi in casa per salvaguardare la salute nostra e di chi ci è caro, ci si annoia, si legge un libro, si gioca al computer, si vede un film, si lavora (i più fortunati come me possono farlo dal computer), si cucina…si fanno, insomma, tutte quelle attività che per i nostri nonni in tempo di guerra  erano “normali”.

In questa situazione di crisi sanitaria capita di vedere di tutto. Quello che colpisce me è il gran numero di persone che fa uso di mascherine anche in situazioni in cui risultano inutili. Quanti di voi hanno visto automobilisti circolare da soli con la mascherina? E quanti sono quelli che portano a spasso il cane indossando la mascherina in zone solitarie dove è facile tenersi a distanze di sicurezza?

Al di là di ogni tipo di considerazione personale in merito all’uso delle mascherine, tutti noi siamo sicuramente venuti a conoscenza delle disposizioni delle autorità sanitarie che raccomandano l’uso delle mascherine solo a persone infette da coronavirus o a coloro che si trovano ad assistere queste persone. Per tutti gli altri le mascherine sono inutili.

Ma ci siamo mai chiesti come funziona una mascherina e perché le autorità danno certi consigli?

Io mi sono chiesto come diavolo funziona una mascherina ed è per questo che scrivo questo post: ho deciso di annoiarvi ancora più di quel che già non siete annoiati cercando di spiegarvi in cosa consiste questo oggetto che viene catalogato sui luoghi di lavoro come “dispositivo di protezione individuale” o “DPI” ed il cui uso è normato dal D.Lgs. 81/08.

Le dimensioni delle polveri sottili

In molti luoghi di lavoro il personale si trova ad operare in presenza di aerosol e polveri sottili. Queste ultime vengono in genere indicate come PMx, dove la x indica le dimensioni delle particelle espresse in μm.

Quando parliamo di aerosol e polveri sottili stiamo intendendo sistemi che, indipendentemente dalla loro composizione chimica, hanno delle dimensioni molto variabili. Se esse sono comprese tra 2 nm e 2 μm stiamo avendo a che fare con sistemi colloidali che rimangono dispersi in aria per effetto delle loro dimensioni. Grazie ad esse, infatti, la forza di gravità non è in grado di prevalere sulle forze dispersive  come, per esempio, la repulsione tra cariche elettriche oppure le interazioni con le molecole di aria. Come conseguenza, le suddette particelle rimangono disperse in aria fino a che non intervengono fattori che consentono alla forza di gravità di predominare e permettere la deposizione al suolo delle stesse.

Le dimensioni delle polveri sottili in parole povere

Per darvi una idea di cosa significhino i numeri scritti sopra, tenete presente che il nm (si legge nanometro) corrisponde ad un miliardesimo di metro, mentre il μm (si legge micrometro) corrisponde ad un milionesimo di metro. Considerando che la lunghezza di un legame chimico, come il legame C-H, è di circa 0.1 nm, ne viene che 2 nm è una dimensione che corrisponde a circa 20 volte la distanza carbonio-idrogeno, mentre 2 μm corrisponde a circa 20000 volte la stessa distanza. Questo non vi dice ancora nulla, vero? In effetti, se uno non ha studiato chimica non si rende conto di quanto sia piccolo un legame chimico. Allora guardiamo la foto di Figura 1. Si tratta di un acaro della polvere le cui dimensioni sono di circa 0.5 mm, ovvero circa 250 volte più grande di 2 μm che rappresenta il limite superiore dell’intervallo dimensionale in cui ricadono le particelle colloidali. La foto di Figura 1 è stata ottenuta al microscopio elettronico. In altre parole, gli acari della polvere non sono visibili ad occhio nudo. Potete, ora, facilmente immaginare che neanche le particelle colloidali lo siano.

Figura 1. Immagine di un acaro della polvere (Fonte)

Mi potreste dire: “ma cosa dici? Non è vero. Io posso vedere le particelle di smog” (queste nell’immaginario comune sono intese come polveri sottili). Mi dispiace informarvi che le particelle che voi vedete a occhio nudo hanno dimensioni molto più elevate di quelle comprese nell’intervallo 2 nm-2 μm (diciamo almeno più di 1000 volte più grandi), mentre le particelle le cui dimensioni ricadono nell’intervallo anzidetto non le potete vedere se non con la microscopia elettronica. Quando le particelle sono così piccole, l’unico effetto visibile è quello che va sotto il nome di “Effetto Tyndall”. In pratica, la luce che “incontra” le particelle colloidali viene dispersa in tutte le direzioni (Figura 2) con la conseguenza che una soluzione appare opaca o l’aria appare “nebulosa”.

Figura 2. Rappresentazione schematica dell’Effetto Tyndall
Ma cosa c’entra questo con le maschere filtranti?

Come vi dicevo, in molti posti di lavoro, il personale entra in contatto con le polveri sottili. Queste sono pericolosissime per noi dal momento che possono innescare tante patologie, prime tra tutte quelle di tipo respiratorio. I datori di lavoro, quindi, sono obbligati a fornire ai propri dipendenti i dispositivi di protezione individuale tra cui le mascherine. Queste sono in grado di filtrare le polveri sottili che sono presenti nell’aria e di impedire che esse vengano inalate. Esistono almeno tre tipologie di maschere filtranti che vengono indicate con le sigle FFP1, FFP2 e FFP3. La sigla “FFP” sta per “Face Filtering Piece” mentre i numeri da 1 a 3 indicano l’efficacia del filtraggio. In particolare, le maschere FFP1 proteggono da polveri atossiche e non fibrogene la cui inalazione non causa lo sviluppo di malattie, ma può, comunque, irritare le vie respiratorie e rappresentare un inquinamento da cattivi odori. Le maschere FFP2 proteggono da polveri, fumo e aerosol solidi e liquidi dannosi per la salute. In questo caso le maschere intercettano anche particelle fibrogene, ovvero sistemi che, a breve termine, causano irritazione delle vie respiratorie, mentre a lungo termine comportano una riduzione dell’elasticità del tessuto polmonare. Le maschere FFP3 proteggono da polveri, fumo e aerosol solidi e liquidi tossici e dannosi per la salute. Queste maschere sono in grado di proteggere da sostanze nocive cancerogene e radioattive.

La protezione assicurata da queste maschere è di tipo fisico. Più spesso è lo strato di materiale filtrante, più efficace è la protezione. Le maschere di tipo FFP1 consentono di “intercettare” particelle più grandi di 5 μm; le maschere FFP2 consentono di “intercettare” particelle di dimensioni maggiori di 2 μm; le maschere di tipo FFP3 sono capaci di “intercettare” particelle di dimensioni  maggiori di 0.6 μm, ovvero particelle di dimensioni circa 1000 volte più piccole dell’acaro in Figura 1. Tuttavia, le particelle colloidali le cui dimensioni sono comprese tra 0.2 nm e 0.6 μm possono ancora arrivare ai nostri polmoni e causare danni.

E virus e batteri?

Come avrete capito, è tutta questione di dimensioni. In genere i batteri hanno dimensioni pari a circa 0.45 μm, mentre i virus dimensioni comprese nell’intervallo 0.020-0.300 μm. Questo significa che nessuna delle mascherine di cui si è discusso finora sarebbe in grado di trattenere sistemi aventi le predette dimensioni. Tuttavia, se virus e batteri “viaggiano” attaccati a particelle colloidali le cui dimensioni sono almeno superiori a 0.6 μm, allora essi possono essere bloccati dalle maschere filtranti di tipo FFP3. In effetti, le case produttrici di mascherine riportano che le maschere di tipo FFP3 vanno bene per proteggere da esposizione a legionella (un batterio largo tra 0.3 e 0.9 μm e lungo tra 1.5 e 5 μm) e virus quali quelli dell’influenza aviaria, dell’influenza A/H1N1, SARS, e tubercolosi. Bisogna comunque tener presente che lo strato filtrante della mascherina tende ad esaurirsi. La maschera perde la sua efficacia e va sostituita. Cosa vuol dire questo? Che le mascherine FFP sono monouso. Se le si usa in città, magari durante una passeggiata, non vi state difendendo da virus e batteri, ma semplicemente dal particolato sospeso dovuto alla contaminazione ambientale.  Quando tornate a casa dovete buttare via la mascherina e sostituirla con un’altra. Se la usate per difendervi da virus e batteri è perché non state facendo una passeggiata in mezzo ai gas di scarico, ma siete operatori sanitari che devono entrare in contatto con le gocce di saliva di pazienti infetti. La maschera, grazie alla sua azione filtrante, impedisce che questi mezzi veicolanti di patogeni finiscano nel nostro organismo. Dopo l’uso, la maschera va comunque buttata via e sostituita.

E le maschere chirurgiche?

Queste non hanno nulla a che vedere con le maschere di tipo FFP. Mentre queste ultime proteggono dall’inalare sistemi tossici, le maschere chirurgiche hanno il compito di impedire che i chirurghi possano contaminare le ferite dei pazienti durante gli interventi chirurgici. Quindi, le maschere chirurgiche servono per difendere il paziente, non il medico.

Mascherina sì, mascherina no?

Alla luce di tutto quanto scritto, ne viene che è meglio tenersi lontani dalle mascherine fai da te: no carta da forno, no assorbenti, no altre robe raffazzonate. Non servono a nulla. L’unico modo per proteggersi da virus e batteri è seguire le istruzioni di chi ne capisce di più, ovvero dell’Istituto Superiore di Sanità.

Altre letture e riferimenti

Se volete conoscere la fonte delle dimensioni dei pori delle maschere filtranti, cliccate qui: https://www.uvex-safety.it/it/know-how/norme-e-direttive/respiratori-filtranti/significato-delle-classi-di-protezione-ffp/ e qui: http://www.antinfortunisticaroberti.it/news-dett.php?id_news=133 

Se volete avere notizie aggiuntive in merito alle caratteristiche delle maschere filtranti, cliccate qui: https://www.lubiservice.it/blog/mascherine-ffp1-ffp2-e-ffp3-differenze-e-consigli

Se volete sapere quali sono i meccanismi di funzionamento di una maschera filtrante, potete accedere a questa interessante serie di diapositive: http://www.ausl.fe.it/azienda/dipartimenti/sanita-pubblica/servizio-prevenzione-sicurezza-ambienti-di-lavoro/materiale-informativo/corso-utilizzo-dpi-per-operatori-dsp-ottobre-2016/faccaili-filtranti-uso-corretto

Se volete conoscere la fonte da cui è presa l’informazione in merito al filtraggio di alcuni  batteri e virus, cliccate qui: https://www.seton.it/dpi-protezione-respiratoria.html

Se volete conoscere la fonte delle dimensioni dei virus, cliccate qui: https://www.chimica-online.it/biologia/virus.htm

Se volete conoscere la fonte delle dimensione del batterio della legionellosi, cliccate qui: http://www.unpisi.it/docs/PUBBLICAZIONI/ARTICOLI/bonucci%20badii%20legionella.pdf

Se volete sapere di più sull’utilità dei DPI, cliccate qui: https://medicalxpress.com/news/2020-03-masks-gloves-dont-coronavirus-experts.html

Fonte dell’immagine di copertina

Ringraziamenti.

Grazie a Paolo Alemanni e Francesca Santagata per avermi aggiornato sulle norme relative alla sicurezza sul lavoro

 

Pillole di scienza. Alla ricerca degli elettroni di Dirac

Cosa è un elettrone di Dirac?

Si tratta di un elettrone che è descritto dall’equazione di Dirac (Figura 1).

Figura 1. Equazione di Dirac

Semplice vero? Certo come no! Questa è la classica spiegazione a ciambella, ovvero un giro di parole che non spiega nulla se non si è un addetto ai lavori.

Cerchiamo di capire cos’è e perché è importante l’equazione di Dirac.

Ormai è noto a tutti che l’inizio del XX secolo è stato molto prolifico in termini scientifici. È nata, infatti, la meccanica quantistica (MQ) grazie alla quale oggi tutti hanno sentito parlare almeno una volta nella vita dell’equazione di Schoeredinger che, tra le tante cose, permette di descrivere il comportamento degli elettroni.

Una delle cose che viene insegnata a livello semplicistico a tutti gli studenti dei primi anni di corsi di studio scientifici è che l’equazione di Schoeredinger permette di definire gli orbitali come quella zona di spazio in cui esiste una buona probabilità di trovare gli elettroni. Come ho già scritto, questa è una supersemplificazione. Tuttavia fatemela passare per buona perché qui non si sta facendo una lezione di meccanica quantistica, bensì si cerca di fare un po’ di divulgazione per avvicinare concetti complessi a chi non è del settore.

Negli stessi anni in cui nasceva e si sviluppava la MQ, nasceva e si sviluppava anche la teoria della relatività ristretta (RR) di Albert Einstein. Questa si basa sostanzialmente su due postulati. Il primo postulato stabilisce che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, il secondo afferma che la luce si propaga nel vuoto ad una velocità ben definita pari a 2.99 x 108 m s-1.

”Bene. Bravo. Ed ora? Dove vuoi arrivare mettendo assieme MQ e RR?” vi starete chiedendo.

Abbiate un attimo di pazienza, per favore. Lasciatemi ancora poche parole per arrivare al punto.

Meccanica quantistica e relatività ristretta sono due facce della stessa medaglia.

Fin da quando le due teorie, della MQ e della RR, si sono affermate, gli studiosi hanno cercato di unificarle. Tuttavia, tra le tante difficoltà che essi hanno incontrato, una particolarmente “ostica” è stata quella relativa alla asimmetria tra spazio e tempo della teoria di Schoeredinger che mal si conciliava con la simmetria spazio-temporale di Einstein. In altre parole, mentre Schoeredinger trattava spazio e tempo come se fossero due cose distinte e separate, Einstein considerava le dimensioni spaziali alla stessa stregua della dimensione temporale (prego i miei amici fisici di non essere troppo severi con me se sto semplificando troppo. Anzi, vi invito a correggermi se ritenete che io stia andando fuori dal seminato).

Solo Dirac, grazie alla sua genialità, riuscì a risolvere il problema elaborando una equazione (quella dell’immagine di Figura 1) con la quale riuscì a trattare le particelle quantistiche (quindi anche gli elettroni) nel regime relativistico.

Ma allora, a cosa serve sapere cosa sono gli elettroni di Dirac?

L’equazione di Dirac descrive molto bene il comportamento degli elettroni nei semiconduttori ed in sistemi quali il grafene. Per associazione, anche se studi del genere non sono stati ancora condotti, l’equazione di Dirac dovrebbe descrivere bene anche il comportamento di sistemi simil-grafene quali il biochar. Tuttavia, bisogna aggiungere che il numero di tecniche analitiche capaci di confermare sperimentalmente il comportamento degli elettroni secondo Dirac si può contare sulla punta delle dita di una sola mano. Si tratta di tecniche che sono “maneggiate” con una certa familiarità dai fisici, ma che per un chimico sono alquanto “ostiche”.

La risonanza magnetica nucleare (NMR) e gli elettroni di Dirac.

È di pochi giorni fa la notizia che su Nature Communication è apparso uno studio attraverso cui, per la prima volta, sono stati osservati mediante NMR (una tecnica molto amata dai chimici, incluso me che faccio l’NMR-ista sin dal 1992) gli effetti che gli stati elettronici di Dirac (ovvero quelli descritti dall’equazione di Figura 1) hanno sul comportamento dei nuclei di una lega metallica fatta da Bismuto e Tellurio (Bi2Te3) che viene utilizzata come isolante.
Se avete voglia di leggere l’articolo originale basta cliccare sull’immagine qui sotto.

Figura 2. Immagine tratta dall’articolo di Nature Communications.
Ed allora?

Bella domanda. Intanto si aggiunge una nuova tecnica a quelle già usate per lo studio del comportamento degli elettroni e la verifica sperimentale dell’equazione di Dirac. Inoltre, si aprono nuovi scenari per la progettazione di nuovi materiali con proprietà sempre più sofisticate da poter utilizzare nei campi più disparati come la ricerca spaziale o quella medica.

Per approfondire

What the heck is a Dirac electron?

Dirac electrons

The metal-insulator transition depends on the mass of Dirac electrons

Relatività ristretta

Giorgio Chinnici, Assoluto e relativo, Hoepli ed. 

Giorgio Chinnici, La stella danzante, Hoepli ed. 

Fonte dell’immagine di copertina

 

 

 

 

 

Perché i termini “scienza” e “biodinamica” nella stessa frase sono un ossimoro

Ogni tanto ritorno alla carica con l’agricoltura biodinamica. Ne ho parlato a varie riprese qui, qui, qui, qui, e qui. Mi chiederete voi: ma allora perché parlarne ancora una volta? Semplicemente perché ancora una volta delle Istituzioni pubbliche come un Ministero della Repubblica, una Università pubblica, una Regione ed un Comune hanno concesso il patrocinio per un convegno sulla biodinamica che si terrà a Firenze dal 26 al 29 Febbraio (qui).

Cosa vuol dire patrocinio?

Dalla Treccani on line possiamo leggere che il patrocinio è un “sostegno da parte di un’istituzione“. E quando si concede un sostegno? Quando si condividono i contenuti di una certa attività. Non c’è molto da aggiungere. Se io, Ministro o Rettore o Sindaco o altro rappresentante Istituzionale concedo un patrocinio è perché sono convinto della validità di certe attività e voglio legare la mia Istituzione alle predette attività. Cosa pensare, quindi? È possibile che un Ministero, una Università, una Regione e un Comune, attraverso la concessione del patrocinio, condividano i contenuti del convegno e, più in generale, approvino l’esoterismo alla base dell’agricoltura biodinamica? Secondo me no. Probabilmente, la concessione del patrocinio è avvenuta automaticamente senza che qualcuno si sia veramente reso conto di ciò che concedere il patrocinio ad un convegno del genere avrebbe potuto significare.

Ma non è finita. Al convegno prendono parte anche docenti universitari. Perché lo fanno? Probabilmente sono seguaci di Steiner oppure, più  probabilmente, hanno una falsa idea del significato di libertà di ricerca e di scienza (ne ho parlato qui). Perché falsa? Faccio un esempio banale: non c’è bisogno di chiedere se chi mi legge conosce la differenza tra astronomia ed astrologia. La prima è una scienza, la seconda una favoletta sulla quale si basa la formulazione degli oroscopi. Si tratta della medesima differenza che esiste tra l’agricoltura attuale, basata sull’uso della scienza e delle tecnologie moderne, e la biodinamica, basata sulle idee di una specie di filosofo vissuto agli inizi del ‘900 e, praticamente, sempre uguale a se stessa.

Invocare libertà di scienza e ricerca pretendendo di dare pari dignità scientifica all’agricoltura moderna ed alla biodinamica è lo stesso che attribuire scientificità all’astrologia.

E’ mia opinione che gli accademici che con la loro attività sdoganano la biodinamica come pratica scientifica non facciano un buon servizio alla Scienza. Ovviamente ognuno è libero di fare ciò che vuole della propria dignità scientifica ed ognuno è libero di fare ricerca su qualsiasi cosa sia di proprio gradimento. Ciò che è importante è che non vengano impegnate risorse pubbliche per attività di ricerca che si fondano sull’esoterismo.

Come componente della Rete Informale Scienza e Tecnologie per l’Agricoltura (SETA), sono anche io tra i firmatari della lettera aperta che potete leggere qui sotto cliccando sulle immagini. In questa sede spieghiamo nei dettagli perché l’agricoltura biodinamica non può essere considerata scienza. Le nostre argomentazioni si basano esclusivamente sulla lettura dei disciplinari che devono seguire tutti coloro che vogliono usare il termine “biodinamica” sull’etichetta dei loro prodotti.

Buona lettura.

Fonte dell’immagine di copertina

Davide contro Golia

Davide contro Golia. Vi ricordate dell’Associazione per l’Agricoltura Biodinamica? Ne ho parlato qualche tempo fa quando ho evidenziato quali fossero le competenze di chi gestisce in Italia una delle più grandi aziende sull’agricoltura che segue i dettami esoterici di quel buontempone di Rudolf Steiner. L’articolo a cui faccio riferimento lo trovate qui sotto.

Agricoltura biodinamica – fatti, misfatti e contraddizioni. Parte I: Competenze

Devo dire che ultimamente la Rete Informale SeTA di cui faccio parte deve fare tanta paura al Dott. Triarico, presidente e responsabile dell’associazione anzidetta, dal momento che ci attacca ogni quando può. Sembra quasi di trovarsi di fronte a qualcuno che cerca in tutti i modi di attaccare briga per litigare. Noi abbiamo dalla nostra la Scienza, quella con la maiuscola, che ci consente di agire in scienza e coscienza.

Vi chiederete adesso perché questo articolo si intitola Davide contro Golia. Ebbene lo potete leggere nella lettera qui sotto. Buona lettura

Fonte dell’immagine di copertina

Pillole di scienza: le meraviglie dell’aromaticità

Chiedo scusa ai miei lettori, ma questa pillola di scienza oggi è dedicata ai miei studenti ed a tutti quelli che hanno studiato la chimica organica. Per questo motivo userò un linguaggio poco divulgativo ed abbastanza tecnico.

Il linguaggio comune ed il linguaggio scientifico: usi ed abusi

Il termine “aromatico” viene attribuito, nel linguaggio comune, a un oggetto che emana un buon odore. Si tratta quindi di una qualità che viene associata a qualcosa di “buono”. Quante volte abbiamo sentito, o noi stessi abbiamo detto, “senti che buon aroma di caffè” oppure “hmmmm che buon profumo ha questa zuppa” laddove il termine “profumo” è sinonimo di “aroma”.

Ebbene, noi chimici, a causa delle limitazioni del nostro linguaggio, siamo abituati a prendere i termini comuni ed a cambiar loro di significato per attribuirne uno di carattere molto più tecnico. Ecco perché mi salta subito la mosca al naso quando sento le persone parlare di chimica o, più in generale, di scienza usando termini tecnici di cui, però, non conoscono il significato. Queste persone pensano che usare parole prese dal linguaggio scientifico e messe in fila in modo casuale dia un’àura di scientificità alle cose che dicono. Solo per citare pochi esempi mi vengono in mente quelli che esaltano la biodinamica scrivendo “robe” come quelle che vedete nell’immagine qui sotto. Cliccando sull’immagine si apre la pagina dalla quale ho fatto lo screenshot.

Che dire poi di quelli che si sono votati all’omeopatia, pratica esoterica di cui parlo abbondantemente in uno dei capitoli del mio libro “Frammenti di Chimica“? Ne ho già parlato tante volte. Alcune delle chicche sono analizzate nel link qui sotto:

Omeopatia, ultima frontiera

Cosa significa aromatico in chimica

Lasciamo da parte le polemiche e concentriamoci sul significato dell’aggettivo “aromatico” nel linguaggio chimico. Se cerchiamo sulla Treccani online, possiamo leggere:

aromàtico agg. [dal lat. tardo aromatĭcus, gr. ἀρωματικός] (pl. m. –ci). – […] In chimica organica, composti a. (così denominati perché vi appartengono molte sostanze aromatiche), serie di composti ciclici nella cui molecola sono contenuti uno o più sistemi a sei atomi di carbonio disposti ad anello (distinti in omociclici e eterociclici a seconda che ai vertici dell’anello si trovino tutti atomi di carbonio o anche altri atomi)

Questo è il classico esempio di informazione così generale da perdere completamente di significato in termini chimici. Infatti esistono tanti composti omociclici ed eterociclici che non hanno assolutamente la caratteristica di essere aromatici. E non necessariamente devono essere presenti sistemi ciclici a sei atomi di carbonio.

La regola di Hückel

Da un punto di vista chimico un sistema organico si dice aromatico quando:

  1. contiene 4n+2 elettroni π (con n intero e  ≥ 0)
  2. è ciclico e planare

In tutti gli altri casi il sistema si dice antiaromatico. I sistemi aromatici hanno come peculiarità la bassa reattività, ovvero elevata stabilità chimica.

Vediamo alcuni esempi di composti aromatici ed antiaromatici

Il benzene è un sistema ciclico con la struttura descritta nella figura seguente:

La posizione dei doppi legami cambia e le due strutture, del tutto equivalenti, sono indicate come ibridi di risonanza. Nel sistema π del benzene sono presenti 6 elettroni, ovvero rispetta la regola del 4n+2 per n=1. Qui sotto viene evidenziato come l’ibridazione (sp2) degli atomi di carbonio consenta alla molecola di avere una struttura planare.

Entrambe le condizioni della regola di Hückel sono rispettate ed il benzene può essere considerato un composto aromatico.

Prendiamo adesso in considerazione il [10]annulene qui sotto:

C’è un anello, ci sono 10 elettroni π. Il numero di elettroni nel sistema π segue la regola di Hückel del 4n+2 per n=2. Tuttavia il composto non è aromatico perché non ha una struttura planare:

(Fonte)

La non planarità è dovuta al fatto che gli atomi di idrogeno indicati nella figura sottostante si respingono per effetto sterico portando la molecola ad avere una struttura a twist.

(Fonte)

 

Lo ione tropilio

Quando si studia la chimica organica e si arriva al capitolo sull’aromaticità, ci si imbatte anche nello ione tropilio (o catione cicloeptatrienile) che viene, in genere, indicato come lo ione più grande avente caratteristiche aromatiche. Esso si ottiene per allontanamento dello ione idruro dal cicloeptatriene. Quest’ultimo, pur avendo 6 elettroni π (n=1 nella regola di Hückel), non è aromatico a causa di un carbonio sp3 che lo rende non planare. Quando lo ione idruro viene allontanato, tutti gli atomi di carbonio risultano di tipo sp2, il sistema diventa planare, il numero di elettroni è quello previsto dalla regola di Hückel e lo ione è aromatico.

I sistemi aromatici “giganti”

La regola di Hückel è un utile strumento per comprendere cosa significhi il termine “aromatico” in chimica . Questa regola è di applicabilità generale e può essere validata sperimentalmente attraverso l’uso della spettroscopia di risonanza magnetica nucleare (NMR). Infatti, gli elettroni del sistema π di un composto aromatico generano una corrente di anello (ring current) responsabile di un campo magnetico locale che si addiziona o si sottrae al campo magnetico applicato durante l’esperimento NMR. La variazione del campo magnetico dovuta alla corrente di anello comporta  uno shift dei segnali dei nuclei soggetti a tale fenomeno. Per un approfondimento di carattere didattico cliccare qui.

(Fonte)

La spettroscopia di risonanza magnetica nucleare è la tecnica usata per sfatare un mito in base al quale più grande è la molecola contenente 4n+2 elettroni π e più facilmente essa è in grado di deformarsi così da allontanarsi dalle condizioni strutturali che soddisfano la regola di Hückel.

Nel 2016 è stato pubblicato un lavoro (qui) in cui viene descritta una molecola aromatica contenente fino a 62 elettroni π (ovvero n=15 nella regola del 4n+2):

Come mai una molecola così grande, la più grande sintetizzata fino al 2016, si comporta come un sistema aromatico rispettando la regola di Hückel? Gli autori dell’articolo ipotizzano che l’enorme flessibilità della molecola consenta la coesistenza di tanti conformeri. Tra questi possono sussistere dei conformeri in cui le nuvole elettroniche di tipo π interagiscano tra loro in modo da portare ad una delocalizzazione elettronica in grado di soddisfare la regola di Hückel. Questa stessa spiegazione è stata usata per giustificare il comportamento aromatico di una molecola sintetizzata più recentemente (il lavoro è stato pubblicato il 20 Gennaio 2020, qui) contenente ben 162 elettroni π (ovvero n=40 nella regola del 4n+2). Si tratta di una vera e propria ruota gigantesca in cui coesistono 12 anelli porfirinici.

(Fonte)
Conclusioni

A questo punto mi potreste chiedere: ok. Bella tutta ‘sta storia, ma a che serve? Voglio evidenziare che la sintesi di molecole così grandi consente di mettere a punto protocolli che possono essere usati per la sintesi di molecole diverse e con attività biochimiche da sfruttare per l’elaborazione di nuovi farmaci. Per poter “vedere” queste molecole è necessario spingersi ai limiti delle tecniche analitiche più utilizzate in chimica. Questo vuol dire che vengono migliorate le caratteristiche di tecniche che possono diventare di applicazione sempre più ampia e consentire di arrivare a limiti finora inesplorati. Infine, queste molecole aromatiche giganti possono essere utilizzate per studiare gli effetti quantistici a livello nanoscopico ben oltre i limiti imposti dalle dimensioni della costante di Planck.

Quando leggo queste notizie, che per me sono affascinanti perché mi consentono di immergermi in un mondo tutto mio, mi ricordo perché mi sono innamorato della chimica ed ho fatto del mio hobby il mio lavoro.

Letture consigliate

Even Huge Molecules Follow the Quantum World’s Bizarre Rules

Quantum superposition of molecules beyond 25 kDa

Porphyrin wheel sets record as largest aromatic ring

[62]Tetradecaphyrin and Its Mono- and Bis-ZnII Complexes

Global aromaticity at the nanoscale

Fonte dell’immagine di copertina

Chimica delle superfici e delle interfasi: l’effetto Marangoni e le lacrime del vino

Guardate la foto di Figura 1. Il bicchiere sembra vuoto. In realtà avevo appena finito di bere un buonissimo vino e in controluce si osservano quelle che gli esperti chiamano le “lacrime del vino“. Di cosa si tratta?

Figura 1. Immagine delle lacrime del vino in controluce

Il titolo di questa nota richiama il nome di un fisico italiano, il Dr. Marangoni, che nel 1865 per primo razionalizzò la formazione di queste lacrime. A onor del vero, il Dr. Marangoni studiò la dinamica del trasferimento di massa lungo una superficie.  All’interno del modello da lui sviluppato si inquadra la formazione delle suddette lacrime.

Ma andiamo con ordine.

Prendiamo in considerazione una miscela di due liquidi che, per semplicità, indichiamo con A e B. Dalla chimica sappiamo che ogni liquido è in equilibrio con il suo vapore attraverso la relazione:

Nell’immagine ho considerato le due componenti della miscela separatamente. I pedici (l) e (g) indicano la fase liquida e gassosa, rispettivamente.

Gli equilibri descritti sono tanto più spostati verso la fase gassosa quanto più piccolo è lo spessore della fase liquida. Una spiegazione semplicistica di ciò è che più piccolo è lo spessore, minore è la forza con cui le molecole  sono tenute legate alla superficie del liquido. Come conseguenza, le molecole sulla superficie di uno strato di liquido sottile riescono a “passare” più facilmente alla fase gassosa rispetto a quelle che sono sulla superficie di uno strato di liquido più spesso.

Cosa succede quando mescoliamo i due liquidi?

Quando i due liquidi vengono mescolati, l’equilibrio tra le fasi si può descrivere così:

In altre parole, ciò che è presente nella fase liquida lo è anche in quella gassosa. Ciò che cambia nella composizione della fase liquida rispetto a quella gassosa è il rapporto relativo tra le componenti.

Supponiamo, tanto per esempio, che la componente A abbia un punto di ebollizione più elevato rispetto a quello della componente B. Questo vuol dire che a parità di temperatura, le molecole di B si allontanano dalla superficie liquida più facilmente delle molecole di A. La conseguenza è che mentre la fase liquida contiene una maggiore quantità del composto A (che è più alto bollente), la fase gassosa contiene una maggiore quantità del composto B (che è più basso bollente).

Variazioni delle proprietà fisiche

La miscela fatta da A e B ha proprietà fisiche che sono intermedie tra quelle delle singole componenti. Ma cosa accade quando la stessa miscela si trova in due situazioni fisiche differenti, ovvero in un caso la fase liquida ha uno spessore più grande che nell’altro?

Quando diminuiamo lo spessore della fase liquida, la fase gassosa si arricchisce della componente più basso bollente e la densità del liquido (cioè il peso per unità di volume) tende verso quella della componente più alto bollente. Volendo semplificare con un linguaggio pseudo matematico, possiamo scrivere:

d(A+B) →dA

dove la lettera d indica la densità; il pedice (A+B) si riferisce alla miscela, mentre la freccia (→) si legge “tende”.

La tensione superficiale e la capillarità

Avete presente l’acqua? Sì…proprio quella che si scrive H2O. Ebbene, quando questa molecola è assieme alle sue sorelle gemelle, accade che si generino delle proprietà che ogni singola molecola presa da sola non ha. In effetti quando diciamo che l’acqua bolle a 100 °C o diventa solida a 0 °C non stiamo parlando di proprietà di una singola molecola. Temperatura di ebollizione, temperatura di fusione, densità etc. sono tutte proprietà che fanno riferimento ad insiemi di molecole che interagiscono tra loro. Le molecole di acqua, in particolare, interagiscono tra loro mediante una rete di legami a idrogeno. Per semplicità rimando ad una mia nota per comprendere il ruolo che i legami a idrogeno hanno nel determinare alcune caratteristiche dell’acqua.

Il ruolo dei legami a idrogeno nel comportamento dell’acqua

Qui sotto, invece, un altro articolo in cui si evidenzia come i legami a idrogeno influenzino la dinamica dei protoni e degli ossidrilioni.

Meccanismo di Grotthuss

I legami a idrogeno sono anche responsabili di quella che viene indicata come tensione superficiale dell’acqua.

Prendiamo una bacinella e riempiamola di acqua. Immaginiamo ora di diventare piccoli fino ad arrivare alle dimensioni delle molecole di acqua. Quello che potremmo immaginarci di vedere all’interno della bacinella è un insieme di molecole che interagiscono tra loro in modo differente a seconda della loro posizione nel contenitore (Figura 2).

Figura 2. Molecole di acqua in una bacinella. Le forze attrattive tra le molecole dipendono dalla posizione nel contenitore

In particolare, le molecole di acqua che sono nel bel mezzo della bacinella sono circondate da analoghe molecole che le attraggono con forze (dovute ai legami a idrogeno intermolecolari) identiche in tutte le direzioni.

Le molecole di acqua che sono accanto alle pareti del recipiente sono attratte con forze di un certo tipo dalle pareti e con forze differenti dalle molecole di acqua ad esse vicine. Cerchiamo di capire perché. Ho già scritto che le forze che consentono alle molecole di acqua di interagire tra loro sono dovute ai legami a idrogeno intermolecolari. Per completezza aggiungo che queste forze vengono indicate come “forze di coesione” perché consentono alle molecole di acqua di essere “coese” tra loro. Le forze con le quali le pareti del recipiente agiscono sulle molecole di acqua con cui entrano in contatto si indicano come “forze di adesione”. Esse possono essere dovute sia alla formazione di dipoli indotti che a legami a idrogeno veri e propri. Questi ultimi, tuttavia, hanno energia differente rispetto a quelli che si formano tra identiche molecole di acqua a causa della differente natura chimica delle pareti del contentinore.

Infine, le molecole di acqua che si trovano in superficie risentono, da un lato, della presenza dei legami a idrogeno con analoghe molecole più interne nel liquido, dall’altro della presenza dell’aria atmosferica con cui esse non possono interagire allo stesso modo. Per questo motivo, l’energia termica necessaria per far “staccare” le molecole dalla superficie è meno intensa di quella necessaria per far allontanare le molecole più interne che sono “ancorate” meglio ad un numero maggiore di molecole di acqua.

Adesso restringiamo la bacinella di prima alle dimensioni di un capillare e cerchiamo di capire cosa accade (Figura 3).

Figura 3. Esempio di risalita capillare

In pratica diminuisce lo spazio a disposizione delle molecole di acqua che cominciano ad interagire sempre più fortemente con le pareti del recipiente. Le molecole a contatto con le pareti iniziano, quindi, ad “arrampicarsi” e si “trascinano” dietro tutte quelle che non sono direttamente interagenti con le pareti stesse. A causa delle forze di coesione più intense nella zona di spazio centrale (quella più lontana dalle pareti, per intenderci) si genera un menisco. Da un punto di vista fisico si osserva un fenomeno che  senza le spiegazioni appena date aparirebbe magico, ovvero quella che è conosciuta comunemente come risalita capillare. Essa spiega la presenza di elevate concentrazioni di sali sulla superficie di suoli indicati come suoli salini, il movimento della linfa nelle piante e l’imbibizione di materiali porosi come la carta Scottex® che usiamo in cucina per asciugare le superfici su cui abbiamo fatto cadere l’acqua.

Le lacrime del vino

Siamo arrivati al momento cruciale: la spiegazione chimico-fisica delle lacrime del vino.

Il vino è una miscela complessa in cui le due componenti più importanti sono acqua e alcol etilico (indicato volgarmente con il solo termine di “alcol”). Non me ne vogliano gli enologi, ma il vino altro non è che una soluzione acquosa di alcol etilico. La poesia che i sommelier e gli enologi vedono nel vino è dovuta ad una piccolissima quantità di altre componenti che sono responsabili del sapore e del profumo di tale bevanda.

Tra le due componenti più abbondanti del vino, l’acqua è la più alto bollente (la temperatura di ebollizione a 1 atm è 100 °C), mentre l’etanolo ha una temperatura di ebollizione più bassa (a 1 atm, l’etanolo bolle a circa 78 °C). Aggiungiamo anche che la densità dell’etanolo a temperatura ambiente è circa 0.78 g/cm3 e quella dell’acqua è circa 1.0 g/cm3. La densità media dei vini è circa 0.99 g/cm3.

Mettiamo ora idealmente del vino in un calice e ruotiamo il calice (Figura 4).

Figura 4. Calici di vino che vengono fatti ruotare (Fonte)

Per effetto della rotazione, si genera un sottilissimo strato di liquido sulle pareti del calice. Alla luce di tutto quanto descritto nei paragrafi precedenti, ne viene che l’alcol etilico si allonatana facilmente da questo strato sottile. A causa di ciò, si intensificano le forze di adesione che spingono il liquido verso l’alto. Più il liquido si sposta verso l’alto, più si assottiglia lo strato e più facilmente l’alcol evapora. Come conseguenza aumenta progressivamente anche la densità del liquido nello strato sottile, ovvero aumenta il peso per unità di volume. Questo perché, alla luce delle spiegazioni date prima, la densità del liquido tende a quella dell’acqua. Quando, per effetto dell’aumento di densità, la forza di gravità diventa predominante sulle forze di adesione, l’anello di liquido che sale verso l’alto si rompe ed incominciano a formarsi gocce ed archetti, ovvero le lacrime del vino. Qualitativamente parlando, più elevato è il contenuto alcolico del vino e più elevato è il numero di gocce ed archetti.

Le lacrime del vino si formano sempre?

No. Non sempre le lacrime si formano. Come abbiamo visto, è necessario che per effetto della rotazione e conseguente evaporazione dell’alcol etilico, si intensifichino le forze di adesione che spingono lo strato sottile di liquido verso l’alto. Come ho già scritto, le forze di adesione sono dovute a interazioni dipolari e/o legami a idrogeno. Questo significa che se non ci sono “agganci” a cui le molecole di acqua si possono ancorare, non si possono formare le lacrime del vino. In altre parole, le lacrime dipendono da quanto bene abbiamo lavato i nostri calici. Se il lavaggio ha completamente “sgrassato“ le pareti del recipiente, gocce ed archetti non si formano.

Letture di approfondimento

Se avete voglia di leggere curiosità in merito a viti, vitigni, vinificazione e vini potete andare a leggere il blog di VinOsa

Fonte dell’immagine di copertina

Su Vandana Shiva e la pseudoscienza

Sono ben note le posizioni antiscientifiche di Vandana Shiva, la guru indiana dell’agricoltura biologica, che segue la filosofia secondo cui “l’agricoltura industriale sarebbe foriera di quasi tutti i disastri economici, ecologici e umanitari del pianeta” (qui).  Non è un caso che il mondo scientifico italiano si sia recentemente ribellato alla decisione del Ministro Fioramonti di indicarla come consulente del MIUR (qui). La stessa Società Italiana di Agronomia è intervenuta nel dibattito, come si evince da questo link, evidenziando che la scelta della Shiva quale consulente del Ministero contrasti con i parametri che il MIUR ha deciso di utilizzare per la costruzione di commissioni di alto profilo scientifico come quelle coinvolte nell’Abilitazione Scientifica Nazionale:

Un ministero che a giusta ragione stabilisce e impone criteri di valutazione e di qualificazione di ricercatori, docenti, strutture di ricerca e Università, che ci sottopone, ripeto a giusta ragione, a continue valutazioni della performance, VQR, abilitazioni basate su indici bibliometrici etc., dovrebbe adottare gli stessi criteri, e anche molto più severi, per istituire commissioni di alto profilo scientifico. Tali commissioni spesso danno un indirizzo sociale, economico e politico a un intero paese. […] La qualificazione scientifica (della SHIVA) è fondata su 62 pubblicazioni, poche delle quali affrontano in modo sistematico i temi della sostenibilità e dell’ecologia e totalizza su Scopus un h index di 13, di gran lunga al di sotto della qualificazione scientifica della maggior parte dei nostri colleghi che su questi temi, in maniera rigorosa, hanno prodotto molte e specifiche pubblicazioni”.

Queste appena riportate sono le parole che il Presidente della Società di Agronomia, Professor Michele Perniola, rivolge a chi considera la Shiva la candidata ideale per occupare il posto di responsabilità che il Ministro Fioramonti aveva deciso di affidarle.

Anche la rete informale Scienze e Tecnologie per l’Agricoltura (SeTA) è intervenuta con una lettera aperta (qui) nella quale viene riportato che:

Tra i più vocali venditori di fumo nel campo del negazionismo scientifico in agricoltura si pone senza dubbio Vandana Shiva, esponente di un antiscientismo radicale e militante e nota per aver diffuso grazie ad una efficace strategia comunicativa alcune fra le peggiori e più tenaci bugie che inquinano il dibattito pubblico. In proposito, si ricordano le sue bugie circa i suicidi degli agricoltori indiani dovute alla coltivazione di cotone transgenico, fino alle recenti bugie circa le cause e i rimedi per il disseccamento rapido dell’ulivo nel nostro Paese: bugie raccontate a fronte di lauti guadagni, considerate le parcelle richieste per i suoi numerosi interventi. Per non parlare delle bugie circa la sterilità delle colture OGM. Oggi non esiste al mondo nessun seme sterile di nessun tipo di pianta Ogm. Moltissimi, anche tra gli scienziati che operano in altri campi sono persuasi da questa bufala, e da parte nostra non ci stancheremo mai di ripetere che è un falso entrato nelle teste di tantissime persone e che inquina da decenni il dibattito su questi temi. A fronte di questi fatti, è impensabile che in un paese occidentale avanzato come il nostro ci si possa avvalere proprio presso il ministero dell’università e della ricerca scientifica della consulenza di Vandana Shiva sul tema dello sviluppo sostenibile: le idee da lei espresse, infatti, portano al più ad un sottosviluppo insostenibile, per la popolazione e per l’ambiente insieme”.

Ma non è solo la scienza italiana ad essere stanca delle sciocchezze, in termini scientifici, propalate da una persona che con l’agricoltura ha poco o niente a che fare. Anche gli scienziati d’oltre oceano sono stanchi.

Il 23 Gennaio 2020 è prevista alla Stanford University (California, USA) una lecture di Vandana Shiva dal titolo “Soil not Oil: Biodiversity-based Agriculture to Address the Climate Crisis” (qui).

Contro l’ufficializzazione presso una prestigiosa università statunitense delle sciocchezze pseudoscientifiche di Vandana Shiva si sono schierati molti accademici di istituzioni sparse in tutto il mondo. Tra le autorità scientifiche schierate contro la lecture di Vandana Shiva ci sono, per esempio, Sir Richard John Roberts (Chief Scientific Officer, New England Biolabs, Ipswich, MA e 1993 Nobel Laureate in Physiology or Medicine) e Nina Fedoroff (Penn State University Emeritus Professor of Biology, former President of the American Association for the Advancement of Science, AAAS).

I docenti/ricercatori anzidetti, insieme ad altri di qua e di là dell’Atlantico (tra cui anche chi scrive), hanno sottoscritto una lettera aperta (a cui tutti sono invitati ad aderire) al Rettore della Stanford University e ai dirigenti del Woods Institute, che ospiterà il convegno, organizzato da una società studentesca nella quale  evidenziano come la Shiva abbia una assurda tendenza alle sciocchezze (come quella secondo cui i semi sterili – che ovviamente non possono germogliare – possono diffondere la sterilità), sia famosa per la sua proverbiale ignoranza (per esempio, affermando che le proteine Bt sono tossiche per tutte le forme viventi, mentre invece lo sono solo per alcune classi di insetti chiaramente identificate e non per pesci, uccelli e mammiferi), abbia la tendenza poco elegante ad offendere (per esempio quando paragona gli agricoltori che decidono liberamente di usare colture OGM a stupratori), rifiuti la tecnologia per alleviare le fatiche (soprattutto di donne e bambini) legate al diserbo manuale, o rifiuti tout court l’uso dei fertilizzanti in agricoltura, paragonandoli ad armi di guerra.

Cosa potrà mai suggerire questa persona, con le sue idee antiscientifiche ed eticamente spregevoli, per aiutare a risolvere i problemi dell’agricoltura, del clima, della biodiversità e della sicurezza alimentare , se non continuare a propalare la pseudoscienza di cui è forte sostenitrice?

Cosa mai può aver spinto i vertici della Stanford University ad accettare che dei propri studenti abbiano invitato Vandana Shiva a tenere una lecture in occasione di un evento dedicato a Stephen Schneider, climatologo di fama mondiale presso la medesima università?

Cliccando qui o sulla figura qui sotto si aprirà il link alla lettera aperta degli scienziati di tutto il mondo alla Stanford University

Questo articolo è apparso sulla Newsletter n. 11 della Società Italiana di Scienza del Suolo

L’immagine di copertina è stata ottenuta da Wikimedia Commons

Share