Corni rossi in laboratorio: mito e metodo, scaramanzia e superstizione

Una delle prime cose che insegno, all’inizio dell’anno accademico nei miei corsi triennale e magistrale, è il metodo scientifico: guardi, ti fai un’idea, provi a smentirla.

Pulito, lineare: tutto misurabile, tutto spiegabile in modo oggettivo e razionale.

Eppure…

C’è stato un tempo in cui avevo la maglia fortunata. Non sostenevo esami senza indossarla. Era la mia coperta di Linus. A nulla valeva ricordarmi che superare un esame dipendesse da me: da quanto avessi studiato e da quanto avessi capito quella disciplina. No: senza il talismano non andavo da nessuna parte. E se venivo bocciato? La risposta era unica e certa: non indossavo il mio “dispositivo apotropaico” perché proprio quel giorno mia madre l’aveva messo a lavare per togliere le puzze.

Dopo cinque anni e una trentina di esami, quella maglia sembrava un gatto spelacchiato sopravvissuto a una centrifuga da 2000 giri al minuto.

Vi sembra stupido, vero? Lo è. Ma sono in buona compagnia. Oggi vi parlo delle abitudini strambe – e poco razionali – di alcuni dei più grandi scienziati passati sulla Terra.

Isaac Newton e la pietra filosofale

Isaac Newton, simbolo della ragione e dell’ordine matematico, passò anni chinato su testi di alchimia, annotando in latino formule e segni cifrati, vicino alla fornace. Non era un passatempo: era un’ossessione. Cercava la pietra filosofale, il segreto capace di trasmutare i metalli e, in fondo, di svelare il vocabolario nascosto della materia.

Col senno di poi parleremmo di errore concettuale. Eppure quell’alchimia “superstiziosa” conteneva anche i semi della chimica moderna: tecniche di purificazione (sublimazione, calcinazione, distillazione), un’idea operativa di trasformazione, un metodo di laboratorio fatto di prove, fallimenti, registri. Newton non separava nettamente scienza e mistero: cercava leggi nella natura e, insieme, significati nascosti. Forse per questo – scrisse Keynes  –  “non fu il primo dell’età della ragione, ma l’ultimo dei maghi.”

Dietro la reputazione di glaciale geometra c’era un uomo che alimentava il fuoco del crogiolo di notte, che copiava e commentava pagine e pagine di autori alchemici (tra cui l’enigmatico Eirenaeus Philalethes), che inseguiva il “mercurio filosofico” come chi sospetta l’esistenza di una chiave sola per molte serrature. La sua mano era la stessa che, con pazienza feroce, scomponeva la luce nel prisma: dall’ottica alla gravità, fino alla trasmutazione dei metalli, Newton cercava un principio unificante, un ordine segreto capace di tenere insieme mondi lontani.

C’era anche segretezza: i quaderni alchemici circolavano poco, spesso in codice. Parte per prudenza (il confine con l’eterodossia religiosa era sottile), parte per vanità intellettuale, parte per timore del ridicolo. Ma quelle pagine, così diverse dai Principia, rivelano la stessa postura: occhi sul dettaglio, mani nel laboratorio, mente ostinatamente monoteistica nella sua idea di ordine – un universo costruito con pochi mattoni e poche regole, tutte da decifrare.

È facile sorridere del mago nel matematico. Più difficile è riconoscere che senza quella tenacia quasi rituale, senza notti passate a distillare e fallire, la sua idea di legge naturale non avrebbe avuto la stessa densità. L’alchimia non fu la sua verità scientifica; fu però il suo lessico di apprendistato, il luogo in cui imparò che la materia non si concede a slogan ma a procedimenti. E in questo scarto tra talismano e metodo – tra crogiolo e calcolo – sta il fascino di Newton: un uomo che portò la ragione lontanissimo, senza smettere di ascoltare il richiamo, antico e umano, di un ordine nascosto.

Fermi e la fortuna calcolata

Enrico Fermi, l’uomo che stimava l’energia di un’esplosione nucleare lasciando cadere pezzetti di carta per misurare la distanza d’urto dell’onda, non credeva nella sorte cieca. La misurava. A Los Alamos, nelle pause lunghe come notti, si racconta che facesse conti mentali sulle probabilità di vincere a carte con colleghi altrettanto brillanti: non per denaro, ma per vedere quanto della “fortuna” si potesse spogliare di mistero con un calcolo rapido, un’approssimazione ragionevole, un ordine di grandezza.

La sua erano superstizioni con la matita in mano. Fermi rispettava un principio quasi liturgico: non cambiare un assetto sperimentale che aveva funzionato; ripetere la sequenza di passaggi nello stesso modo, con la stessa cura, quasi con lo stesso ritmo. Non era magia: era metrologia affettiva – l’idea che la regolarità delle cose meriti un cerimoniale minimo perché il rumore non divori il segnale. Nei suoi taccuini la scaramanzia si riduceva a un algoritmo pratico: tieni ferma la procedura, lascia variare una sola cosa alla volta, abbi rispetto per gli strumenti e per i loro capricci.

C’era in lui una fiducia spietata nelle buone stime. I famosi “problemi di Fermi” nascevano da qui: la convinzione che, se scomponi l’ignoto in fattori semplici e plausibili, la realtà si lascia avvicinare. La superstizione, in questo schema, diventa la sorella educata della statistica: non un talismano, ma un set di abitudini che tolgono peso all’ansia e lo spostano sulla ripetibilità. Nel laboratorio come al tavolo da gioco, Fermi domava il caso non negandolo, ma mettendolo al lavoro.

Anche attorno a lui, a Los Alamos, i rituali pullulavano: lavagne ripulite solo a fine turno, gessetti “fortunati”, tazze sempre nello stesso posto. Fermi partecipava con un sopracciglio alzato e un cronometro in tasca. Della fortuna accettava il residuo: quel tanto che resta quando hai contato tutto il contabile. Il resto lo affidava a ciò che sapeva fare meglio – ridurre il mondo a numeri onesti, abbastanza robusti da non crollare alla prima raffica di vento.

È forse qui la sua “scaramanzia”: un rispetto laico per l’ordine. Se qualcosa aveva funzionato ieri, non la si toccava oggi. Non per paura, ma per gratitudine alla regolarità. In quell’interstizio – tra l’onda d’urto misurata con un foglietto e il mazzo di carte ridotto a probabilità – la fortuna smette la maschera e diventa varianza; e Fermi, con calma quasi scaramantica, continua a prenderne le misure.

Niels Bohr e il ferro di cavallo

Niels Bohr, premio Nobel e padre della fisica quantistica, teneva appeso un ferro di cavallo alla porta di casa. Si racconta che, quando un amico gli chiese: “Ma davvero credi che porti fortuna?”, Bohr sorridesse: “No, ma mi hanno detto che funziona anche se non ci credi.” Una battuta che sembra un vezzo, e invece è una piccola lezione di epistemologia domestica.

Bohr viveva nella regione di confine tra ciò che possiamo dire e ciò che possiamo solo prevedere. La sua “complementarità” chiedeva di accettare verità parziali che non possono valere insieme nello stesso esperimento, ma che insieme descrivono il mondo meglio di qualunque assolutismo: onda o particella, a seconda di come guardi. Il ferro di cavallo appeso alla porta diventa allora un’immagine perfetta: una “teoria” pratica che non pretende fede, ma chiede ospitalità. Non serve crederci: basta ammettere che il reale è più scaltro dei nostri schemi e che, nel dubbio, un piccolo rito può convivere con una grande teoria.

C’era ironia in quella risposta, ma non leggerezza. Bohr sapeva che la scienza non elimina l’incertezza: la addomestica. Anche la meccanica quantistica – la più predittiva delle teorie – mette il caso al centro. Niente traiettorie segrete, niente consolazioni classiche: probabilità ben educata, sì; certezza, no. Di fronte a questo, un ferro di cavallo non è un talismano contro la ragione: è una metafora di modestia. Ricorda allo scienziato che i modelli funzionano finché funzionano, e che il mondo non ha il dovere di rientrare nella griglia che abbiamo preparato per lui.

Bohr non chiedeva di credere al ferro, ma di tollerare il paradosso: si può non credere e, tuttavia, lasciare uno spazio all’ignoto, come quando accetti che la luce “sia” onda e particella a seconda della domanda che poni. È il suo stile: una lucidità che non ha paura di tenere in tasca un sorriso. In quell’oggetto appeso alla porta c’è il suo invito più serio: restare intelligenti senza diventare arroganti, custodire i riti minimi che ci aiutano a vivere l’alea, e continuare, nonostante tutto, a misurare, a fare esperimenti, a scegliere bene le domande. Perché la fortuna – qualunque cosa sia – magari non esiste; ma il modo in cui ci disponiamo ad accoglierla può fare tutta la differenza.

Marie Skłodowska Curie e la luce nel buio

Marie Skłodowska Curie portava con sé la sua luce. Non un corno, non un ferro: una piccola fiala di sali di radio che al buio emanava un bagliore azzurrognolo. Più che un portafortuna, era un gesto pratico e insieme poetico: la materia che le aveva cambiato la vita, resa visibile. Le piaceva spegnere le lampade e guardare quel chiarore minimo, come se il mondo le concedesse, per un attimo, di vedere ciò che di solito resta nascosto.

Non era superstizione: era vicinanza alla scoperta. Nei baracconi gelidi dell’Institut du Radium, tra cariole di pechblenda rimescolata per mesi, Marie coltivava una liturgia povera: grembiule, provette, registri fitti, e poi quell’istante notturno in cui controllare se il campione “respirava” luce. Il radio diventava il suo segnaposto nel buio, un promemoria tangibile che la materia parla anche quando tacciamo. Non chiedeva protezione; chiedeva attenzione.

C’era dolcezza e durezza insieme in questo rito. Dolcezza nello stupore – la bellezza di un azzurro che fiorisce da una sostanza nera, quasi un fiat di laboratorio. Durezza nella determinazione: la pazienza feroce di chi riduce, filtra, calcina, misura, annota. Quel filo di luce era la prova che il metodo non è arido: è un modo di stare nelle cose, di non separarsi da ciò che si studia. E, sì, anche un modo di non separarsi da Pierre, perché in quel chiarore c’era la memoria condivisa di un lavoro fatto insieme, quando le notti finivano con le mani stanche e gli occhi pieni di scintille.

Guardiamo oggi a quei gesti con una consapevolezza diversa: taccuini e strumenti di Marie sono ancora radioattivi, custoditi in contenitori piombati. La sua “luce” aveva un prezzo. Ma proprio qui, nel contrasto tra incanto e rischio, il suo rito si fa simbolo: un amuleto laico che non promette fortuna, ma ricorda responsabilità. Tenere una fiala che brilla non per scaramanzia, bensì per fedeltà alla realtà: per dirci che la scienza, quando è grande, non smette di cercare la verità – e di riconoscerne, senza paura, il bagliore.

Richard Feynman e i bonghi quantistici

Richard Feynman, premio Nobel e spirito irrequieto, aveva un rito semplice e scandalosamente terrestre: suonare i bonghi. Prima di una conferenza, la sera di un’idea nuova, perfino tra un calcolo e l’altro: due mani, una pelle tesa, un ritmo che mette ordine. Diceva, senza enfasi, che lo aiutava a entrare nello stato giusto: non tanto la “fortuna”, quanto la frequenza su cui far vibrare attenzione e curiosità.

La sua scienza era una danza tra regole e improvvisazione. Nei diagrammi tracciati col gesso c’era la disciplina di un formalismo elegante; nei bonghi, l’altra metà: la sincope che scioglie l’ansia e fa spazio all’intuizione. Feynman conosceva bene la trappola del controllo assoluto: quando il cervello stringe troppo, l’idea scivola via. Il ritmo serviva a spalancare una finestra, a ricordare al corpo che pensare è anche respirare, che la mente ragiona meglio quando il resto di noi non è in apnea.

Non era una superstizione in cerca di indulgenza, ma una igiene dell’attenzione. Come il disegno (le modelle, i quaderni pieni di linee) o il samba imparato in Brasile, i bonghi facevano parte di una palestra sensoriale con cui Feynman teneva vivo il piacere di scoprire. Un piacere fisico, quasi infantile, che non ha paura di battere le mani su un tamburo prima di battere i denti su un integrale. Il laboratorio, per lui, restava un posto serio; ma la serietà non era seriosità: si poteva arrivare alla verità ridendo, purché si restasse onesti con i dati.

C’era poi una lezione morale, che in Feynman non mancava mai: il rito va bene finché non sostituisce la prova. Nei suoi discorsi contro la “cargo cult science” c’è l’avvertimento netto: i gesti possono aiutare a disporci alla verità, ma non la producono. I bonghi, allora, sono il contrario di un talismano: non promettono risultati, promettono presenza. Ti ricordano che il mondo non si piega alla scaramanzia; si lascia capire, a volte, se entri con il passo giusto.

È facile immaginarlo dietro il sipario: camicia arrotolata, qualche colpo secco, poi un sorriso di bambino colto sul fatto. Il pubblico sente ancora l’eco del tamburo quando Feynman comincia a parlare di particelle come se fossero personaggi su un palcoscenico: entrano, escono, si scambiano segnali. Il ritmo, ormai interno, batte sotto le parole. E quando l’argomento si fa sottile, resta quella musica appena percettibile a tenere insieme rigore e gioia – la vera, inconfondibile firma di Feynman.

Quando la superstizione aiuta la scienza

In realtà, la superstizione – o meglio, il rito – non è l’opposto della scienza. È una scorciatoia mentale che ci fa sentire più stabili davanti all’incertezza. Gli esperimenti falliscono, i risultati tardano, la variabilità domina. A volte un piccolo gesto serve solo a ricordarci che non controlliamo tutto, ma possiamo almeno disporre bene noi stessi.

La psicologia la chiama illusione di controllo: l’idea di poter influenzare un esito incerto attraverso comportamenti ripetitivi. Detto così sembra un difetto; in micro-dose è una risorsa. Il rito abbassa l’ansia basale, ancora l’attenzione e mette il corpo in assetto. È un pre-fallimento controllato: una sequenza che conosciamo a memoria e che ci restituisce padronanza quando il resto è imprevedibile. Il chirurgo che allinea gli strumenti, il violinista che accorda nello stesso ordine, la ricercatrice che riempie la scheda come prima cosa: non è magia, è frizione cognitiva ridotta.

C’è poi un altro effetto, più sottile: il rito sposta il fuoco dall’esito al processo. Per qualche minuto non contano il p-value o il referee n. 2; conta il gesto giusto fatto al momento giusto. Questo disinnesca la ruminazione, che è la vera nemica della performance intellettuale. È come dire alla mente: “riparti da qui, dal concreto”. Da lì tornano il metodo, la misura, la pazienza.

Naturalmente il confine è chiaro: il rito è utile finché resta strumento. Quando pretende di sostituire l’evidenza, diventa superstizione nel senso deteriore: cargo cult. La scienza chiede prove, non propiziazioni. Per questo i rituali buoni sono brevi, economici, falsificabili: se disturbano il dato, si cambiano; se aiutano, restano. Nessun dramma, nessun dogma.

Se volessimo distillare una guida pratica per tenere i riti dalla parte della ragione, potremmo scrivere che essi devono essere:

  • Piccoli e ripetibili: un minuto, sempre uguale.
  • Non intrusivi: non devono alterare protocollo e misure.
  • Orientati al processo: preparano la mente, non “chiamano” l’esito.
  • Sostituibili: se non servono più, si lasciano andare senza nostalgia.

Così il rito smette di essere una scialuppa contro il caso e diventa un metronomo: batte il tempo mentre facciamo ciò che davvero conta – osservare, ipotizzare, verificare. E quando, finalmente, il risultato arriva, non diremo “ha funzionato il portafortuna”, ma qualcosa di più adulto e più bello: ho lavorato bene, nel modo giusto.

Superstizioni d’alta quota

Anche oggi, tra scienziati e astronauti, i riti non mancano. Non chiedono fede: aiutano a respirare quando l’alea è alta.

  • Baikonur, la sosta più famosa. Da Gagarin in poi, i cosmonauti russi si fermano ancora accanto alla ruota posteriore del bus che li porta alla rampa. I maschi… urinano; alcune colleghe versano poche gocce da una fialetta, per tradizione. È un gesto semplice e spiazzante, nato dal bisogno e diventato rito: un modo per dire “si parte, ma restiamo umani”.
  • Cape Canaveral, liturgie di routine. In ambiente NASA abbondano abitudini “portaserenità”: la colazione di steak & eggs nel giorno di lancio, una mano di carte finché il comandante perde, e persino le noccioline “della fortuna” al JPL, nate con Ranger 7. Piccoli gesti che non spostano i numeri, ma allineano le teste.
  • Amuleti a gravità zero. Quasi ogni equipaggio porta a bordo un peluche: è simpatico, certo, ma soprattutto è un indicatore innocuo di microgravità — quando inizia a fluttuare, sai che sei in orbita. Una superstizione con funzione strumentale.
  • CERN, ironia ad alta energia. Nei corridoi del laboratorio circolano tazze, meme e particelle di peluche: l’autoironia come rito collettivo durante le fasi delicate dell’LHC. Non “propiziazioni”, ma talismani laici che ricordano che dietro al Bosone di Higgs ci sono persone. (Curiosità: esistono intere collezioni di plush del Modello Standard; persino Peter Higgs teneva il suo come fermacarte.)

La logica è sempre la stessa: abbassare il rumore interno. Che tu stia entrando in una Soyuz o accendendo un acceleratore, un rito minuscolo può trasformare l’ansia in gesto, e il gesto in attenzione operativa. Non cambia la fisica; cambia chi la maneggia. E, a quelle altitudini – letterali o metaforiche – è già tantissimo.

L’ultima mossa della ragione

La superstizione, vista da vicino, è spesso una regola empirica ante litteram: “ogni volta che faccio così, va meglio”. Una scorciatoia nata dall’esperienza. La domanda giusta non è crederci o no, ma perché sembra funzionare – e se funziona davvero. Qui la ragione fa la sua mossa: prende il rito, lo mette alla prova, lo tiene se aiuta il processo, lo lascia se inganna.

Newton cercava oro, e trovò leggi. Fermi mescolava carte, e scoprì il caso come alleato, non come nemico. Bohr appese un ferro di cavallo e ci ricordò che l’ironia può essere una forma di pensiero. Marie Skłodowska Curie guardò una fiala che brillava e trasformò l’incanto in misura. Feynman batteva i bonghi e convertiva l’ansia in attenzione.

Il punto è questo: i riti sono trampolini, non arrivi. Ti danno lo slancio per saltare, ma a metà aria devi affidarti alle prove. Quando la superstizione accetta questo patto – restare piccola, utile, rivedibile – smette di essere un alibi e diventa l’ultima cortesia che facciamo alla mente prima di chiedere alla realtà la sua risposta.

Epilogo

E se qualcuno mi chiedesse se credo nella fortuna, risponderei come Bohr: «No, ma mi hanno detto che funziona anche se non ci credi».

Poi, in silenzio, ripiegherei la mia vecchia maglia: i riti passano, il metodo resta.

Note e riferimenti

La chimica del benessere. Dentro i segreti del cioccolato

Quanti di noi non hanno mai assaggiato una tavoletta di cioccolata, un ovetto, una pralina o una tazza fumante di cioccolata calda? Dopo quel morso o quel sorso, quasi sempre arriva una sensazione di benessere, un piccolo conforto che sembra andare oltre il semplice gusto. Non è un’illusione: dietro c’è la chimica.

Un po’ di storia

La storia del cioccolato affonda le sue radici ben prima dell’arrivo in Europa. Le prime tracce di utilizzo del cacao risalgono a più di tremila anni fa e sono legate alle civiltà dell’America centrale, a partire dagli Olmechi, che probabilmente furono i primi a coltivare e trasformare i semi di cacao. I Maya lo considerarono un dono divino: lo impiegavano nelle cerimonie religiose, lo offrivano agli dei e lo seppellivano persino nelle tombe come viatico per l’aldilà. Per loro, come più tardi per gli Aztechi, il cacao era anche moneta sonante: i semi servivano a pagare tributi e scambi, trasformando il frutto in una ricchezza tangibile oltre che simbolica. Ma il cioccolato di allora non aveva nulla a che vedere con la tavoletta dolce e cremosa che conosciamo: si trattava di una bevanda amara, densa, speziata con peperoncino o vaniglia, chiamata “xocolatl”, riservata a nobili e guerrieri e consumata come tonico energizzante e rituale.

Fu soltanto dopo la scoperta delle Americhe che il cacao attraversò l’Atlantico. Cristoforo Colombo ne raccolse alcuni semi, ma fu Hernán Cortés a comprenderne il valore osservandone l’uso tra gli Aztechi e a introdurlo in Spagna. Qui la bevanda subì la prima trasformazione decisiva: al posto del peperoncino, i cuochi di corte iniziarono ad aggiungere zucchero, cannella e vaniglia, rendendola più gradevole al palato europeo. Il cacao divenne così una moda raffinata, diffondendosi nelle corti e nelle case aristocratiche di tutta Europa.

La svolta arrivò nel XIX secolo, quando l’ingegno tecnico permise di trasformare la bevanda in un alimento solido. Nel 1828 l’olandese Coenraad Van Houten inventò una pressa capace di separare il burro di cacao dalla polvere, ottenendo un prodotto più fine e versatile. Qualche decennio più tardi, in Inghilterra, la ditta Fry & Sons creò la prima tavoletta di cioccolato, seguita a ruota dagli svizzeri che introdussero l’aggiunta del latte in polvere e, con Rodolphe Lindt, perfezionarono il processo di conching[1] che regalò al cioccolato la sua inconfondibile cremosità. In pochi decenni il cioccolato smise di essere un lusso per pochi, legato alle “chocolate houses” frequentate da aristocratici e mercanti, per diventare un piacere diffuso e accessibile, destinato a conquistare il mondo.

Un po’ di chimica del cioccolato

Il cioccolato non nasce dolce e vellutato: per arrivare alla tavoletta che conosciamo occorre un percorso fatto di trasformazioni chimiche complesse. Tutto comincia nelle piantagioni, dove le fave di cacao vengono fermentate dentro mucillagini ricche di zuccheri. Qui lieviti e batteri innescano una catena di reazioni che porta alla formazione dei precursori degli aromi: si liberano amminoacidi e peptidi, si producono acidi organici, e perfino piccole quantità di ammine biogene che contribuiranno al profilo sensoriale finale.

Dopo la fermentazione, le fave vengono essiccate al sole. Questo passaggio riduce l’umidità, stabilizza i chicchi e permette che le reazioni ossidative continuino a sviluppare colore e gusto, attenuando l’astringenza tipica del cacao fresco.

Il momento cruciale arriva con la tostatura, in fabbrica: a temperature tra 120 e 140 °C avvengono le celebri reazioni di Maillard, quelle stesse che danno la crosta dorata al pane e l’aroma alla carne arrostita. In questo caso, gli zuccheri reagiscono con gli amminoacidi liberati in fermentazione, generando un caleidoscopio di nuove molecole aromatiche: aldeidi, chetoni, acidi, ma soprattutto pirazine (Figura 1), responsabili del tipico profumo tostato e leggermente nocciolato del cioccolato. Anche la caramellizzazione degli zuccheri e l’ossidazione dei grassi contribuiscono a creare complessità.

Figura 1. Formule di risonanza della pirazina. La freccia a doppia punta non indica un equilibrio chimico, ma rappresenta il fatto che la struttura reale non coincide con nessuna delle due formule, bensì con un unico ibrido di risonanza. Con il termine “pirazine” si indica invece l’intera famiglia dei derivati della pirazina, ottenuti introducendo sostituenti sugli atomi di carbonio dell’anello.

Il burro di cacao, che rappresenta circa metà del peso della fava, è un capitolo a parte. La sua particolarità è la capacità di cristallizzare in diverse forme, o polimorfi, con punti di fusione diversi. Solo una di queste forme, detta β(V), conferisce al cioccolato la giusta consistenza: solido a temperatura ambiente, ma capace di sciogliersi in bocca a circa 30–32 °C. Per ottenere questo equilibrio serve un trattamento preciso chiamato temperaggio, che allinea i cristalli di burro di cacao nella struttura più stabile.

Infine, durante la fase di conching, la massa di cacao viene mescolata e riscaldata a lungo. In questo modo si eliminano acidi volatili indesiderati, si riduce l’astringenza dei polifenoli e si affinano le particelle solide, donando al cioccolato la sua texture setosa e il tipico effetto “melt-in-the-mouth”.

Il risultato di questa catena di trasformazioni è un alimento che non solo stimola i sensi con centinaia di molecole aromatiche, ma conserva anche composti bioattivi originari del cacao, come i flavonoidi (antiossidanti naturali), la teobromina e la caffeina, responsabili degli effetti stimolanti e di quel sottile senso di benessere che accompagna ogni morso.

La chimica del piacere

Come introdotto alla fine del paragrafo precedente, il cioccolato ci fa stare bene grazie a molecole quali:

  • Teobromina e caffeina (Figura 2A e 2B). Entrambi sono metilxantine, alcaloidi strutturalmente simili, che agiscono come antagonisti competitivi dei recettori dell’adenosina. Normalmente, l’adenosina riduce l’attività neuronale e favorisce sonnolenza e rilassamento; bloccarne i recettori ha quindi l’effetto opposto: maggiore vigilanza, riduzione della percezione della fatica, incremento della contrattilità muscolare e della frequenza cardiaca. La caffeina ha un’azione più potente e rapida, mentre la teobromina, presente in concentrazione più elevata nel cacao, ha effetti più blandi ma di lunga durata, con una marcata azione vasodilatatrice e diuretica.
  • Feniletilammina (Figura 2C). È una ammina biogena derivata dalla decarbossilazione della fenilalanina. Ha una struttura simile alle amfetamine e agisce come modulatore neuromediatore: stimola il rilascio di dopamina e noradrenalina e inibisce la loro ricaptazione. Questo si traduce in un senso di euforia e piacere. Tuttavia, la sua emivita nell’organismo è brevissima (rapidamente degradata dalla monoaminoossidasi-B, MAO-B), per cui il suo contributo diretto è probabilmente modesto. Alcuni studi suggeriscono che gli effetti percepiti siano potenziati dalla contemporanea presenza di altre molecole del cacao, che ne modulano il metabolismo.
  • Flavonoidi (Figura 2D). Sono polifenoli, in particolare flavanoli come epicatechina e catechina, abbondanti nel cacao. Il loro effetto principale riguarda l’endotelio vascolare: stimolano l’attività della nitrossido sintasi endoteliale (eNOS), aumentando la produzione di ossido nitrico (NO). Il NO è un potente vasodilatatore che migliora il flusso sanguigno, abbassa la pressione arteriosa e favorisce l’ossigenazione cerebrale. Inoltre, i flavonoidi hanno un’azione antiossidante diretta (neutralizzazione dei radicali liberi) e indiretta (induzione di enzimi antiossidanti), proteggendo neuroni e cellule endoteliali dallo stress ossidativo. Alcuni studi clinici hanno dimostrato che il consumo regolare di cacao ricco in flavonoidi migliora la funzione endoteliale e le performance cognitive.
Figura 2. Struttura della teobromina (A), caffeina (B), feniletilammina (C) e di un flavonoide (D).

Ma non basta. Il piacere del cioccolato non è soltanto biochimico: è anche profondamente sensoriale. L’esperienza inizia già con l’udito, con quel caratteristico snap quando si spezza una tavoletta, un suono secco che ci anticipa la freschezza e la qualità del prodotto. Poi interviene il tatto: la superficie liscia sotto le dita e la resistenza al morso che cede gradualmente. In bocca il cioccolato si trasforma: il burro di cacao, unico tra i grassi per la sua particolare composizione, fonde a una temperatura vicinissima a quella corporea, regalando quella sensazione vellutata e avvolgente che sembra sciogliersi sulla lingua quasi senza sforzo.

A questo si aggiunge l’olfatto, forse il senso più importante: il calore della bocca libera lentamente centinaia di composti aromatici – dalle note tostate e leggermente amare delle pirazine, a quelle fruttate degli esteri, fino ai sentori di vaniglia o spezie che possono accompagnare certe miscele. Infine, il gusto completa l’esperienza con il suo equilibrio tra dolcezza, amaro e acidità, un gioco di contrasti che stimola le papille gustative e rende ogni morso appagante.

È proprio l’intreccio di queste percezioni – suono, tatto, vista, olfatto e gusto – che fa del cioccolato non solo un alimento, ma un piccolo rito multisensoriale, capace di trasformare un frammento di tavoletta in un momento di gratificazione e benessere.

Dalla percezione alla scienza

Negli ultimi decenni, il cioccolato è diventato anche un oggetto di ricerca scientifica. Non ci si limita a indagare perché ci fa sentire bene, ma si studiano le proprietà fisiche e chimiche che ne determinano qualità e stabilità: la cristallizzazione del burro di cacao, la viscosità del fuso, la texture al morso.

Tecniche avanzate come la calorimetria differenziale (DSC), la reologia e la risonanza magnetica a campo variabile (NMR relaxometria) permettono di esplorare come ingredienti diversi influenzino la struttura del cioccolato. Per esempio, come cambia quando si sostituisce lo zucchero con dolcificanti alternativi, o il latte con componenti vegetali per chi segue una dieta vegana o è intollerante al lattosio.

Una ricerca tutta italiana

Proprio sul tema con si è chiuso il paragrafo precedente, ho contribuito a uno studio pubblicato su European Food Research and Technology.

Con un gruppo di colleghi abbiamo confrontato cioccolati tradizionali con varianti vegane e a ridotto contenuto di zuccheri. I risultati hanno mostrato differenze misurabili:

  • i cioccolati senza latte risultano meno duri e meno adesivi, con un comportamento reologico più fluido;
  • quelli con zuccheri alternativi, invece, modificano la cristallizzazione del burro di cacao e aumentano la resistenza al flusso (yield stress);
  • le analisi NMR hanno rivelato “impronte digitali” molecolari uniche, utili a distinguere le diverse formulazioni in modo rapido e non distruttivo.

Insomma, anche quando cambiano ingredienti e ricette, la scienza ci aiuta a garantire che il risultato finale sia comunque un cioccolato capace di dare piacere al palato.

Il futuro del cioccolato

Quello che emerge è un nuovo scenario: una generazione di cioccolati che non rinunciano al gusto, ma che cercano di conciliare benessere, salute e sostenibilità. Non si tratta più soltanto di un piacere edonistico, ma di un alimento che può dialogare con le esigenze nutrizionali moderne, con la ricerca di prodotti più etici e con una maggiore consapevolezza ambientale. La scienza, in questo percorso, ha un ruolo decisivo: dalle tecniche di fermentazione e tostatura che modulano aromi e consistenze, fino alle analisi sofisticate che permettono di comprendere e ottimizzare la struttura interna del cioccolato, rendendo possibile sperimentare nuove formulazioni senza sacrificare la qualità sensoriale.

Dal laboratorio al consumatore, la chimica diventa così uno strumento di innovazione culturale oltre che tecnologica, capace di custodire la tradizione e, allo stesso tempo, di aprire la strada a un futuro in cui il cioccolato possa essere non solo buono, ma anche sano e sostenibile.

E forse proprio qui sta il segreto della cioccolata: nel suo equilibrio perfetto tra storia e modernità, tra cultura e molecole, tra arte e scienza. Un equilibrio che continua a rinnovarsi e a sorprenderci, rendendo ogni morso non soltanto un piccolo piacere quotidiano, ma anche la testimonianza di un legame profondo fra uomo, natura e conoscenza.

Riferimenti & Approfondimenti

Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Jokić, S.; Babić, J. (2019) The Chemistry behind Chocolate Production. Molecules  24: 3163. https://doi.org/10.3390/molecules24173163

BBC (2019) A brief history of chocolate

Encyclopedia Britannica Chocolate

Fredholm, B.B.; Bättig, K.; Holmén J.; Nehlig, A.; Zvartau, E.E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 51(1): 83-133. https://pubmed.ncbi.nlm.nih.gov/10049999/

Sabelli, H.; Fink, P.; Fawcett, J.; Tom, C. (1996) Sustained antidepressant effect of PEA replacement. J Neuropsychiatry Clin Neurosci 8: 168-71. https://doi.org/10.1176/jnp.8.2.168

Schroeter, H. ; Heiss, C.; Balzer, J.; Kleinbongard, P. ; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M.   (2006) (–)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans, Proc. Natl. Acad. Sci. 103 (4) 1024-1029. https://doi.org/10.1073/pnas.0510168103

Torregrossa, F.; Cinquanta, L.; Albanese, D.; Cuomo, F.; Librici, C.; Lo Meo, P.; Conte, P.  (2024) Vegan and sugar-substituted chocolates: assessing physicochemical characteristics by NMR relaxometry, rheology, and DSC. Eur Food Res Technol 250: 1219–1228. https://doi.org/10.1007/s00217-023-04457-w

Note

[1] Il termine “conching” deriva dall’inglese conch (conchiglia), per via della forma delle prime macchine impiegate. Si tratta di un processo introdotto nel 1879 da Rodolphe Lindt: la massa di cioccolato viene agitata e mescolata per ore a temperatura controllata, così da eliminare aromi indesiderati, affinare le particelle solide e rendere il cioccolato più vellutato e cremoso, con il tipico effetto “melt-in-the-mouth”.

Dimostrami che non esiste! La trappola preferita della pseudoscienza

Frequento i social network dal 2009 e, qualche anno dopo – era il 2015, ormai dieci anni fa – ho aperto il mio blog. All’inizio, da neofita, mi ritrovavo a discutere animatamente con persone di ogni tipo: rabdomanti convinti di sentire l’acqua con un bastoncino, cacciatori di fantasmi armati di telecamerine, fan dell’omeopatia pronti a difendere il niente travestito da nulla diluito e sostenitori dell’agricoltura biodinamica intenti a recitare formule magiche come i druidi di Asterix per aumentare la produttività dei campi.

Ogni volta che li mettevo davanti all’evidenza, la conversazione finiva invariabilmente con la stessa frase a effetto:
“Ah sì? Allora dimostrami [provami] che [argomento a piacere] non esiste!”

Oppure, in contesti diversi ma con identica logica capovolta: “Allora dimostrami [provami] che Dio non esiste”.

Chissà perché, ogni volta che ascolto queste argomentazioni, resto colpito dall’involuzione culturale che si sta diffondendo sempre di più. Sono frasi che potevano avere un senso quando ero in terza elementare, quando ci si appellava alla maestra per dirimere questioni vitali come: “Non sono stato io a mettere le mani nella marmellata, è stato lui!”.

Ma in età adulta mi aspetto qualcosa di diverso: argomentazioni più mature, meno retoriche e più legate alla razionalità. E invece questi trucchetti – vecchi come il mondo – continuano a funzionare con chi, pur avendo studiato, non si è abituato al pensiero critico e al metodo scientifico. Il punto è che la scienza, nel bene e nel male, non funziona così.

Provare: ma in che senso?

Ed è proprio qui che nasce la confusione: cosa significa davvero “provare”? Nel linguaggio quotidiano questa parola viene usata in mille modi diversi: provare un vestito, provare a fare una torta, provare un sentimento, provare a convincere qualcuno. E, lasciatemela passare, “provare un esame” – espressione tipica dei miei studenti, che poi però vengono puntualmente bocciati.

Ma in scienza non basta “fare un tentativo” o “avere un’impressione”: qui “provare” significa sottoporre un’idea a un controllo severo, verificare se regge quando viene messa di fronte ai dati.

La Treccani ci ricorda che “provare” significa sia “fare un tentativo” sia “dimostrare con prove la verità di un’affermazione”. Nel linguaggio scientifico, però, prevale il secondo significato: mettere alla prova un’ipotesi. In altre parole, valutare se un’ipotesi spiega davvero i fenomeni osservati e, soprattutto, se permette di fare previsioni verificabili.

Fare scienza significa:

  • osservare un fenomeno;
  • formulare un’ipotesi che lo spieghi e consenta di fare previsioni;
  • progettare esperimenti che possano confermare o smentire l’ipotesi;
  • accettare senza sconti il verdetto dei dati.

Se i dati non la confermano, l’ipotesi è falsificata. Punto. In altre parole, non è più utile: non spiega i fenomeni, non regge alla verifica, è semplicemente errata.

L’onere della prova

Rileggiamo l’elenco del paragrafo precedente, partendo dal primo punto:

  • osservare un fenomeno.

Qui sta il punto cruciale: se non posso osservare un fenomeno, tutto il resto non ha alcun senso. Come potrei formulare un’ipotesi su qualcosa che non vedo? E se non ho un’ipotesi, come potrei progettare esperimenti? Senza esperimenti non ottengo dati e, senza dati, non posso né confermare né confutare nulla.

In definitiva, se qualcosa non è osservabile, non posso applicare alcun metodo per “provarne” l’inesistenza. La scienza non funziona così: non dimostra l’inesistenza, ma mette alla prova ciò che si afferma di aver osservato. L’onere della prova, quindi, ricade sempre su chi fa l’affermazione, non su chi la mette in dubbio.

Mettiamola in un altro modo: se ipotizzo che una sostanza chimica acceleri la germinazione dei semi, posso progettare un esperimento. Se i dati non mostrano differenze, l’ipotesi cade. Ma se qualcuno sostiene che “una misteriosa energia invisibile accelera la germinazione solo in certe notti particolari”, senza dire quando, dove e come… beh, quella non è scienza: è una storia che non può essere né verificata né smentita, in altre parole non può essere falsificata.

Ecco perché fantasmi, energie occulte, biodinamica, draghi invisibili o divinità onnipresenti non possono essere oggetto di indagine scientifica: semplicemente non sono ipotesi falsificabili.

Un insegnamento dalla storia

Certo, gli amanti delle scienze occulte (che se sono occulte non sono scienze, ma va bene: usiamo pure l’ossimoro tanto caro ai fan di queste cose) potranno sempre dire: “Ma scusa, come fai a dire che qualcosa non funziona o non esiste se non lo provi? Non è compito dello scienziato verificare, sperimentare e, casomai, proporre o rigettare?”

Sì, certo. Ma solo se – ripeto – il fenomeno è osservabile o se esiste un impianto logico-matematico che consenta di formulare ipotesi verificabili con una progettazione sperimentale precisa.

Facciamo alcuni esempi. L’etere luminifero, ipotizzato come mezzo di propagazione della luce, è stato messo alla prova con esperimenti celebri come quello di Michelson e Morley (1887). I dati hanno detto chiaramente che non c’era nessuna evidenza a suo favore. Lo stesso destino è toccato al flogisto, sostanza immaginaria che avrebbe dovuto spiegare la combustione, spazzata via dalla chimica di Lavoisier.

E cosa dire della meccanica classica – sì, proprio quella sviluppata da Isaac Newton – che ha dominato per oltre due secoli e ancora oggi descrive benissimo il mondo macroscopico? All’inizio del Novecento, però, si è mostrata inadeguata a spiegare il comportamento delle particelle microscopiche e i fenomeni a velocità prossime a quella della luce. Da lì sono nate la relatività di Einstein e la meccanica quantistica, due teorie che hanno ampliato il quadro e che, pur con approcci diversi, permettono di fare previsioni in ambiti dove Newton non basta. Eppure, i razzi continuano a essere lanciati nello spazio grazie ai calcoli newtoniani: semplicemente, la sua fisica funziona finché si rimane dentro i suoi limiti di validità.

In tutti questi casi, la scienza non ha “provato l’inesistenza” di etere, flogisto o della validità universale della meccanica classica: ha mostrato che i dati non erano compatibili con quelle ipotesi, oppure che servivano modelli più ampi e predittivi per descrivere meglio la realtà.

La differenza tra scienza e pseudoscienza

Alla luce di tutto quanto scritto finora, si può ribadire con chiarezza che la scienza non fornisce verità eterne: propone modelli coerenti con le prove disponibili, validi finché i dati li confermano. Basta anche un solo dato contrario per metterli in crisi. In quel caso, il modello viene abbandonato oppure ampliato, formulando nuove ipotesi che ne estendano i limiti di validità.

La pseudoscienza, invece, gioca sporco: pretende di invertire l’onere della prova e chiede di dimostrare l’inesistenza dei suoi fantasmi. Non è un caso se, dopo più di due secoli, l’omeopatia è rimasta immobile, sempre uguale a se stessa, senza mai evolversi. O se l’agricoltura biodinamica – nonostante il supporto di figure accademiche che hanno scelto di accreditare l’esoterico come se fosse scienza – non sia mai riuscita a produrre una validazione sperimentale credibile. E l’elenco potrebbe continuare.

Come ammoniva Carl Sagan: affermazioni straordinarie richiedono prove straordinarie. Chi non porta prove, porta solo storie… e spesso nemmeno originali.

Conclusione

No, non si può provare l’inesistenza di qualcosa in senso assoluto. Quello che la scienza può fare, e che fa ogni giorno, è mostrare l’assenza di evidenze e smontare affermazioni che non reggono alla prova dei dati.

Per questo non ha senso chiedere di dimostrare che i fantasmi non infestano le vecchie case, che i preparati biodinamici non funzionano o che Dio non esiste. L’onere della prova spetta sempre a chi afferma, non a chi dubita.

La scienza non è un gioco di prestigio in cui si fanno sparire gli spettri: è un metodo per distinguere ciò che ha basi reali da ciò che resta soltanto una storia.

Alochimica o Chelichimica? La scienza quotidiana dietro gli aloni delle magliette

Cari lettori vicini e lontani,

vi siete mai chiesti perché si formano gli aloni gialli sotto le ascelle delle maglie chiare? È tutta questione di chimica.

Oltre alla normale igiene personale – uso di acqua e sapone – facciamo molto ricorso a quelli che chiamiamo deodoranti ascellari. In realtà, molti di essi sono deodoranti nel senso che contengono profumi che servono a coprire i cattivi odori che produciamo dopo una giornata intensa. Tuttavia, la maggior parte dei prodotti in commercio contiene anche sostanze chimiche in grado di ridurre la produzione di sudore. In altre parole, sono veri e propri antitraspiranti.

I miei amici biologi e medici mi perdonino se uso un linguaggio un po’ semplificato: il mio obiettivo qui non è fare un trattato, ma spiegare in modo chiaro ciò che accade sotto le nostre ascelle.

Il sudore: un condizionatore naturale

Innanzitutto. diciamo che il sudore ha un ruolo fisiologico molto importante. Per capire meglio, proviamo con un esempio semplice: avete mai bagnato le mani con alcol etilico in estate? Ricorderete la sensazione di fresco che si avverte subito dopo. Perché succede?

L’evaporazione di un liquido – cioè, il passaggio dalla fase liquida a quella gassosa – è un processo che richiede energia. In termini fisici, il sistema assorbe calore dall’ambiente circostante, ovvero la pelle su cui abbiamo messo l’alcol etilico: ecco perché, dopo applicazione di alcol, abbiamo una sensazione di freschezza.

Il sudore funziona allo stesso modo. È composto principalmente da acqua, che evaporando sulla nostra pelle porta via calore e ci aiuta a regolare la temperatura corporea. A questo si aggiungono sali (soprattutto cloruro di sodio), piccole quantità di proteine, lipidi e altre molecole prodotte dal metabolismo.

Da solo, il sudore non ha un odore particolarmente sgradevole. Quell’odore tipico che associamo alle “ascelle sudate” nasce in realtà dall’azione dei batteri che vivono normalmente sulla nostra pelle: essi degradano alcune delle sostanze organiche contenute nel sudore, producendo composti maleodoranti.

Il ruolo dei deodoranti e degli antitraspiranti

Ed eccoci ai deodoranti e agli antitraspiranti. Molti prodotti contengono sali di alluminio (come il cloruro o il cloridrato di alluminio), che riducono la traspirazione formando una sorta di tappo temporaneo nei dotti sudoripari. In questo modo restiamo “asciutti” più a lungo, ma si innescano anche conseguenze meno gradite per i nostri vestiti. Gli aloni gialli, infatti, non derivano semplicemente dal sudore, bensì da una vera e propria orchestra di reazioni chimiche che coinvolgono diversi attori: i sali di alluminio presenti negli antitraspiranti interagiscono con le proteine e i metaboliti azotati del sudore, generando complessi stabili dalle sfumature giallo-brune che si fissano nelle fibre del cotone. Una parte dell’ingiallimento ricorda, in scala ridotta, le reazioni di Maillard, le stesse che fanno dorare pane e biscotti: qui entrano in gioco gli amminoacidi del sudore e i carboidrati della cellulosa del tessuto, catalizzati dal calore corporeo e dalla presenza di metalli. Anche i lipidi e gli acidi grassi secreti dalle ghiandole apocrine danno il loro contributo, andando incontro a processi di ossidazione che producono composti colorati, simili a quelli che rendono irrancidito un olio da cucina. Infine, i residui organici dei deodoranti stessi – fragranze, tensioattivi, polimeri – possono degradarsi e ossidarsi, consolidando l’alone. È, in definitiva, una piccola “reazione chimica da guardaroba”, in cui si intrecciano almeno quattro sistemi: complessi metallo-proteici, reazioni zuccheri-proteine, ossidazioni lipidiche e trasformazioni dei composti organici residui.

Dall’alone al buco: la lenta agonia del cotone

C’è poi un’altra conseguenza meno evidente ma altrettanto fastidiosa: con il tempo le fibre di cellulosa del tessuto, sottoposte a sudore e residui di deodorante, tendono a irrigidirsi e a diventare fragili. Anche qui la chimica ha un ruolo chiave. I sali di alluminio si comportano come veri e propri agenti reticolanti: creano legami incrociati tra le catene della cellulosa, irrigidendo la trama del tessuto. A questo si aggiunge l’effetto dei prodotti di ossidazione del sudore e dei lipidi, che modificano la struttura superficiale delle fibre, rendendole meno elastiche e più inclini a rompersi sotto stress meccanico. È per questo che, oltre agli aloni gialli, le magliette “storiche” finiscono spesso per bucarsi proprio nella zona delle ascelle: le fibre non cedono più in modo elastico, ma si spezzano come se fossero diventate fragili.

Alochimica o chelichimica?

Traendo spunto dall’intervista impossibile a Herr Goethe, potremmo battezzare questo intreccio di reazioni quotidiane con un nome nuovo: Alochimica, la chimica degli aloni, che ci accompagna tanto nel cielo quanto nell’armadio. Il termine deriva dal greco ἅλως, “alone luminoso”, riferito agli astri. In realtà, a voler essere più precisi, dovremmo guardare a κηλίς, che significa “macchia”: da qui il possibile neologismo Chelichimica. In italiano, però, Alochimica suona più evocativo e musicale, mentre Chelichimica è forse più corretto dal punto di vista etimologico sebbene meno immediato. A voi la scelta: quale vi piace di più?

Come prevenire gli aloni (o almeno ridurli)

Alcuni semplici accorgimenti possono limitare il problema:

Conclusione

Dietro un alone giallo c’è molta più chimica di quanto immaginiamo. È la stessa chimica che ci permette di sudare e sopravvivere al caldo, che regola l’equilibrio del nostro corpo e ci difende dallo stress termico. Ma è anche quella che, una volta trasferita sui tessuti insieme ai deodoranti, avvia una catena di reazioni che finisce per lasciare un segno visibile e, a volte, indelebile. Così una semplice maglietta bianca diventa una piccola lavagna su cui si scrivono storie di evaporazione, ossidazione, complessi metallici e fibre irrigidite.

Ecco allora che possiamo parlare, con un pizzico di ironia, di una vera e propria chimica degli aloni domestica: qualcuno la chiamerebbe Alochimica, dal greco ἅλως, “alone luminoso”; altri preferirebbero Chelichimica, da κηλίς, “macchia”. Due nomi diversi per lo stesso intreccio di reazioni quotidiane, che non si manifesta solo nel cielo quando guardiamo il sole o la luna, ma anche nel nostro armadio, tra i vestiti di tutti i giorni. Una scienza silenziosa che ci accompagna ovunque e che, a saperla leggere, trasforma persino un alone giallo sotto l’ascella in un piccolo racconto di meraviglia chimica.

Le interviste impossibili: incontriamo Benjamin Franklin

Ed eccomi a volare con la fantasia nel nuovo mondo. Sono verso la fine del Settecento, e mi ritrovo in un ambiente completamente diverso dal laboratorio di Faraday. Qui tutto profuma di carta, inchiostro e… ozono. È il tipico studio settecentesco con scaffali pieni di libri, strumenti per esperimenti elettrici, penne d’oca e un calamaio ancora macchiato di lampi. Di fronte a me, un uomo dallo sguardo vivace, i capelli incorniciati da una parrucca bianca, gli occhi pieni di una curiosità che sembra non aver conosciuto stanchezza. È Benjamin Franklin.

– Dr. Franklin, grazie per avermi accolto. Come sa, sto facendo un reportage di interviste impossibili. Ho già incontrato i Professori Boyle, Lavoisier e Faraday. Immagino che lei abbia un’idea chiara del loro ruolo nello sviluppo della chimica.
– Eccome se ce l’ho! Boyle ha fatto ordine nel caos, Lavoisier ha messo la logica sopra i miti, Faraday ha liberato l’elettricità dalle catene del mistero. Io, modestamente, sono stato il più impaziente: mentre loro costruivano i palazzi della chimica, io mi divertivo a bussare alle porte della natura con un aquilone in mano. Non sarà accademico, ma ha funzionato.

– L’aquilone… ma come le è venuto in mente?
– Guardi, io non avevo un laboratorio attrezzato come i vostri scienziati moderni. Ma avevo occhi, mani e fantasia. L’aquilone era un gioco da bambini, e io lo usai come un filo teso fra cielo e terra: bastò un po’ di coraggio per trasformarlo in esperimento. In fondo la scienza è questo: prendere ciò che sembra un passatempo e scoprire che nasconde una legge dell’universo.

– Sa che oggi esperimenti del genere sarebbero liquidati come estremamente pericolosi e verosimilmente non verrebbero autorizzati?
– Ne sono certo! Se avessi chiesto un permesso ufficiale per far volare un aquilone sotto un temporale, mi avrebbero rinchiuso prima ancora di spiegare il progetto. Ma vede, la conoscenza non nasce dall’attesa di un timbro: nasce dall’osservazione e dal coraggio. Senza un po’ di rischio, non avremmo mai imparato che il fulmine e la scintilla erano fratelli.

– Cosa pensa, allora, delle normative attuali che impongono l’uso di strumenti sicuri, sia per l’ambiente che per gli umani per realizzare esperimenti?
– Penso che siano un segno di maturità. Io ho corso rischi che oggi giudico folli: la curiosità mi salvò, ma avrei potuto perderci la vita. E nessuna scoperta vale quanto una vita umana. Indiana Jones può far sorridere sullo schermo, ma nella realtà un uomo che gioca costantemente con la morte non è un eroe, è uno sciocco. La vera grandezza della scienza sta nel proteggere e migliorare la vita, non nel sacrificarla per un colpo di fortuna.

– Il parafulmine è stata una delle sue invenzioni più utili. È curioso che anche qui ci fu chi si oppose, accusandola quasi di voler interferire con la volontà divina.
– Già! Alcuni predicatori sostenevano che fermare il fulmine significasse ribellarsi a Dio. Io replicai che Dio ci aveva dato l’intelligenza proprio per proteggerci. Non vedo differenza fra un tetto che ripara dalla pioggia e un parafulmine che ripara dal fuoco celeste.

– Lei ha fatto chiarezza, molta chiarezza, nel “decodificare” i fulmini. Alla fine, lei ha capito che si trattava di fenomeni naturali legati all’elettricità. In qualche modo ha aperto un varco nella comprensione di fenomeni che venivano associati all’ira divina: una volta Zeus, poi il Dio dei cristiani.
– Esatto. E non mi pare che Dio si sia offeso perché abbiamo capito come funziona un fulmine. Se la pioggia non è più vista come il pianto degli dèi ma come il ciclo dell’acqua, nessuno si scandalizza. Io credo che l’Onnipotente ci abbia dato la ragione proprio per usarla: ignorare i fenomeni naturali in nome della paura non è fede, è superstizione. E una società che resta prigioniera della superstizione non cresce, resta in ginocchio davanti al tuono.

– Ma le sue scoperte hanno fatto comprendere che la religione interviene solo quando non riusciamo a spiegarci qualcosa. Noi abbiamo bisogno di comprendere e, se non ci riusciamo, invochiamo un dio…
– È vero: gli uomini hanno sempre chiamato “divino” ciò che non sapevano spiegare. Ogni tuono era Zeus, ogni fulmine l’ira del Cielo. Il guaio è che, a forza di scoprire, gli dèi si sono ritrovati con meno lavoro: ecco perché dico che la scienza, in fondo, li mette in pensione anticipata. Ma questo non toglie dignità alla fede: anzi, la libera dalla superstizione. Un Dio ridotto a tappabuchi della nostra ignoranza è un Dio fragile; un Dio che ci ha dato intelletto e curiosità, invece, si aspetta che li usiamo. Perché la vera bestemmia non è capire il fulmine: è restare in ginocchio davanti al tuono senza mai volerlo capire.

– La capisco, Dr. Franklin. Io però sono ateo, e non riesco a vedere Dio neppure come ipotesi di lavoro. Mi tornano in mente le parole di Margherita Hack: “Dio è un’ipotesi non necessaria”.
– Non mi scandalizza affatto. Io vivevo in un tempo in cui la religione era il linguaggio comune: negarla avrebbe significato isolarsi dal dialogo civile. Ma vede, il bello della scienza è proprio questo: non impone a nessuno la fede o l’ateismo, chiede solo la voglia di capire. Che uno veda in quell’ordine la mano di Dio, o che lo chiami semplicemente Natura, poco importa: la verità resta verità, e il fulmine non obbedisce né al prete né all’ateo.

– Dr. Franklin, lei è passato alla storia come un individuo molto versatile: scienziato, inventore, diplomatico, politico, editore. Chi è lei, in realtà?
– Sono stato tutte queste cose e, al tempo stesso, nessuna soltanto. Non ho mai sopportato le etichette: erano i problemi concreti a chiamarmi, e io rispondevo come potevo. Se serviva un esperimento, facevo lo scienziato; se serviva un accordo, il diplomatico; se serviva chiarezza, scrivevo da editore. Ironia della sorte, mi sentivo più un apprendista della Natura che un maestro, un uomo con troppi mestieri e troppe poche tasche per contenerli. Se dovessi scegliere una definizione, direi che sono stato questo: un curioso ostinato, convinto che la vera identità dell’uomo non stia nel titolo che porta, ma nella scintilla che lo spinge a capire e migliorare il mondo.

– Lei dice giustamente: “la vera identità dell’uomo non è nel titolo che porta, ma nella scintilla che lo spinge a capire e migliorare il mondo”. Allora le rivolgo la medesima domanda che ho fatto al Professor Faraday: sa che una frase del genere nella mia epoca potrebbe essere usata dai complottisti di ogni risma? Questi interpreterebbero la sua dichiarazione come uno sdoganamento dell’ignoranza.
– E allora che lo facciano pure: non sarà certo il loro gracchiare a spegnere il fulmine. Ma sia chiaro: la scintilla che muove l’uomo non è la superbia di credere alle proprie fantasie, è l’umiltà di inchinarsi davanti ai fatti. I complottisti, invece, si fermano al lampo: gridano di aver visto la luce, ma non scaldano nessuno. Non sono ribelli coraggiosi: sono pigri travestiti da profeti, che scambiano il sospetto per pensiero critico e l’ignoranza per libertà. La curiosità autentica smonta i dogmi, anche quelli comodi: chi rifiuta prove e ragione non è un cercatore di verità, è un ciarlatano che preferisce restare al buio.

– Lei non fu solo scienziato. Fu anche diplomatico a Parigi e padre fondatore degli Stati Uniti. Crede che la scienza debba sempre dialogare con la politica?
La politica senza scienza è cieca, la scienza senza politica è muta. Ma attenzione: quando un governante chiude gli occhi davanti ai fatti, non è soltanto cieco, è pericoloso. Governa con l’illusione, e l’illusione uccide più del ferro e del fuoco. Un politico che ignora la scienza è come un capitano che butta la bussola in mare e pretende di guidare la nave “a sentimento”: può anche ingannare i passeggeri per un po’, ma alla fine li porterà sugli scogli. La scienza, se resta chiusa nei laboratori, non salva nessuno; ma la politica che la calpesta condanna un popolo all’ignoranza, alla malattia e alla fame. La verità non si vota e non si compra: un virus non chiede il permesso a un ministro, il clima non attende il consenso di un parlamento. Chi governa contro la scienza governa contro la vita stessa, e questo non è solo un errore politico: è un tradimento morale.

– Negli ultimi anni, anche negli Stati Uniti che lei ha contribuito a fondare, ci sono state politiche definite “antiscientifiche”. L’amministrazione Trump, in particolare, è stata accusata di negare l’evidenza del cambiamento climatico e di ostacolare la ricerca ambientale. Come vede tutto questo?
– Con sgomento. Vede, un politico che rinnega la scienza non è solo ignorante, è colpevole. Trump tratta i fatti come se fossero merce da mercato: accettabili quando tornano comodi, rifiutati quando disturbano i suoi affari. Questo non è governo, è ciarlataneria. Negare il cambiamento climatico non ferma lo scioglimento dei ghiacci, come negare una malattia non guarisce un malato. La politica che finge di non vedere i dati condanna il proprio popolo a pagare il prezzo della menzogna. Io dico che un leader che calpesta la scienza non tradisce solo i suoi contemporanei: tradisce anche le generazioni future, perché lascia in eredità un mondo più fragile, più povero e più ingiusto.

– Quindi la negazione del cambiamento climatico le sembra un grave errore politico?
– Non è un errore: è un atto di irresponsabilità criminale. Perché negare l’evidenza non rallenta il riscaldamento globale, ma lo accelera. Un governante che finge che il problema non esista non solo inganna il suo popolo: lo espone consapevolmente a catastrofi che si potevano prevenire. E questo non è politica, è complicità con il disastro.

– Oggi un tema che divide molto l’opinione pubblica è quello dei vaccini. Alcuni li vedono come una conquista di civiltà, altri come una minaccia alla libertà personale. Lei da che parte starebbe?
– Dalla parte della ragione. La libertà individuale non è mai licenza di danneggiare gli altri. Io stesso mi sono battuto per la libertà politica e religiosa, ma non avrei mai confuso la libertà con il diritto di mettere in pericolo la comunità. Un vaccino protegge non solo chi lo riceve, ma chi gli sta accanto. Rifiutarlo senza motivo è come gettare scintille in una polveriera e chiamarlo “atto di coraggio”: non è coraggio, è incoscienza.

– E come si combatte la disinformazione che avvelena il dibattito pubblico?
– Con la stessa arma che usavo io: rendendo la verità semplice e utile. Io pubblicavo almanacchi pieni di proverbi e osservazioni quotidiane, perché sapevo che la gente non leggeva i trattati, ma capiva benissimo un consiglio chiaro. Oggi dovreste fare lo stesso: spiegare la scienza in modo diretto, farne vedere l’utilità concreta. Una bugia urlata può sedurre, ma una verità spiegata bene è inespugnabile. Chi continua a diffondere fake news non è un ribelle della verità: è un avvelenatore del pozzo comune.

– Una curiosità: se fosse vivo oggi, su cosa avrebbe lavorato?
– Avrei un laboratorio pieno di pannelli solari e aquiloni per misurare l’inquinamento atmosferico! Mi divertirei a trasformare il vento e il sole in energia pulita: perché solo un folle preferirebbe restare schiavo del carbone quando il cielo offre elettricità gratis.

– Sì, ma oggi oltre al sole e al vento abbiamo a disposizione anche il nucleare
– E allora usatelo con intelligenza. Non c’è nulla di “immorale” nell’atomo, immorale è sprecarne il potere o trasformarlo in arma. Io non ho mai avuto paura dell’elettricità: l’ho studiata, imbrigliata, resa utile. Con il nucleare dovreste fare lo stesso. Chi rifiuta l’atomo per pregiudizio è miope quanto chi lo idolatra come panacea. Se il vostro obiettivo è liberare il mondo dalla dipendenza dai combustibili fossili, non potete permettervi dogmi: ogni fonte sicura e sostenibile è un alleato. E ricordatevi che l’ignoranza uccide più di qualsiasi radiazione.

– Prima di salutarla, Dr. Franklin, una battuta finale per chi oggi lotta contro politiche antiscientifiche, magari con la sua ironia pungente.
Dite ai vostri contemporanei che gli ignoranti sono come aquiloni senza filo: volano un attimo, poi si perdono. Ma noi dobbiamo essere parafulmini: attrarre la verità e scaricarla sulla paura. Quanto a chi rifiuta i fatti, lasciatelo gridare al vento: cadrà da solo. Voi intanto costruite scuole, vaccini, energie pulite. Perché il futuro non lo fanno i ciarlatani: lo fanno i coraggiosi che hanno scelto di restare dalla parte della ragione.

E con un sorriso complice, Franklin solleva la penna e lascia un tratto di fulmine tra le righe: non un addio, ma un invito a custodire la scintilla della scienza, sempre.

E mentre il lampo si spegne sulla carta, capisco che la conoscenza non vive soltanto nei laboratori e negli strumenti, ma anche nei libri, nei versi, negli sguardi di chi cerca la verità nel cuore dell’uomo e nella natura. È lì che mi attende il mio prossimo viaggio…

Note Bibliografiche

B. Franklin (2022). Autobiography of Benjamin Franklin. Philadelphia

B. Franklin (1751). Experiments and Observations on Electricity. London: E. Cave

B. Franklin (1751). Observations Concerning the Increase of Mankind, Peopling of Countries, etc. Philadelphia

B.  Franklin (2023). Poor Richard’s Almanack. Philadelphia

 

 

Biodinamica e scienza: smontare i miti non è mai facile

Negli ultimi anni la biodinamica è tornata con forza nel dibattito pubblico, presentata come un’agricoltura “più naturale”, capace di riconnettere l’uomo con la terra attraverso antichi rituali e influssi cosmici. Ma quando si scava nei lavori scientifici che dovrebbero darle credibilità, il castello crolla.

In un precedente articolo, Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci, avevo già mostrato come l’apparente incontro tra ricerca e pratiche steineriane sia in realtà un dialogo ingannevole. Oggi raccolgo e sintetizzo delle analisi critiche di studi pubblicati su riviste scientifiche, spesso citati a sostegno della biodinamica. Il risultato è un quadro chiaro: tanta tecnologia, poca scienza, e un mare di suggestioni travestite da rigore.

Il mito del Preparato 500

Al centro della biodinamica c’è il Preparato 500, letame fermentato in corna di vacca, elevato a elisir magico. Uno studio del 2013 su Journal of Microbiology and Biotechnology ha tentato di dargli dignità scientifica. Il risultato? Una sequenza di prove deboli: assenza di controlli, attività biologiche senza legame con benefici concreti, repliche non documentate.

Gli stessi autori, del resto, offrono materiale sufficiente per smontare ogni pretesa di scientificità. Non hanno inserito veri controlli: “Different commercial samples of BD Preparation 500… were studied” (p. 645). In pratica, hanno confrontato solo diversi lotti dello stesso preparato, senza mai verificare se i risultati differissero da un letame ordinario.

Le attività enzimatiche riportate sono descritte come promettenti, ma senza legame con effetti pratici: “Preparation 500 displays high specific levels of activity… A high alkaline phosphatase activity indicates its potential” (p. 648). Potenziale, non prova.

Una volta estratto dalle corna, il Preparato viene applicato in campo dopo diluizioni omeopatiche: 200 grammi in decine di litri d’acqua per ettaro. Gli autori non si limitano a descriverne le caratteristiche microbiologiche e chimiche, ma cercano anche di giustificare questa pratica con un ragionamento per analogia: “…they will already be delivered at a 10¹⁰ M concentration… well within their expected windows of biological activity (p. 649). Ma si tratta di pura speculazione: nessuna prova sperimentale mostra che quelle diluizioni abbiano davvero un effetto.

Il linguaggio stesso tradisce l’incertezza. Ovunque compaiono formule ipotetiche: “could possibly contribute” (p. 648), “may account for the biostimulations” (p. 649), “it cannot be excluded that it might act” (p. 650). Non dimostrazioni, ma tentativi di rivestire di retorica ciò che rimane un rituale agronomico.

Qui la scienza si ferma e subentra il wishful thinking. Non c’è alcun dato che dimostri l’efficacia di quelle diluizioni: è una speculazione posticcia, un tentativo di dare un’aura scientifica a un rituale. In sostanza, la giustificazione proposta non è ricerca: è retorica. Nessun esperimento serio ha mai mostrato che spruzzare tracce infinitesimali di letame fermentato possa produrre effetti concreti su un sistema agricolo complesso.

Corna, letame e spettrometri: la scienza usata per dare lustro al mito

Nel paragrafo precedente è stato introdotto il Preparato 500, gioia degli attivisti della biodinamica. Ebbene, esso è stato analizzato mediante risonanza magnetica nucleare (NMR) e gas-cromatografia con pirolisi (pyrolysis-TMAH-GC-MS) in un lavoro pubblicato su Environmental Science and Pollution Research nel 2012. Questo studio si presenta come la “prima caratterizzazione molecolare” del Preparato 500: una vetrina tecnologica impressionante, che tuttavia poggia su fondamenta fragilissime. Una sfilata di strumenti sofisticati al servizio non della conoscenza, ma della legittimazione di un mito. Vediamo perché.

Gli autori hanno analizzato tre lotti di Preparato 500 (“three samples of horn manure… were collected from different European farms”, p. 2558). Tutto qui. Nessun confronto con compost ordinario o letame tradizionale. Senza un vero controllo, attribuire “peculiarità biodinamiche” diventa arbitrario: come distinguere l’effetto del corno interrato da quello della normale fermentazione del letame?

Le analisi rivelano componenti come lignina, carboidrati, lipidi vegetali e marcatori microbici. Gli stessi autori ammettono che “the chemical composition of HM was consistent with that of natural organic materials” (p. 2564). In altre parole, il Preparato 500 non mostra alcuna unicità sorprendente: è esattamente ciò che ci si aspetta da una biomassa organica parzialmente decomposta.

Il paper suggerisce che la presenza di frazioni labili e lignina parzialmente decomposta possa conferire al Preparato 500 una particolare bioattività: “HM was characterized by a relatively high content of labile compounds that might account for its claimed biostimulant properties” (p. 2565). Ma questa è pura congettura: nessun dato in campo supporta l’idea che tali caratteristiche abbiano effetti agronomici specifici.

Le conclusioni parlano di “a higher bioactivity with respect to mature composts” (p. 2565). Ma il solo risultato tangibile è che il Preparato 500 risulta meno stabilizzato e più ricco di composti facilmente degradabili rispetto a un compost maturo. Un’osservazione banale, trasformata in presunta “prova” di efficacia biodinamica.

In altre parole, il lavoro appena analizzato non dimostra alcuna unicità del Preparato 500. Mostra soltanto che un letame lasciato fermentare in condizioni anossiche dentro un corno ha una composizione chimica simile a quella di altri ammendanti poco maturi. L’uso di strumenti spettroscopici di alto livello serve più a conferire prestigio alla pratica biodinamica che a produrre nuova conoscenza. È un’operazione di maquillage scientifico: dati corretti, ma interpretazione piegata all’ideologia.

Strumenti sofisticati, interpretazioni esoteriche

In uno studio apparso su Chemical and Biological Technologies in Agriculture, gli autori hanno applicato tecniche avanzatissime – MRI (risonanza magnetica per immagini) per la struttura interna delle bacche e HR-MAS NMR per il metaboloma – a uve Fiano e Pallagrello trattate con il celebre Preparato 500. Dal punto di vista tecnico nulla da eccepire: “MRI and HR-MAS NMR provided detailed information on berry structure and metabolite profiles” (p. 3).

Il problema nasce subito dopo. Gli autori collegano direttamente i risultati“a significant decrease in sugars and an increase in total phenolics and antioxidant activity in biodynamically treated grapes” (p. 5) – all’applicazione del Preparato 500. Ma senza un adeguato controllo placebo questo salto logico è insostenibile: come distinguere l’effetto della “pozione biodinamica” da quello di fattori molto più concreti e plausibili come microclima, esposizione solare, variabilità del suolo o semplici disomogeneità nell’irrigazione?

Gli stessi autori ammettono che la variabilità ambientale è enorme: “soil heterogeneity and microclimatic differences strongly influenced metabolite composition” (p. 6). Eppure, attribuiscono al trattamento biodinamico differenze che potrebbero essere spiegate benissimo da questi fattori.

Ecco il nodo: la biodinamica viene trattata come variabile determinante quando, in realtà, manca la dimostrazione del nesso causale. Si confonde la correlazione con la causa, sostituendo la fatica della verifica sperimentale con il fascino della narrazione esoterica. In altre parole, strumenti scientifici tra i più potenti oggi disponibili vengono usati correttamente per produrre dati robusti, ma poi piegati a interpretazioni che appartengono più al mito che alla scienza. È come se un telescopio di ultima generazione fosse puntato verso il cielo non per studiare le galassie, ma per cercare gli influssi astrali di cui parlano gli oroscopi.

Quando i numeri non tornano

Tra i lavori più citati a sostegno della biodinamica c’è l’articolo di Zaller e Köpke pubblicato su Biology and Fertility of Soils nel 2004, che confronta letame compostato tradizionale e letame compostato con “preparati” biodinamici in un esperimento pluriennale. Sulla carta, il disegno sperimentale sembra solido: rotazioni colturali, repliche, parametri chimici e biologici del suolo.

Ma basta entrare nei dettagli per accorgersi delle crepe. Innanzitutto, gli autori parlano di quattro trattamenti, ma l’unico vero confronto rilevante – biodinamico vs tradizionale – è reso ambiguo dal fatto che manca un controllo cruciale: il letame senza alcuna applicazione (no FYM) è incluso, ma non permette di distinguere se le differenze dipendano dalle preparazioni biodinamiche o, banalmente, dalla sostanza organica. In altre parole, non è possibile stabilire se l’“effetto” sia biodinamico o semplicemente concimante.

In secondo luogo, molte delle differenze riportate sono minime, al limite della significatività statistica, e oscillano addirittura in direzioni opposte tra i diversi strati di suolo (es. la respirazione microbica più bassa con tutti i preparati a 0–10 cm, ma più alta col solo Achillea a 10–20 cm: Fig. 1). Questo non è un segnale di coerenza biologica, ma di rumore sperimentale.

E poi ci sono le rese: tabella 3 mostra chiaramente che le differenze tra preparati e non-preparati non sono mai significative. In pratica, dopo nove anni di sperimentazione, la produttività dei sistemi resta identica, indipendentemente dall’uso o meno dei preparati.

Il colpo finale arriva dall’interpretazione: gli autori ammettono che “how those very low-dose preparations can affect soil processes is still not clear” (p. 228), ma subito dopo ipotizzano meccanismi fumosi come “microbial efficiency” o “stress reduction” senza fornire prove solide. Non sorprende che l’articolo sia diventato un riferimento per i sostenitori della biodinamica: fornisce grafici, tabelle e un lessico tecnico, ma dietro la facciata la sostanza è debole.

In sintesi, questo lavoro non dimostra affatto l’efficacia dei preparati biodinamici: mostra soltanto che il letame fa bene al suolo, una banalità agronomica travestita da scoperta.

Mappatura, non validazione

Giusto per concludere questa breve revisione critica di qualche lavoro sulla biodinamica, prendo in considerazione una review pubblicata su Organic Agriculture che ha analizzato 68 studi sull’agricoltura biodinamica. Gli autori segnalano effetti positivi su suolo e biodiversità, soprattutto in aree temperate, sostenendo che “most studies reported improvements in soil quality parameters, biodiversity, and crop quality under biodynamic management” (p. 3).

Il problema è che si tratta di una rassegna descrittiva, non critica. Gli stessi autori ammettono che “we did not perform a formal quality assessment of the included studies” (p. 2). In altre parole, nessuna valutazione della robustezza metodologica, della significatività statistica o della replicabilità dei risultati. Non hanno fatto, insomma, quello che ho fatto io con le critiche riportate nei paragrafi precedenti.

Non solo: la review mette nello stesso calderone pratiche agricole consolidate (rotazioni, compost, minore uso di chimica) e l’uso dei preparati biodinamici, facendo apparire i benefici come frutto della biodinamica tout court. Un artificio retorico che sposta l’attenzione dall’agronomia alla magia.

Il risultato è esattamente quello che Enrico Bucci definì su Il Foglio una “eterna review”: un elenco di lavori, non una loro valutazione critica. Utile come catalogo, ma totalmente inutile come prova di validazione scientifica. Insomma, un inventario ordinato, non una prova di efficacia: la scienza qui rimane alla porta, mentre la retorica magica occupa la scena.

La fatica della demistificazione scientifica

Arrivati a questo punto, vale la pena sottolineare un aspetto che spesso sfugge a chi guarda la scienza dall’esterno. Smontare lavori che si travestono da scienza non è un passatempo da tastiera né un esercizio da poltrona. È un percorso lungo, faticoso e a tratti logorante. Perché?

Per prima cosa bisogna leggere gli articoli nella loro interezza, riga dopo riga, spesso decifrando un linguaggio tecnico volutamente denso. Poi serve una conoscenza approfondita delle metodologie: saper distinguere un NMR da una cromatografia, sapere cosa può misurare davvero un test enzimatico e cosa invece viene gonfiato nell’interpretazione. Infine, è indispensabile una robusta esperienza nella progettazione sperimentale: senza questa non ci si accorge dei bias nascosti, dei controlli mancanti, delle conclusioni che vanno ben oltre i dati.

E tutto ciò richiede tempo, pazienza e un certo spirito combattivo.  La scienza procede per tentativi ed errori. Un lavoro pubblicato non necessariamente è validoLa pubblicazione è solo il primo gradino. La vera prova arriva dopo, quando la comunità scientifica lo sottopone a un esame collettivo, minuzioso, implacabile: esperti che “fanno le pulci” a ogni cifra, a ogni tabella, a ogni esperimento. Se il lavoro è solido, resiste e diventa pietra miliare. Se è fragile, si sgretola in fretta e viene dimenticato.

Ecco perché la demistificazione è così importante e così dura: perché si combatte con armi scientifiche contro narrazioni che usano il fascino del mito. E i lavori sulla biodinamica, quando passano sotto questo setaccio, puntualmente crollano.

Conclusione: un fallimento annunciato

Il quadro che emerge è inequivocabile. Studi ben confezionati ma concettualmente vuoti, prove senza controlli, numeri sbagliati, review che confondono agronomia con magia. Tutto ciò che funziona nelle aziende biodinamiche non è esclusivo della biodinamica: è semplice agronomia, già consolidata nel biologico e perfezionata nell’integrato.

Il resto – corna interrate, cicli cosmici, preparati miracolosi – non resiste alla prova della scienza. La biodinamica cerca da oltre un secolo legittimazione, ma ogni volta che la ricerca prova a verificarla seriamente, la sua fragilità diventa evidente. Non è agricoltura del futuro, ma un mito che il tempo ha già smentito.

A questo punto, un lettore non addetto potrebbe chiedersi: “Ma se è così fragile, come mai questi studi vengono pubblicati? Possibile che i revisori non se ne accorgano? E come faccio io, dall’esterno, a non fidarmi di ciò che appare su riviste qualificate, persino con un buon Impact Factor?”

La risposta è meno misteriosa di quanto sembri. Come ho già scritto nel paragrafo precedente, la pubblicazione è solo il primo passo: significa che un articolo ha superato un filtro minimo di qualità, non che sia una verità scolpita nel marmo. La peer review non è un tribunale infallibile: è fatta da esseri umani, spesso con tempi stretti e competenze specifiche. Alcuni errori sfuggono, altre volte ci si concentra più sulla tecnica che sulla sostanza. Succede che un lavoro ben scritto e infarcito di strumentazioni sofisticate riesca a passare, anche se le conclusioni sono deboli.

La differenza la fa il tempo e la comunità scientifica. È il vaglio collettivo, fatto di discussioni, repliche, critiche, tentativi di replica sperimentale, che separa ciò che rimane da ciò che evapora. Ed è un processo lento e faticoso, che richiede esperienza, attenzione e anche una certa dose di ostinazione.

Ecco perché non basta fidarsi di un titolo altisonante o di una rivista con un buon IF. Bisogna guardare dentro i lavori, leggerli, pesarli, verificarli. Lo facciamo noi scienziati, ed è una parte del nostro mestiere che non fa notizia, ma è essenziale: distinguere i dati solidi dai castelli di carta.

E ogni volta che la biodinamica entra in questo setaccio, il risultato è lo stesso: crolla.

Le interviste impossibili: incontriamo Michael Faraday

Lasciata Parigi, dove ho avuto l’onore di dialogare con Antoine Lavoisier, faccio rotta verso l’Inghilterra. È il 1831 — almeno, così mi piace pensare — e la bruma londinese avvolge i sobborghi di Newington Butts. Qui, in una piccola casa modesta, mi attende Michael Faraday: chimico, fisico, autodidatta, uomo dalla curiosità inesauribile. Dai suoi esperimenti nascono concetti e scoperte che hanno plasmato la chimico-fisica moderna: l’elettromagnetismo, le leggi dell’elettrolisi, l’introduzione di termini come “anodo” e “catodo”, e quell’inimitabile ciclo di lezioni che raccolse in The Chemical History of a Candle. Un uomo che, pur privo di studi matematici formali, ha saputo leggere nel linguaggio segreto della natura e tradurlo in esperimenti chiari e affascinanti.

— Buongiorno, Professor Faraday. Sono onorato che lei abbia voluto incontrarmi.
— Buongiorno a lei, e benvenuto a Londra. Sono lieto di parlare con chi mostra curiosità per la scienza, perché la curiosità è la fiamma che accende ogni scoperta.

— Professor Faraday, il suo nome è legato a scoperte epocali in campi diversi. Partiamo dall’elettrochimica: come nacquero le sue famose leggi dell’elettrolisi?
— Tutto è cominciato facendo esperimenti, con tanta pazienza e un po’ di ostinazione. L’elettrolisi, per dirla semplice, è quando si fa passare corrente elettrica in un liquido — come una soluzione salina — e agli elettrodi avvengono reazioni chimiche: si formano gas, si depositano metalli, o si liberano altre sostanze. Mi resi conto che la quantità di sostanza prodotta non era mai a caso: più elettricità facevo passare, più materia ottenevo. Questo è il cuore della mia prima legge. Poi, cambiando sostanza — oro, rame, idrogeno, ossigeno… — vidi che, se facevo passare sempre la stessa “dose” di elettricità, ottenevo quantità diverse di materiale, ma sempre in proporzione a un valore caratteristico di quella sostanza, il cosiddetto “peso equivalente”. In fondo, quelle regole erano già lì, scritte nella natura: io ho solo avuto la pazienza di osservarle e metterle nero su bianco.

— Questo è quanto hanno affermato, tra le righe, anche il Professor Boyle e Monsieur Lavoisier che, immagino, lei conosca.
— Eccome se li conosco! Boyle, con il suo modo rigoroso di sperimentare, ha aperto la strada a tutti noi: era convinto che le leggi della natura fossero lì da scoprire, non da inventare. E Lavoisier… be’, lui ha saputo dare un ordine e un linguaggio alla chimica. Ha dimostrato che nulla si crea e nulla si distrugge, e che il compito dello scienziato è trovare il filo che lega ogni trasformazione. Io ho solo continuato quel lavoro, seguendo il filo della corrente elettrica.

— Quindi, lei ha seguito le orme di monsieur Lavoisier, dimostrando in modo indipendente che aveva ragione.
— Direi piuttosto che ho camminato su un sentiero che lui aveva già tracciato, ma guardando dettagli che, ai suoi tempi, erano nascosti. Lavoisier aveva ragione nel dire che la materia si conserva e che le reazioni seguono leggi precise. Io ho potuto vedere quelle stesse leggi in azione nei processi elettrici, e mostrarne il funzionamento quantitativo. In un certo senso, la mia elettrochimica è stata la prova sperimentale di un’idea che lui aveva reso universale.

— E come ha detto monsieur Lavoisier, la scienza è un gioco corale…
— …esattamente. Non c’è un singolo musicista che possa suonare tutta la sinfonia da solo. Ognuno aggiunge una nota, un tema, un’armonia. Boyle ha messo le fondamenta del metodo sperimentale, Lavoisier ha dato ordine e linguaggio alla chimica, e io ho avuto la fortuna di inserirvi l’elettricità come nuova voce. La scienza avanza così: un’idea ispira un’altra, un esperimento ne provoca cento nuovi. È un lavoro che attraversa generazioni, senza gelosie — o almeno, così dovrebbe essere.

— E in questo coro, lei ha introdotto un tema che ha cambiato per sempre la fisica: l’induzione elettromagnetica.
— Fu una delle mie scoperte più care. E nacque da una domanda molto semplice: se una corrente elettrica può generare un campo magnetico, come aveva mostrato Oersted, non sarà possibile anche il contrario? Mi misi al banco di lavoro con fili di rame, bobine, magneti e molta pazienza. Scoprii che muovendo un magnete vicino a un circuito, o variando il campo magnetico che lo attraversa, in quel circuito compare una corrente. Una corrente “indotta”. Non serviva contatto diretto: il cambiamento del campo era sufficiente.

— Un principio che oggi è alla base dei generatori e dei trasformatori elettrici…
— All’epoca non pensavo certo alle centrali elettriche: vedevo solo un nuovo modo in cui natura e movimento dialogano. Ma la bellezza della scienza è che ciò che nasce da curiosità pura, un giorno, può cambiare il mondo.

— Questa è l’idea della ricerca di base, un tipo di ricerca che, come avrà sicuramente saputo, oggi viene ritenuta inutile. Oggi, nella stesura dei progetti per ottenere finanziamenti, occorre anche descrivere i risultati attesi e le possibili applicazioni…
— Ah, capisco. Ma vede, la ricerca di base è come seminare in un terreno fertile: non si può sempre sapere in anticipo quale frutto crescerà, né quando. Se nel 1831 mi avessero chiesto quali applicazioni pratiche avrei tratto dall’induzione elettromagnetica, avrei potuto solo dire: “Ancora non lo so, ma è un fenomeno reale e va compreso”. Eppure, da quella curiosità oggi nascono la produzione e la distribuzione dell’elettricità. La scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.

— Bellissimo ciò che ha detto… la scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.
— E glielo posso raccontare con un piccolo episodio personale. Quando iniziai a parlare dei miei esperimenti sull’elettricità, alcuni colleghi mi chiesero: “Ma a cosa serve tutto questo? Cosa produrrà di utile?” Io risposi semplicemente: “Non lo so ancora… ma quando lo scoprirò, sarà più utile di qualsiasi risposta affrettata”. Ridono ancora, quando lo racconto, perché nessuno allora poteva immaginare che quei giochi con fili e magneti un giorno avrebbero illuminato case, fabbriche e città intere. La curiosità pura è stata il mio unico motore. Non ho mai pensato che l’utilità pratica dovesse precedere la comprensione; credo fermamente che le leggi della natura si rivelino meglio a chi le osserva con meraviglia e senza fretta.

— È davvero straordinario come la curiosità pura abbia portato a scoperte così rivoluzionarie… eppure, lei non si è fermato all’elettricità: ha anche esplorato la luce.
— Sì, e anche qui è stata la stessa curiosità a guidarmi. Nel 1845, mentre studiavo l’influenza dei campi magnetici sulla materia, mi venne in mente di verificare se la luce potesse essere influenzata da un campo magnetico. Preparai un esperimento semplice: un raggio di luce che passava attraverso una sostanza trasparente immersa in un campo magnetico. Con grande stupore, notai che il piano di polarizzazione della luce ruotava leggermente.

— Questo è ciò che oggi chiamiamo effetto Faraday
— È il primo esempio noto di interazione tra luce e magnetismo, e dimostrò che la luce e il magnetismo non sono fenomeni separati, ma legati da un principio comune. All’epoca non conoscevo l’equazione di Maxwell — che sarebbe arrivata solo qualche decennio dopo — ma intuivo che elettricità, magnetismo e luce fossero fili di uno stesso tessuto. Il mio compito era solo tirare uno di quei fili per vedere come vibrava l’intero intreccio.

— Professor Faraday, lei ha dimostrato di saper fare scoperte enormi senza una formazione matematica formale. Come ci è riuscito?
— Non ho mai considerato la matematica un ostacolo insormontabile, ma uno strumento che, se necessario, avrei potuto imparare. La mia forza era nel laboratorio, nell’osservazione meticolosa, nell’immaginare esperimenti semplici che potessero dare risposte chiare. Credevo — e credo ancora — che il pensiero sperimentale sia universale: se la natura ti mostra un fenomeno, puoi comprenderlo anche senza formule complesse, purché tu abbia pazienza, rigore e umiltà.

— A proposito di umiltà, lei ha spesso rifiutato titoli e onori…
— Sì, perché il vero riconoscimento per uno scienziato non è una medaglia, ma vedere che le sue scoperte entrano a far parte della vita di tutti. Ho sempre pensato che la scienza debba restare al servizio dell’uomo, non dell’ego dello scienziato.

— …che non è esattamente quello che accade oggi, quando molti di noi — me compreso — provano un certo piacere a stare sotto i riflettori. E glielo confesso: quando lo dico ai colleghi, vengo anche preso per pazzo.
— Forse perché oggi la visibilità non porta solo applausi, ma anche finanziamenti. E questi, lo so bene, possono arrivare da ogni direzione, compresa quella di chi vende illusioni ben confezionate: omeopatia, biodinamica e altre amenità. Ai miei tempi, la fama non apriva così facilmente le casse di mecenati o aziende; e comunque, il rischio di piegare la scienza a interessi di parte era sempre in agguato. Il punto è ricordare che il palcoscenico passa, mentre la verità scientifica resta — e che oggi, troppo spesso, la dignità e l’autorevolezza scientifica vengono barattate per un piatto di lenticchie.

— Professor Faraday, molti la ricordano anche per le sue celebri Christmas Lectures alla Royal Institution. Come nacque l’idea de La storia chimica di una candela?
— Ogni anno, a Natale, tenevo delle lezioni per i ragazzi. Volevo offrire loro un’esperienza che fosse insieme semplice e affascinante. Scelsi la candela perché è un oggetto comune, familiare a tutti, ma dietro la sua fiamma si nasconde un mondo di fenomeni fisici e chimici.

— Qual era il suo obiettivo nel parlare di una cosa così quotidiana?
— Dimostrare che la scienza non è confinata nei laboratori: è dappertutto. Una candela, accendendosi, mette in scena combustione, convezione, cambiamenti di stato, reazioni chimiche complesse. Volevo che i giovani capissero che anche un gesto banale può essere una porta verso grandi scoperte.

— Qual è il primo segreto che una candela rivela?
— Che la fiamma non è materia, ma energia in azione. La cera, riscaldata, diventa liquida, poi gassosa; il gas brucia liberando calore e luce. È un ciclo continuo di trasformazioni: solido, liquido, gas, e di nuovo energia.

— Lei parlava spesso di osservare prima di spiegare. Come lo applicò in queste lezioni?
Invitavo i ragazzi a guardare: il colore della fiamma, il fumo che si sprigiona quando si spegne la candela, la forma della goccia di cera che si scioglie. Solo dopo passavamo a spiegare il perché di ciò che avevano visto. La curiosità nasce dall’osservazione diretta.

— In fondo, è un po’ la stessa filosofia della sua ricerca…
Sia che studi l’elettromagnetismo, sia che guardi una candela, l’approccio è lo stesso: osservare con attenzione, porre domande, non dare nulla per scontato.

— Cosa pensa che La chimica di una candela possa insegnare ancora oggi?
— Che la scienza è nelle mani di chi sa guardare. Non importa se il laboratorio è una stanza piena di strumenti o il tavolo di cucina: ciò che conta è la capacità di meravigliarsi e di cercare risposte.

— Sa che queste sue parole potrebbero essere usate oggi, nella mia epoca, da complottisti di ogni risma? Gente che si riempie la bocca di “pensiero indipendente”, “Galilei era uno contro tutti” e così via cantando…
— Oh, conosco bene il rischio. Ma vede, c’è una differenza sostanziale: il vero pensiero indipendente nasce dallo studio rigoroso e dall’osservazione onesta della realtà; quello dei complottisti nasce spesso dal rifiuto pregiudiziale delle prove. Galilei non era “uno contro tutti” perché amava contraddire: era uno che portava dati, misure, esperimenti ripetibili. Se oggi qualcuno brandisce il suo nome per giustificare opinioni infondate, sta confondendo la curiosità con l’arroganza e il metodo scientifico con la chiacchiera da taverna. E guardi che lo stesso vale per una candela. Posso raccontare che la fiamma è alimentata da minuscole fate luminose che ballano nell’aria: suona poetico, e qualcuno potrebbe pure crederci. Ma basta un semplice esperimento per dimostrare che la luce e il calore vengono dalla combustione di vapori di cera. La scienza non è negare la fantasia — è verificarla.

— Professor Faraday, se dovesse riassumere in poche parole il senso del suo lavoro, cosa direbbe?
— Direi che ho passato la vita a inseguire scintille: alcune erano letterali, altre metaforiche. Ma ogni scintilla, se seguita con attenzione, può accendere una fiamma di conoscenza.

Mentre lascio la sua casa, il cielo di Londra è ancora avvolto nella bruma, ma nella mia mente resta accesa una piccola luce: quella di una candela che, sotto lo sguardo paziente di Michael Faraday, si trasforma da semplice oggetto quotidiano in una lezione eterna di curiosità, rigore e meraviglia.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra fili di rame e campi invisibili, scopriremo che la scienza può unire fenomeni che sembravano mondi separati, guidata dalla stessa curiosità che accende una fiamma e illumina una mente.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L.  Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Michael Faraday (1845) Experimental Researches in Electricity. Philosophical Transactions of the Royal Society

Michael Faraday (1866) Storia Chimica di una candela. Editori della Biblioteca Utile

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Le interviste impossibili: incontriamo Antoine Lavoisier

Dopo aver lasciato il Professor Boyle, mi reco a Parigi, in una primavera inoltrata di un anno qualsiasi della seconda metà del Settecento. Entro in un salone elegante, illuminato da candelabri e impreziosito da cristalli, dove incontro un uomo in giacca di velluto che sembra appena uscito da un dipinto di David. Nonostante la data sul calendario, lui è qui per noi: Antoine-Laurent de Lavoisier, padre della chimica moderna. Sorriso cortese, sguardo analitico. E, sì, la testa è ancora al suo posto.

— Buon pomeriggio, Monsieur Lavoisier, grazie per aver acconsentito a questa intervista impossibile. Sono appena stato dal Professor Boyle, che lei sicuramente conosce.
— Come potrei non conoscerlo? Il signor Boyle ha dato alla chimica fondamenta solide, anche se il suo flogisto… pardon, le sue idee sull’aria avrebbero avuto bisogno di una piccola revisione. Ma, senza il suo lavoro, il mio sarebbe stato molto più difficile.

— Monsieur Lavoisier, partiamo dalla domanda che tutti si fanno: è vero che ha “inventato” la chimica moderna?
— “Inventare” è un termine troppo presuntuoso, e la scienza non è mai opera di un uomo solo. Diciamo che ho messo un po’ d’ordine in un mestiere che, all’epoca, era un bazar di nomi pittoreschi, teorie fumose e descrizioni poetiche ma imprecise. Molti parlavano di “aria infuocata”, “terra fissa”, “spiriti”, senza una base quantitativa solida. Io ho cercato di sostituire questa confusione con misure accurate, esperimenti ripetibili e una nomenclatura chiara. Ho avuto la fortuna di vivere in un’epoca in cui il metodo sperimentale stava finalmente scalzando il dogma, e in cui la matematica poteva sposare il fornello: bilance accanto agli alambicchi, calcoli accanto alle osservazioni. È così che la chimica è uscita dalla bottega dell’alchimista per entrare nel laboratorio dello scienziato.

 E così è nata la famosa Legge di conservazione della massa.
— Esatto. Nulla si crea, nulla si distrugge, tutto si trasforma. È una verità semplice a dirsi, ma non scontata da dimostrare. All’epoca molti credevano ancora che durante una combustione o una reazione chimica qualcosa “sparisse” o “nascesse” dal nulla. Io ho mostrato, bilancia alla mano, che la somma delle masse dei reagenti è sempre uguale a quella dei prodotti, anche se il calore o i gas davano l’illusione del contrario. Era un principio tanto fondamentale quanto rivoluzionario, perché significava che la chimica, per essere scienza, doveva basarsi su misure precise e verificabili. E poi, si sa, una buona legge scientifica è come un buon aforisma: resta impressa nella memoria, ma deve poggiare su dati solidi per non diventare solo una frase ad effetto.

— Ci racconta della riforma della nomenclatura chimica?
— Oh, quella è stata la mia vera rivoluzione, e forse l’eredità più duratura del mio lavoro. Dare nomi logici e universali alle sostanze non è una questione di pignoleria, ma di sopravvivenza per la scienza: se non ci capiamo tra noi, non possiamo progredire. Prima di noi, ogni sostanza aveva un’infinità di nomi locali, legati alle tradizioni o alle fantasie di chi li usava: lo stesso composto poteva essere chiamato “vetriolo di Marte” in un laboratorio, “fior di ferro” in un altro e “sale verde” altrove. Per capire una reazione, bisognava prima tradurre il linguaggio dell’autore — e non sempre era possibile. Con Guyton de Morveau, Berthollet e Fourcroy abbiamo ideato un sistema basato sulla composizione chimica, in cui il nome descriveva la sostanza e non la sua storia folcloristica. È stato come passare da un dialetto confuso a una lingua comune: all’improvviso, la chimica parlava la stessa lingua da Parigi a Londra, da Berlino a Stoccolma.

— E l’ossigeno?
— Ah, il mio “bambino prediletto”! Ho dimostrato che era lui, e non qualche misteriosa sostanza immaginaria, il responsabile della combustione e della respirazione. Prima di me, molti chimici erano affezionati alla teoria del flogisto: un’entità invisibile che si sarebbe liberata durante la combustione. Era una spiegazione comoda, ma non resisteva alla prova della bilancia e dell’esperimento. Studiando i gas di Priestley e di Scheele, compresi che quella “aria particolarmente pura” non era un curiosità da collezione, ma un elemento fondamentale per sostenere la vita e il fuoco. Non tutti furono felici di sentirselo dire: cambiare paradigma è sempre doloroso, specie quando si devono abbandonare idee in cui si è investita la carriera. Ma la chimica non è un’arte di compromesso: segue le prove, non le abitudini. E l’ossigeno, con i suoi comportamenti, era una prova vivente… o, se preferisce, respirante.

— E cosa mi dice dell’azoto?
— Lo chiamai azote, “senza vita”, perché questo gas non sosteneva né la combustione né la respirazione: un’aria inerte, capace di spegnere il fuoco e soffocare gli animali. Era un nome descrittivo, figlio del mio approccio alla nomenclatura. In Inghilterra, però, preferirono chiamarlo nitrogen, “generatore di nitrati”, per via della sua presenza nei salnitri. Non mi offendo per la differenza: i nomi cambiano con le lingue e le tradizioni, ma l’importante è che tutti sappiano di cosa si sta parlando. Certo, a volte questa varietà linguistica genera confusione… ma non più di quanto non faccia la politica.

— A proposito di politica e vita pubblica, lei era anche un funzionario delle tasse. Non esattamente il lavoro più amato dal popolo…
— Vero, e non ha certo contribuito alla mia popolarità durante la Rivoluzione. Ma non ero un esattore medievale con il forcone alla porta: ero un membro della Ferme générale, un’istituzione privata che raccoglieva le imposte per conto dello Stato, e mi impegnavo soprattutto nella riforma del sistema fiscale. Sapevo bene che un’imposta mal congegnata soffoca l’economia, e che un’amministrazione corrotta soffoca la fiducia. Una parte di quelle entrate, peraltro, finiva a sostenere attività scientifiche: laboratori, strumenti, ricerche. La chimica costa, e senza risorse non si può fare. Certo, in tempi di turbolenza politica, essere associato alla riscossione delle tasse era come indossare un bersaglio sulla schiena… e il resto della mia storia dimostra quanto il bersaglio fosse ben visibile.

— Infatti, poi arrivò il 1794…
— Sì, il processo. In tre ore fui condannato a morte. Non era un’udienza, era un atto politico. Un mio collega pronunciò quella frase passata alla storia: “La Repubblica non ha bisogno di scienziati”. Peccato che invece ne avesse un disperato bisogno, allora come oggi. La ghigliottina non è mai stata un buon laboratorio, e nemmeno il sospetto ideologico, il pregiudizio o la paura del pensiero critico. Vedo che in certi Paesi, ancora oggi, si smantellano istituzioni scientifiche, si sostituiscono esperti con fedelissimi politici, si ignorano dati scomodi in nome di un’ideologia o di un calcolo elettorale. Cambiano i metodi — oggi non è più la lama di una ghigliottina, ma decreti, nomine pilotate, tagli di fondi — ma il principio è lo stesso: eliminare la scienza quando contraddice il potere. E così si condanna la società intera, perché senza conoscenza si resta in balìa dell’ignoranza e delle illusioni.

— Se potesse vedere la chimica di oggi, cosa direbbe?
— Che è meravigliosa e spaventosa al tempo stesso. Mai nella storia dell’umanità la conoscenza chimica ha avuto un potenziale così vasto: potete progettare farmaci su misura per salvare vite, creare materiali avanzatissimi, catturare l’energia del sole e del vento, ripulire acque e suoli inquinati. Allo stesso tempo, avete la capacità di alterare interi ecosistemi, accumulare sostanze tossiche che non scompaiono per secoli, e produrre armi in grado di annientare città in pochi secondi. La chimica è un linguaggio universale che la natura comprende, ma non fa sconti: ogni reazione ha conseguenze. Il problema non è la chimica in sé — che è neutrale — ma le scelte politiche, economiche e morali di chi la impiega. Una formula sulla carta è innocente; la sua applicazione, invece, può essere una benedizione o una condanna.

— E a chi inquina, cosa direbbe?
— Direi che la mia legge vale ancora: la massa non sparisce. Quello che immettete nell’ambiente, sotto forma di fumi, scorie o sostanze tossiche, non si dissolve per magia: resta, si trasforma, si accumula. I metalli pesanti finiscono nei sedimenti e nelle catene alimentari, la plastica si frantuma in particelle che respiriamo e ingeriamo, i gas serra restano intrappolati nell’atmosfera per decenni. Prima o poi, tutto vi torna indietro — nell’aria che respirate, nell’acqua che bevete, nel cibo che mangiate. In chimica, come nella vita, il bilancio deve tornare: potete rinviare il conto, ma non potete cancellarlo. La natura è un contabile inflessibile, e non concede condoni.

— Grazie Monsieur Lavoisier. È stato un onore averla potuta incontrare
L’onore è stato mio, monsieur. Ricordate: la scienza è un’opera collettiva, non il monumento di un solo uomo. Difendetela sempre perché, quando la scienza tace, la superstizione e l’arbitrio parlano più forte. E ora… il mio tempo è finito, ma le mie leggi restano.

Mi stringe la mano, elegante come quando è arrivato. E sparisce, lasciandomi la sensazione che la sua testa, oggi, servirebbe ancora.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra la fiamma tremolante di una candela, scopriremo che la luce può illuminare molto più della stanza in cui arde.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L. Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Antoine-Laurent Lavoisier (2020) Memorie scientifiche. Metodo e linguaggio della nuova chimica. A cura di Ferdinando Abbri. Edizioni Theoria

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Le interviste impossibili: incontriamo Robert Boyle

Come i miei quattro lettori sanno, sono un appassionato di chimica. Ne ho fatto la mia professione, unendo la passione per la ricerca – il mio giocattolo preferito, con cui smonto la realtà, ne indago i segreti e poi la rimonto – a quella per la didattica che, nel tempo, mi ha rivelato un lato inatteso: la voglia di rendere “digeribili” agli studenti concetti chimici anche molto complessi.

C’è poi un’altra passione: la storia della chimica. Sono convinto che solo conoscendo ciò che è accaduto in passato si possa capire come e perché una disciplina si sia sviluppata in una direzione piuttosto che in un’altra.

Da queste premesse nasce questa rubrica dal titolo: Le interviste impossibili. Si tratta una serie di incontri – ovviamente immaginari – con grandi scienziati del passato, principalmente chimici, con i quali intavolerò discussioni che potranno spaziare dalla scienza alla politica, dall’etica ad altre questioni che il dialogo potrà far emergere. Saranno conversazioni interamente frutto della mia immaginazione, ispirate alla filosofia scientifica e al pensiero della persona intervistata.

E per cominciare, chi meglio di Robert Boyle? Un uomo che, nel 1661, con Il chimico scettico, ha segnato la nascita della chimica moderna, abbandonando le nebbie dell’alchimia per abbracciare la luce della sperimentazione. Sarà lui il primo ospite di questa serie, e vi assicuro che, nonostante i suoi 400 anni portati con una certa eleganza, ha ancora parecchie cose da dire.

_______________________

Buongiorno, professor Boyle.
— Buongiorno a lei, signore. Mi perdoni se non mi alzo: questa pompa pneumatica è un po’ capricciosa e non vorrei perdere il vuoto proprio adesso.
— Vedo che la tratta con grande cura.
— Cura? Direi venerazione. È stata la mia chiave per scardinare vecchie idee. Con essa ho mostrato che l’aria non è un concetto filosofico, ma una sostanza reale, con peso, volume, pressione. Ai miei tempi, molti pensavano che la natura fosse governata da qualità misteriose, imponderabili. Io ho voluto misurare, pesare, verificare.

— E questo cambiò la chimica?
— Cambiò il modo di guardare alla materia. Prima si parlava di “aria”, “fuoco”, “acqua” e “terra” come entità quasi mistiche. Io ho voluto trattarle come sostanze concrete. Senza questa svolta, dubito che la chimica avrebbe potuto diventare lo strumento potente – e pericoloso – che è oggi.

— Pericoloso?
— Oh, sì. Ai miei tempi, il pericolo era limitato dal ritmo lento della ricerca: poche persone, pochi strumenti, pochi esperimenti. Oggi vedo una velocità inaudita: sintetizzate composti che non esistono in natura e li disperdete nell’ambiente prima ancora di comprenderne a fondo le conseguenze. Pensate alla plastica: una meraviglia della chimica moderna, ma anche un nuovo sistema chimico, onnipresente nei mari e nei corpi degli animali. Noi scienziati dobbiamo ricordare che ogni “creazione” lascia un’impronta.

— Quindi anche nel XVII secolo si poteva parlare di impatto ambientale?
— Certo, ma in forme diverse. I metallurgi avvelenavano i fiumi con le scorie, nelle città si bruciava carbone liberando fumi tossici. Noi non usavamo la parola “inquinamento”, ma ne sentivamo gli effetti: miniere abbandonate, aria irrespirabile nelle botteghe, malattie croniche tra i lavoratori. Solo che nessuno collegava questi effetti alle cause chimiche: mancava il concetto stesso di “responsabilità scientifica verso l’ambiente”.
— E come ci si è arrivati?
— È stato un percorso lento, nato dall’osservazione e dall’accumulo di prove. Con l’Ottocento e la rivoluzione industriale, l’aumento di fumi e scorie divenne innegabile; nel Novecento, con la chimica capace di produrre composti mai visti in natura, si cominciò a capire che ogni reazione ha conseguenze non solo in laboratorio, ma anche nei fiumi, nei campi e nei corpi. Gli esempi non mancano: le piogge acide dovute alle emissioni industriali, il DDT che si accumulava nelle catene alimentari, il buco nello strato di ozono causato dai clorofluorocarburi. Fu allora che l’umanità iniziò a capire che l’ambiente non era un contenitore infinito, ma un sistema delicato, capace di spezzarsi sotto il peso delle nostre stesse invenzioni. Oggi chiamate questo approccio “valutazione dell’impatto ambientale”: è la naturale estensione del metodo scientifico. Osservare, misurare e trarre conclusioni, ma applicato non solo all’esperimento, bensì alle sue conseguenze sul mondo reale. E, cosa ancora più importante, farlo prima di introdurre su larga scala una nuova sostanza o tecnologia. Tanto che in molti Paesi questo esame preventivo è diventato un obbligo di legge: un modo per ricordare che la prudenza non è un freno al progresso, ma la sua assicurazione.

— Come vede il rapporto tra scienza e politica oggi?
— Non troppo diverso da allora: la politica ama la scienza quando porta vantaggi immediati, ma la ignora – o la ostacola – quando chiede pazienza e prudenza. Ai miei tempi, un re o un mecenate finanziava un esperimento se prometteva ricchezza o prestigio; oggi, un governo o un’azienda lo finanziano se promette profitto o consenso. La differenza è che oggi gli effetti sono globali, non locali.

— E anche la scienza stessa è cambiata.
— Oh, sì. Mi avete parlato di questa massima: publish or perish, pubblica o scompari. Ai miei tempi pubblicare era un atto ponderato, spesso il lavoro di una vita. Ora vedo un’esplosione di articoli, ma molti sono come bolle di sapone: luccicanti per un attimo, poi svaniscono. Alcuni dicono poco o niente, altri celano errori gravi, e vi sono perfino casi di falsità intenzionali. Mi avete raccontato di un certo Jan Hendrik Schön, che riempì riviste prestigiose di risultati entusiasmanti sui transistor molecolari… peccato che fossero artefatti. Grafici identici per esperimenti diversi, dati “cancellati” per mancanza di spazio…
— E la comunità scientifica?
— Ha fatto ciò che doveva: ha verificato, smascherato e ritirato quegli studi. Ma il danno d’immagine resta: basta un imbroglione per far credere a molti che tutta la scienza sia marcia.

— E non è solo un problema di chi scrive articoli. Anche chi siede nei comitati scientifici ha responsabilità enormi.
— Certamente. Mettere in un comitato tecnico persone che rifiutano le basi stesse della disciplina che dovrebbero consigliare è come nominare un astrologo direttore di un osservatorio astronomico, o un alchimista a capo di un laboratorio chimico. Ai miei tempi, la Royal Society aveva un motto: Nullius in verba, “non fidarti della parola di nessuno”. Oggi dovreste aggiungere: “ma fidati dei dati”.
— E invece?
— Invece vedo che talvolta si preferisce dare spazio a voci che piacciono al pubblico, o che creano polemica, piuttosto che a quelle fondate sulla prova. È un cortocircuito pericoloso: si confonde il dibattito scientifico, che nasce dall’evidenza, con l’opinione personale, che nasce dal pregiudizio.

— Torniamo un attimo al suo Chimico scettico: il suo invito era a dubitare, a verificare.
— Sì. Lo scetticismo è la virtù cardinale dello scienziato. Senza di esso, si scivola nell’illusione. Oggi, a quanto vedo, convivono scoperte straordinarie e credenze assurde: si creano vaccini in pochi mesi e allo stesso tempo si vendono boccette di acqua “miracolosa” che pretendono di curare tutto.
— Omeopatia.
— Già. La chiamerei “chimica dell’assenza”: meno sostanza c’è, più miracoli si promettono. È un concetto che mi lascia perplesso: ho passato la vita a misurare e qui si celebra ciò che non si può misurare.

— Se potesse dare un consiglio agli scienziati di oggi?
— Non dimenticate che ogni molecola che “create” entrerà in qualche ciclo della natura. E ricordatevi che la scienza non è una collezione di verità scolpite nella pietra, ma un cantiere aperto, dove ogni scoperta deve essere messa alla prova, anche – e soprattutto – quando sembra troppo bella per essere vera.

— Ultima domanda, professore: se le offrissi un bicchiere di acqua “omeopatica” per la salute?
— (Sorride) Lo accetterei… ma solo se avessi sete.

_______________________

Saluto il professor Boyle e mi avvio verso il prossimo appuntamento impossibile. Il mio interlocutore, ghigliottinato nel 1794, aveva una convinzione incrollabile: nulla si crea, nulla si distrugge. Ma, come scopriremo presto, non tutto si conserva…

Note Bibliografiche

R. Boyle (ed. 2013) The skeptical chymist. Dover Publications

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L. Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

A. Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica. Edises

 

Quando l’impossibile è solo improbabile: la cosmochimica ci insegna a essere umili

Recentemente Nature Communications ha pubblicato un articolo che ha fatto il giro del web: la scoperta di una molecola ritenuta “impossibile” secondo la chimica classica. Si tratta del methanetetrol, con formula C(OH)₄, cioè un atomo di carbonio legato a quattro gruppi ossidrilici. Se avete familiarità con la chimica organica, vi sarà già scattato un campanello d’allarme.

Un carbonio, quattro ossidrili

In chimica organica, anche due gruppi -OH sullo stesso carbonio (dioli germinali) sono instabili: tendono a disidratarsi spontaneamente, formando un carbonile più stabile. Con quattro ossidrili, il carbonio è sottoposto a forte repulsione elettronica e alta reattività: la molecola è intrinsecamente instabile nelle condizioni terrestri.

Ma lo spazio è tutta un’altra storia

L’esperimento condotto da Joshua H. Marks e colleghi ha simulato condizioni interstellari:

  • temperatura di circa 10 K (~ –263 °C);
  • pressione ultra-bassa (10⁻¹⁰ atm);
  • esposizione a radiazione energetica, simile a quella dei raggi cosmici.

In queste condizioni la molecola non riceve abbastanza energia per reagire o disidratarsi. Resta quindi “congelata” in uno stato metastabile, come se fosse bloccata nel tempo.

Instabile ≠ impossibile

Il methanetetrol non è “impossibile”: è semplicemente troppo instabile per durare a lungo alle condizioni ambientali della Terra. Ma nel vuoto cosmico, dove le collisioni tra molecole sono rarissime e la temperatura è prossima allo zero assoluto, anche le molecole più reattive possono esistere per tempi lunghissimi.

Un esempio quotidiano: l’acqua sovraraffreddata

Un buon esempio di metastabilità è l’acqua sovraraffreddata: se si raffredda dell’acqua molto pura lentamente e senza disturbarla, può restare liquida anche sotto gli 0 °C. Basta però un urto o l’aggiunta di un cristallo di ghiaccio perché si congeli all’istante, liberando calore.

Il methanetetrol nello spazio si comporta allo stesso modo: esiste in uno stato “delicato”, che può durare milioni di anni solo finché non interviene qualcosa a modificarlo.

Un’eredità cosmica

È importante ricordare che le molecole presenti oggi sulla Terra — comprese quelle che hanno contribuito all’origine della vita — sono in parte eredi di queste molecole “cosmiche”. Nei primi miliardi di anni, comete, meteoriti e polveri interstellari hanno portato sulla Terra materiali formatisi in ambienti estremi, spesso metastabili.

Queste molecole, una volta inglobate nel giovane pianeta, si sono trasformate: alcune sono sopravvissute, altre si sono degradate, altre ancora hanno reagito dando origine a sistemi sempre più complessi. La chimica della vita, in questo senso, è figlia della chimica dello spazio, anche se si è evoluta in condizioni molto diverse.

Anche la Terra ha i suoi estremi

Non dobbiamo però pensare che condizioni “impossibili” esistano solo nello spazio. Anche sulla Terra troviamo ambienti estremi in cui si manifestano forme di chimica — e persino di biologia — del tutto inattese.

  • Nelle saline di Trapani, ad esempio, vivono microrganismi capaci di resistere a concentrazioni di sale che ucciderebbero qualsiasi cellula “normale”.
  • Nei pressi delle bocche vulcaniche sottomarine, dove temperature e pressioni sono altissime, esistono comunità microbiche che metabolizzano zolfo e metalli.
  • In ambienti acidi, alcalini, radioattivi o privi di ossigeno, prosperano organismi estremofili che mettono in crisi i nostri criteri su cosa è “compatibile con la vita”.

Anche qui la natura ci insegna che la stabilità è relativa: ciò che sembra impossibile in una condizione può essere perfettamente normale in un’altra.

Uno sguardo all’origine della complessità

L’interesse principale di questa scoperta non è nella molecola in sé, ma nei meccanismi di formazione. L’esperimento ha mostrato che partendo da semplici ghiacci di CO₂ e H₂O si possono generare:

I calcoli teorici confermano che, se c’è sufficiente CO₂ nello spazio, il methanetetrol potrebbe già esistere là fuori — congelato nei ghiacci cosmici, in attesa di una nuova reazione.

Conclusione

La chimica nello spazio non viola le regole: le applica in modo diverso. Il methanetetrol ci ricorda che non possiamo giudicare la plausibilità di una molecola solo dalle condizioni terrestri. E ci insegna una lezione ancora più importante:
la chimica, come la vita, nasce dove trova spazio per esistere — anche se quel luogo è a 10 Kelvin, nel vuoto cosmico o in una salina siciliana.

Share