Rabdomanzia: tra mito, illusioni e scienza

La scena è familiare: un uomo cammina con una bacchetta biforcuta fra le mani, in attesa che il ramo si pieghi misteriosamente indicando la presenza di acqua sotterranea. Lo sguardo è serio, quasi mistico; chi osserva trattiene il fiato. È l’immagine della rabdomanzia, una pratica antica che ancora oggi conserva un certo fascino, a metà strada tra magia, folklore e speranza.

Se non fosse per un piccolo dettaglio: la bacchetta non funziona. Non importa se sia di nocciolo, di salice o di legno d’ulivo raccolto la notte di San Giovanni – l’acqua, in realtà, se ne infischia del bricolage arboreo. Eppure, generazioni di rabdomanti hanno giurato che quel ramoscello si muove da solo, attirato da misteriose forze sotterranee.

La verità, a guardarla con occhio scientifico, è che la rabdomanzia ha molto in comune con altre discipline affascinanti ma poco affidabili: dall’astrologia alle previsioni calcistiche del barista sotto casa. Funziona finché nessuno prende nota dei risultati, e smette improvvisamente di funzionare appena qualcuno si ostina a fare i conti con carta e penna.

E allora la domanda sorge spontanea: se decenni di esperimenti hanno mostrato che la bacchetta magica non è poi così magica, perché la sua immagine continua ad avere presa su di noi? Forse perché racconta qualcosa di più profondo: il nostro desiderio che il mondo, oltre a pozzi e falde acquifere, nasconda ancora un po’ di incanto.

Una lunga storia di rami e speranze

La rabdomanzia non nasce ieri: già nel XVI secolo in Europa c’erano cronache di minatori che si affidavano alla bacchetta per trovare filoni. Ma se allarghiamo lo sguardo, scopriamo che il trucco del ramo che trema è universale: in Cina, in Africa, nel cuore dell’Europa contadina, ovunque qualcuno sperava di strappare alla natura un segreto in più.

Il contesto era chiaro: quando non avevi né carte geologiche né GPS, provavi di tutto pur di evitare un buco a vuoto. E allora perché non affidarsi a un ramo che vibra in mano? Dopotutto, tra un ingegnere inesistente e un rabdomante disponibile, il contadino assetato sceglieva il secondo. La bacchetta diventava così un’ancora psicologica, una piccola illusione per addomesticare l’imprevedibilità della natura.

La scienza mette alla prova la bacchetta

Col passare del tempo, però, qualcuno iniziò a chiedersi: ma funziona davvero? Così, dal XIX secolo in poi, si organizzarono i primi esperimenti controllati. Qui inizia il bello: quando nessuno teneva conto degli errori, i rabdomanti sembravano infallibili; quando invece entravano in gioco rigore, randomizzazione e doppio cieco, la bacchetta diventava improvvisamente timida.

George P. Hansen nel 1982 fece il punto con una rassegna storica. Risultato? Un mare di studi traballanti. Molti test erano poco più che spettacoli di paese travestiti da esperimenti: niente controlli, numeri minuscoli, conclusioni ottimistiche. Insomma, la bacchetta piegava più le regole del metodo scientifico che quelle del nocciolo.

Monaco e Kassel: la Champions League dei rabdomanti

Negli anni ’80 e ’90 la Germania decise di fare sul serio. Basta esperimenti da cortile: servivano test colossali. Centinaia di rabdomanti convocati, un fienile trasformato in laboratorio, tubi d’acqua fatti scorrere a caso sotto il pavimento. Sembrava un reality show, ma con meno glamour e più statistica.

Il verdetto? La maggior parte non indovinava meglio del caso. Ma – ed è qui che si accese la speranza – una piccola minoranza sembrava cavarsela meglio. Era davvero abilità, o semplice fortuna? Il dibattito infuriò: per i sostenitori, la prova che “qualcosa” c’era; per gli scettici, l’ennesimo esempio di come in un campione ampio ci sia sempre qualcuno che batte la media, anche tirando a indovinare.

Per rendere l’idea, immaginate la scena: decine di rabdomanti convocati come concorrenti a un talent show. Invece di cantare o ballare, camminavano nervosi sopra il pavimento di un fienile, stringendo la bacchetta con l’ansia di chi aspetta l’applauso della giuria. Sotto di loro, nascosto, il famigerato tubo d’acqua che veniva spostato di volta in volta per mantenere il mistero.

Ogni “esibizione” era accompagnata dal silenzio carico di aspettativa: il pubblico (scienziati e assistenti con blocchi per gli appunti) tratteneva il fiato in attesa che la bacchetta si piegasse. Qualcuno, per darsi un tono, chiudeva gli occhi come un pianista rapito dall’ispirazione; altri procedevano a piccoli passi, come rabdomanti zen. Ma, al momento della verità, le performance erano spesso deludenti: bacchette immobili, movimenti incerti, colpi andati a vuoto.

A guardarla con occhi moderni, quella parata sembrava una puntata di “X-Factor” ambientata in un granaio: solo che il premio in palio non era un contratto discografico, ma l’onore di essere proclamati campioni dell’“acqua sotto al fienile”. E, come in ogni talent che si rispetti, alla fine i veri protagonisti furono i giudici: perché la statistica, inflessibile come un televoto truccato, decretò che la maggioranza non aveva alcun talento speciale.

Betz 1995: il canto del cigno

Nel 1995 Hans-Dieter Betz pubblicò due articoli sul Journal of Scientific Exploration che per i rabdomanti furono un po’ come il disco d’oro per una band in declino: la grande occasione di rivincita. Si trattava della trattazione più sistematica mai scritta a favore della rabdomanzia, con tanto di dati, grafici e racconti di campagne sul campo. Betz riportò i risultati dei “progetti di Monaco” e delle missioni in Africa finanziate dalla Gesellschaft für Technische Zusammenarbeit (GTZ), la cooperazione tecnica tedesca (oggi GIZ), presentando la bacchetta come una potenziale compagna di squadra della geofisica tradizionale.

Secondo lui, alcuni rabdomanti avrebbero ottenuto risultati “statisticamente significativi” nel localizzare tubi nascosti o anomalie geologiche. Nei test di campo, specialmente in zone aride e su rocce fratturate, qualcuno riuscì effettivamente a indicare punti di perforazione che poi si rivelarono buoni. Non mancava il tocco epico: Betz parlava di pochi “dowser d’élite”, una sorta di squadra speciale capace di performance superiori alla media, quasi come i supereroi della bacchetta.

Eppure, sotto la patina brillante, le crepe erano evidenti. I presunti successi riguardavano solo una minoranza, mentre la grande maggioranza non si distingueva affatto dal caso. Il meccanismo fisico rimaneva un mistero: si tirarono in ballo ipotesi fantasiose come campi elettromagnetici, vibrazioni sottili, “energie della terra” … ma senza mai una prova concreta. Le analisi statistiche, poi, furono bersagliate di critiche: sembravano cucite su misura per trovare significatività dove non ce n’era.

E infine la questione editoriale: i due articoli non uscirono certo su Nature o Science, ma su una rivista di nicchia, non proprio la Champions League delle pubblicazioni scientifiche. Più una serie cadetta, frequentata da fenomeni di confine e discipline in cerca di legittimazione.

In conclusione, lo stesso Betz, pur con toni misurati, lasciava intendere che la rabdomanzia non poteva dirsi provata. Al massimo, poteva essere definita “promettente” in qualche caso particolare – una formula elegante per dire: non funziona, ma non vogliamo ammetterlo troppo forte.

Ma ogni disco d’oro, si sa, prima o poi incontra la critica musicale. E in questo caso la critica aveva il nome di J. T. Enright.

Enright e la doccia fredda

Pochi anni dopo, J. T. Enright prese in mano gli stessi dati e li analizzò con rigore da scienziato. Risultato: nessun effetto reale, nessun rabdomante miracoloso, solo casualità travestita da abilità. In altre parole, il re era nudo e la bacchetta pure.

La sua critica mise in imbarazzo i sostenitori che, a quel punto, si rifugiarono nell’argomento classico: forse c’è, ma non si riesce a misurare. È lo stesso tipo di scusa usata per i fantasmi, gli UFO, l’omeopatia, l’agricoltura biodinamica e certe diete miracolose.

Suggestione, ideomotorio e fortuna

Perché allora la rabdomanzia continua a sembrare efficace a tanti praticanti e osservatori? Le spiegazioni più condivise chiamano in causa la psicologia umana:
Effetto ideomotorio: piccoli movimenti inconsci delle mani fanno oscillare bacchette o pendoli.
Bias di conferma: si ricordano i successi e si dimenticano i fallimenti.
– Indizi ambientali: in campagna, un occhio esperto può cogliere segni del terreno senza rendersene conto.
Fortuna: con abbastanza tentativi, qualche “colpo giusto” è inevitabile.

Non servono forze misteriose: bastano i meccanismi ben noti della percezione e della memoria selettiva.

Conclusione: il fascino della bacchetta

La storia della rabdomanzia è una parabola perfetta del rapporto tra scienza e credenze popolari. Un rito antico che sopravvive all’avanzata della geologia e della fisica, alimentato da aneddoti e speranze. Gli esperimenti moderni, dai progetti di Monaco alle analisi critiche di Enright, ci dicono che la bacchetta non ha poteri misteriosi: i pochi risultati “positivi” non sono replicabili e si dissolvono al vaglio della statistica.

Eppure, il mito resiste. Resiste come certe catene WhatsApp, come gli oroscopi del mattino o le promesse di miracoli a domicilio: inutile ma rassicurante. Forse perché non parla soltanto di acqua nascosta, ma del nostro bisogno profondo di credere che la natura conservi ancora qualche trucco segreto da regalarci gratis.

Peccato che, quando si tratta di scavare un pozzo, la bacchetta tenda più a piegarsi sotto il peso delle illusioni che a segnalare una falda acquifera. Se vogliamo davvero trovare acqua, meglio affidarsi a un idrogeologo. Con lui, almeno, l’unica bacchetta magica sarà quella del geologo… e al massimo la fattura a fine lavoro.

Riferimenti e approfondimenti

Betz (1995) Unconventional Water Detection: Field Test of the Dowsing Technique in Dry Zones: Part 1. Journal of ScientiJic Exploration, 9(1): 1-43

Betz (1995) Unconventional Water Detection: Field Test of the Dowsing Technique in Dry Zones: Part 1. Journal of ScientiJic Exploration, 9(2): 159-189

Dix (2017) Skeptics beware — a story about dowsing. Available online

Enright (1995) Water Dowsing: the Scheunen Experiments. Naturwissenschaften 82: 360-369

Enright (1999) Testing Dowsing the Failure of the Munich Experiment. Skeptical Enquirer, Available online

Hansen (1982) Dowsing: a Review of Experimental Research. Journal of the Society for Psychical Research, 51(792): 343-367

McCarney & al. (2002) Can homeopaths detect homeopathic medicines by dowsing? A randomized, double-blind, placebo-controlled trial. Journal of the Royal Society of Medicine, 95(4): 189–191

Skeptical Enquirer (1999) Letters to the editor. Available online

Walach & Schmidt (1997) Empirical evidence for a non-classical experimenter effect: An experimental, double-blind investigation of unconventional information transfer. Journal of ScientiJic Exploration, 11(1): 59-67

Scienza e paranormale. Considerazioni serali di uno studioso annoiato.

È da un po’ di tempo che frequento la rete. Nel 2009 mi sono iscritto a Facebook e, nel tempo, mi sono trovato a gestire diversi gruppi di carattere scientifico. Sono intervenuto con commenti più o meno pacati in diverse discussioni e mi sono sempre trovato ad affrontare persone che non avevano, e non hanno, idee chiare in merito alla scienza ed al suo impatto sulla società. Tra le varie discussioni, per lo più serali, avute in rete ne ricordo una con un utente in merito al rapporto tra scienza e paranormale. Questo utente si chiedeva :

Scienza e Paranormale: è possibile un incontro tra le due materie per un confronto costruttivo con pari dignità e rispetto o rimangono due mondi incompatibili ed agli antipodi nelle rispettive prigioni mentali?

Cerco di argomentare per chiarire cosa realmente penso del paranormale.

Da una banale ricerca in wikipedia, si trova che paranormale è “quel presunto fenomeno (detto anche anomalo) che risulta contrario alle leggi della fisica e agli assunti scientifici e che, se misurato secondo il metodo scientifico,risulta inesistente o, nel caso di fenomeno esistente, comunque spiegabile sulla base delle conoscenze attuali”. In altre parole il fenomeno paranormale è un fenomeno anomalo sul quale non è possibile, allo stato attuale, dare una spiegazione attendibile sulla base dei modelli scientifici in vigore.

I modelli scientifici sono, per loro natura, migliorabili dal momento che rappresentano solo una rappresentazione della realtà fenomenologica. Il modo più semplice per costruire questi modelli è quello di partire dal sistema semplificato, osservarne il comportamento, descriverlo matematicamente e quindi renderlo progressivamente più complicato. Se il modello ipotizzato per il sistema più semplice è robusto, allora esso sarà in grado di descrivere il comportamento (modello previsionale) del sistema via via più complesso. Nel momento in cui il sistema non può essere più descritto dal modello ipotizzato, questo non perde di validità, ma assume validità ristretta. Ovvero è valido solo per certe condizioni al contorno e non per tutte. Il cambiamento del modello per la descrizione del sistema complesso deve, necessariamente, includere quanto spiegato anche dal modello ristretto alle condizioni al contorno specifiche.

Un esempio per tutti. La legge dei gas ideali (PV=nRT) si applica solo per gas le cui particelle non interagiscono tra loro e sono puntiformi, cioè non hanno dimensione. I gas, in realtà, non solo sono costituiti da particelle che hanno un volume ma interagiscono anche tra loro. Tutti sanno (ed è intuitivo) che il moto stocastico delle particelle di un gas implica che esse si scontrino e rimbalzino in tutte le direzioni. Per tener conto sia delle interazioni tra le particelle e del fatto che il volume del gas è quello occupato dall’insieme delle particelle meno il volume delle stesse si elabora il modello di Van derWaals che tiene conto di questi due parametri. Questo modello, tuttavia, ha anch’esso validità ristretta perché, per esempio, non tiene conto della comprimibilità dei gas. Allora si elabora il modello del viriale. E potrei continuare.

l’osservazione sperimentale

Tutto quanto detto si basa su un fatto assolutamente incontrovertibile e da cui non si può prescindere: l’osservazione sperimentale. Affinché un modello possa essere validato ed essere ritenuto robusto (resistere nel tempo) è necessario fare le osservazioni sperimentali. Queste devono essere fatte secondo criteri ben precisi, ovvero il fenomeno deve essere sotto controllo ed essere riproducibile. Se questo non accade è impossibile elaborare un modello che abbia carattere predittivo generale. Dire che il fenomeno deve essere sotto controllo significa che bisogna conoscere tutti i parametri che consentono l’ottenimento del fenomeno e la sua osservazione. Per esempio, a seconda dei casi, possono essere importanti temperatura, pressione, umidità, fase del sistema etcetc etc. Alla luce dell’insieme di questi parametri si elabora un’ipotesi e si riproduce il fenomeno. Se il fenomeno non avviene nello stesso modo in cui è stato osservato in precedenza, allora vuol dire che non si sono considerate tutte le possibili condizioni al contorno. Bisogna, quindi, variare queste condizioni fino a che non si ottiene esattamente lo stesso fenomeno. A questo punto si incominciano a variare tutti i possibili parametri in modo da falsificare il modello. Questo vuol dire che si cerca di trovare in tutti i modi possibile quell’unico parametro o quella serie di parametri che rendono non vero il modello proposto. Quando questo avviene (ed è il 90% dei casi) si cambia ipotesi e si procede fino a che non si trova un modello che non si riesce a falsificare. Il punto successivo è quello di rendere pubblico il modello e fare in modo che chi lo desidera possa verificare la validità del modello.

Condizioni per un nuovo modello

Frequentemente accade che il modello venga falsificato da persone di gruppi di ricerca che non sono coinvolti fin dal primo momento nella ricerca del modello. Tuttavia, il nuovo modello proposto da questi nuovi ricercatori deve tener conto anche del vecchio, ovvero deve spiegare il comportamento già osservato dai primi ricercatori più le nuove scoperte. Se il modello modificato tiene conto solo delle nuove osservazioni non può essere valido, ma è valido (come detto prima) solo per le specifiche condizioni al contorno.

Fatta questa lunga premessa, si può dire che quelli che vengono ritenuti come fenomeni paranormali sono, in realtà, fenomeni anomali che non possono essere spiegati per diversi ordini di motivi. Il primo potrebbe essere la non riproducibilità del fenomeno. Se il fenomeno non è riproducibile, allora vuol dire che non si controllano tutte le condizioni al contorno perché il fenomeno accade una tantum e la sua rarità non consente di capire cosa bisogna controllare. Il punto di vista scientifico è, quindi, di lasciare il giudizio in sospeso fino a che non si sarà in grado di controllare tutte le condizioni al contorno.

I fulmini

Un esempio di quanto detto è quello dei fulmini di cui non si conosceva la natura fino a che non si è capita la chimica dell’atmosfera. Fino ad allora i fulmini erano considerati rivelazioni del divino. Un altro esempio sono i tornadi che ancora oggi sono difficili da modellizzare benché se ne sia capito molto. Ancora un esempio è legato alla teoria del flogisto che ha avuto un grande seguito fino a quando Lavoisier non ha capito che i processi di combustione sono dovuti a processi di ossidazione e non a perdita di un qualche cosa di non meglio definito. E potrei continuare. Tuttavia, la base comune di tutti questi fenomeni era la loro osservabilità, misurabilità e riproducibilità.

Il secondo motivo della anomalità dei fenomeni potrebbe essere semplicemente la loro non osservabilità. Ovvero il fenomeno semplicemente non è misurabile. Se un fenomeno non è misurabile vuol dire che non esiste, ma che è un’illusione della singola persona o della moltitudine. Qui l’esempio più classico è quello della pareidolia, della telecinesi e così via di seguito.

A questo punto si potrebbe obiettare, come ha fatto l’utente che ha iniziato questo confronto dialettico, che:

Io non posso dire che Diaspar non esiste in quanto la scienza non lo ha mai dimostrato

In realtà questo esempio è fuori luogo, scientificamente parlando, perché parte da un presupposto sbagliato. Infatti, questo commento implica la volontà da parte dello scienziato di non voler scientemente dimostrare l’esistenza di Diaspar, termine usato dall’utente per indicare un generico fenomeno paranormale. Scopo della scienza non è quello di dimostrare l’esistenza o meno di qualcosa. Lo scopo della scienza è quello di spiegare come avvengono i fenomeni osservabili. Se io non sono in grado di osservare Diaspar, semplicemente per me non solo non esiste, ma non ha alcun senso spiegarne il comportamento.

Cosa si conclude da tutto questo? Che i fenomeni paranormali non sono altro che il frutto della fantasia soggettiva. Non hanno alcun riscontro reale e rientrano nell’ambito delle favole.

Share