Mentos e Coca Cola… una fontana di scienza!

Se almeno una volta nella vita hai visto il famoso esperimento in cui delle caramelle Mentos vengono fatte cadere in una bottiglia di Coca Cola (o, più spesso, Diet Coke), conosci già il risultato: una fontana impazzita di schiuma che può superare i tre metri d’altezza (v. il filmato qui sotto).

Ma cosa succede davvero? È solo una semplice reazione fisica? C’entra la chimica? Perché proprio le Mentos? E perché la Diet Coke funziona meglio della Coca normale?

Negli ultimi anni, diversi ricercatori si sono cimentati nello studio scientifico di questo fenomeno, spesso usato come dimostrazione educativa nelle scuole e nei laboratori divulgativi. E ciò che è emerso è una storia sorprendentemente ricca di fisica, chimica, e perfino di gastronomia molecolare.

La nucleazione: come nasce un cambiamento

La parola “nucleazione” descrive il momento in cui, all’interno di un sistema fisico, comincia a svilupparsi una nuova fase. È un concetto fondamentale per comprendere fenomeni come la formazione di gocce in una nube, la cristallizzazione di un solido, o – nel nostro caso – la comparsa di bolle in un liquido soprassaturo di gas.

Secondo la teoria classica della nucleazione, perché si formi una nuova fase (come una bolla di gas in un liquido), è necessario superare una barriera energetica. Questa barriera nasce dal fatto che generare una bolla comporta un costo in termini di energia superficiale (ovvero, bisogna spendere energia per “deformare” i legami a idrogeno che, nel caso dell’acqua, tengono unite le diverse molecole), anche se si guadagna energia liberando il gas.

Il sistema deve dunque “pagare un prezzo iniziale” per creare una bolla sufficientemente grande: questa è la cosiddetta “bolla critica”. Una volta che si supera quella dimensione critica, la formazione della nuova fase (cioè, la crescita della bolla) diventa spontanea e inarrestabile.

Tuttavia, nel mondo reale, è raro che le bolle si formino spontaneamente all’interno del liquido: nella maggior parte dei casi, servono delle “scorciatoie energetiche”. È qui che entra in gioco la nucleazione eterogenea.

Nucleazione eterogenea: quando le superfici danno una spinta

Nel mondo reale, è raro che una nuova fase si formi spontaneamente all’interno del liquido (nucleazione omogenea), perché la probabilità che si verifichi una fluttuazione sufficientemente grande da superare la barriera energetica è molto bassa. Nella maggior parte dei casi, il sistema trova delle “scorciatoie energetiche” grazie alla presenza di superfici, impurità o irregolarità: è quello che si chiama nucleazione eterogenea.

Le superfici ruvide, porose o idrofobe possono abbassare la barriera energetica necessaria per innescare la formazione di una bolla. Per esempio, un piccolo graffio sul vetro, un granello di polvere o una microscopica cavità possono ospitare delle minuscole sacche d’aria che fungono da “embrioni” di bolla. In questi punti, la CO2 disciolta trova un ambiente favorevole per iniziare la transizione verso la fase gassosa, superando più facilmente la soglia critica.

Anche la geometria ha un ruolo: cavità coniche o fessure strette possono concentrare le forze e rendere ancora più facile la nucleazione. In pratica, il sistema approfitta di qualsiasi imperfezione per risparmiare energia nel passaggio di fase.

Il caso delle Mentos: nucleatori perfetti

L’esperimento della fontana di Diet Coke e Mentos è un esempio spettacolare (e rumoroso) di nucleazione eterogenea. Quando le Mentos vengono lasciate cadere nella bottiglia, la loro superficie – irregolare, porosa e ricoperta da uno strato zuccherino solubile – offre migliaia di siti di nucleazione. Ogni microscopica cavità è in grado di ospitare una piccola sacca di gas o di innescare la formazione di una bolla (Figura 1). In più, le Mentos cadono rapidamente fino al fondo della bottiglia, generando nucleazione non solo in superficie, ma in profondità, dove la pressione idrostatica è maggiore. Questo favorisce un rilascio ancora più esplosivo del gas disciolto.

Il risultato? Una vera e propria “valanga di bolle” che si spingono a vicenda verso l’alto, trascinando con sé la soda e formando il famoso geyser, che può raggiungere anche 5 o 6 metri d’altezza.

Figura 1. Nucleazione eterogenea di una bolla su una superficie solida. Le molecole d’acqua a contatto con una superficie solida interagiscono con essa, formando legami che disturbano la rete di legami a idrogeno tra le molecole d’acqua stesse. Questo indebolimento locale della coesione interna rende la zona prossima alla superficie più favorevole all’accumulo di gas disciolto, come la CO2. Il gas si concentra in microcavità o irregolarità della superficie, gonfiando piccole sacche d’acqua. Quando queste sacche superano una dimensione critica, la tensione interna diventa sufficiente a vincere le forze di adesione, e la bolla si stacca dalla superficie, iniziando a crescere liberamente nel liquido. Questo meccanismo, noto come nucleazione eterogenea, è alla base di molti fenomeni naturali e tecnici, incluso l’effetto geyser osservato nel celebre esperimento con Diet Coke e Mentos.

Non è una reazione chimica, ma…

Uno dei miti più diffusi, e da sfatare, è che il famoso effetto geyser della Diet Coke con le Mentos sia il risultato di una reazione chimica tra gli ingredienti delle due sostanze. In realtà, non avviene alcuna trasformazione chimica tra i componenti: non si formano nuovi composti, non ci sono scambi di elettroni né rottura o formazione di legami chimici. Il fenomeno è invece di natura puramente fisica, legato al rilascio improvviso e violento del gas disciolto (CO2) dalla soluzione liquida.

La Coca Cola (e in particolare la Diet Coke) è una soluzione sovrassatura di anidride carbonica, mantenuta tale grazie alla pressione all’interno della bottiglia sigillata. Quando la bottiglia viene aperta, la pressione cala, e il sistema non è più in equilibrio: il gas tende a uscire lentamente. Ma se si introducono le Mentos – che, come abbiamo visto, forniscono una miriade di siti di nucleazione – la CO2 trova una “scappatoia rapida” per tornare allo stato gassoso, formando in pochi istanti una quantità enorme di bolle.

Pur non trattandosi di una reazione chimica nel senso stretto, il rilascio della CO2 provoca alcune conseguenze misurabili dal punto di vista chimico. Una di queste è il cambiamento di pH: la Coca Cola è fortemente acida (pH ≈ 3) perché contiene acido fosforico ma anche CO2 disciolta, che in acqua dà luogo alla formazione di acido carbonico (H2CO3). Quando il gas fuoriesce rapidamente, l’equilibrio viene spostato, l’acido carbonico si dissocia meno, e il pH del liquido aumenta leggermente, diventando meno acido.

Questa variazione, anche se modesta, è stata misurata sperimentalmente in laboratorio, ed è coerente con l’interpretazione fisico-chimica del fenomeno.

In sintesi, si tratta di una transizione di fase accelerata (da gas disciolto a gas libero), facilitata da superfici ruvide: un classico esempio di fisica applicata alla vita quotidiana, più che di chimica reattiva.

Diet Coke meglio della Coca normale?

Sì, e il motivo non è solo la diversa composizione calorica, ma anche l’effetto fisico degli edulcoranti artificiali contenuti nella Diet Coke, in particolare aspartame e benzoato di potassio. Queste sostanze, pur non reagendo chimicamente con le Mentos, abbassano la tensione superficiale della soluzione, facilitando la formazione di bolle e rendendo il rilascio del gas CO2 più efficiente e spettacolare.

La tensione superficiale è una proprietà del liquido che tende a “resistere” alla formazione di nuove superfici – come quelle di una bolla d’aria. Se questa tensione si riduce, il sistema è più “disponibile” a formare molte piccole bolle, anziché poche grandi. E più bolle significa più superficie totale, quindi più spazio attraverso cui il gas può uscire rapidamente.

Anche altri additivi – acido citrico, aromi naturali (come citral e linalolo, Figura 2) e perfino zuccheri – influenzano il comportamento delle bolle. In particolare, molti di questi composti inibiscono la coalescenza, cioè, impediscono che le bolle si fondano tra loro per formare bolle più grandi. Questo porta a una schiuma fatta di bolle piccole, stabili e molto numerose, che massimizzano il rilascio di CO2 e quindi l’altezza della fontana.

Figura 2. Strutture chimiche di alcuni composti aromatici naturali presenti nelle bevande analcoliche. Il citral è una miscela di due isomeri geometrici: trans-citrale (geraniale) e cis-citrale (nerale), entrambi aldeidi con catena coniugata e intensa nota di limone. Il linalolo è un alcol terpenico aciclico, con due doppi legami e un gruppo ossidrilico (–OH), noto per il suo profumo floreale. Questi composti non partecipano a reazioni chimiche durante l’esperimento Diet Coke–Mentos, ma agiscono sul comportamento fisico del sistema, favorendo la formazione di schiuma fine e persistente e contribuendo all’altezza del geyser grazie alla inibizione della coalescenza delle bolle.

E che dire dei dolcificanti classici, come il saccarosio (lo zucchero da cucina)? A differenza dell’aspartame, il saccarosio non abbassa la tensione superficiale, anzi la aumenta leggermente. Tuttavia, anch’esso contribuisce a stabilizzare le bolle, soprattutto se combinato con altri soluti come acidi organici o sali. Questo spiega perché le bevande zuccherate (come la Coca Cola “classica”) producano comunque geyser abbastanza alti, ma meno impressionanti rispetto alle versioni “diet”.

Esperimenti controllati hanno mostrato che la Diet Coke produce le fontane più alte, seguita dalle bevande zuccherate e, in fondo, dall’acqua frizzante (che contiene solo CO2 e acqua): segno evidente che la presenza e la natura dei soluti giocano un ruolo chiave, anche in assenza di reazioni chimiche.

E se uso altre cose al posto delle Mentos?

La fontana di Coca Cola può essere innescata anche da altri materiali: gessetti, sabbia, sale grosso, zucchero, caramelle dure o persino stimolazioni meccaniche come gli ultrasuoni. Qualsiasi sostanza o perturbazione capace di introdurre nel liquido dei siti di nucleazione può innescare il rilascio del gas. Tuttavia, tra tutte le opzioni testate, le Mentos restano il materiale più efficace, producendo fontane più alte, più rapide e più spettacolari.

Questo successo si deve a una combinazione di caratteristiche fisiche uniche:

  1. Superficie molto rugosa e porosa
    Le Mentos hanno una superficie irregolare, visibile chiaramente al microscopio elettronico (SEM), con migliaia di microcavità che fungono da siti di nucleazione eterogenea. Più rugosità significa più bolle che si formano contemporaneamente, e quindi maggiore pressione generata in tempi brevissimi.
  2. Densità e forma ottimali
    Le caramelle sono sufficientemente dense e lisce all’esterno da cadere velocemente sul fondo della bottiglia, senza fluttuare. Questo è cruciale: la nucleazione avviene lungo tutta la colonna di liquido, non solo in superficie, e la pressione idrostatica più alta in basso aiuta la formazione più vigorosa di bolle. In confronto, materiali più leggeri (come il sale fino o la sabbia) galleggiano o si disperdono più lentamente, riducendo l’effetto.
  3. Rivestimento zuccherino solubile
    Il rivestimento esterno delle Mentos, a base di zuccheri e gomma arabica, si dissolve rapidamente, liberando nuovi siti di nucleazione man mano che la caramella si bagna. Inoltre, alcuni componenti del rivestimento (come emulsionanti e tensioattivi) favoriscono la schiuma e inibiscono la coalescenza delle bolle, contribuendo alla formazione di un getto più sottile e stabile

Un esperimento che insegna molto (e sporca parecchio)

Dietro quella che a prima vista sembra una semplice (e divertentissima) esplosione di schiuma, si nasconde una miniera di concetti scientifici: termodinamica, cinetica, tensione superficiale, solubilità dei gas, equilibrio chimico, pressione, nucleazione omogenea ed eterogenea. Un’intera unità didattica condensata in pochi secondi di spettacolo.

Ed è proprio questo il suo punto di forza: l’esperimento della fontana di Diet Coke e Mentos è perfetto per essere proposto nelle scuole, sia del primo grado (scuola media) che del secondo grado (licei, istituti tecnici e professionali), senza bisogno di strumenti di laboratorio complessi o costosi. Bastano:

  • qualche bottiglia di Coca Cola o altra bibita gassata,
  • delle Mentos (o altri oggetti solidi rugosi da confrontare: gessetti, zucchero, sabbia…),
  • una penna, un quaderno e un buon occhio per osservare e registrare cosa succede,
  • e, immancabili, canovacci, secchi, stracci e un po’ di detersivo per sistemare l’aula (o il cortile) dopo il disastro creativo!

Non solo: questo tipo di attività permette di lavorare in modalità laboratoriale attiva, stimolando l’osservazione, la formulazione di ipotesi, la progettazione sperimentale, la misura, l’analisi dei dati, la comunicazione scientifica. In altre parole: il metodo scientifico in azione, alla portata di tutti.

Insomma, la fontana di Diet Coke e Mentos non è solo un video virale da YouTube: è un fenomeno scientificamente ricchissimo, capace di affascinare e coinvolgere studenti e insegnanti. Provatelo (con le dovute precauzioni)… e preparatevi a fare il pieno di chimica!

Riferimenti

Baur & al. (2006) The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions. J. Chem. Educ. 83(4), 577. https://doi.org/10.1021/ed083p577.

Coffey (2008) Diet Coke and Mentos: What is really behind this physical reaction? Am. J. Phys. 76, 551. http://dx.doi.org/10.1119/1.2888546.

Eichler & al. (2007) Mentos and the Scientific Method: A Sweet Combination. J. Chem. Educ. 84(7), 1120. https://doi.org/10.1021/ed084p1120.

Kuntzleman & al. (2017) New Demonstrations and New Insights on the Mechanism of the Candy-Cola Soda Geyser. J. Chem. Educ. 94, 569−576. https://doi.org/10.1021/acs.jchemed.6b00862.

Maris (2006) Introduction to the physics of nucleation. C. R. Physique 7, 946–958. https://doi.org/10.1016/j.crhy.2006.10.019.

Sims & Kuntzleman (2016) Kinetic Explorations of the Candy−Cola Soda Geyser. J. Chem. Educ. 93, 1809−1813. https://pubs.acs.org/doi/10.1021/acs.jchemed.6b00263.

…e per i docenti della scuola secondaria di primo e secondo grado, ecco una scheda laboratorio pronta all’uso, per trasformare questa esplosione di schiuma in un’attività scientifica coinvolgente.

Scheda laboratorio – Un geyser di CO2 tra scienza e divertimento

🧪 Esperimento: La fontana di Diet Coke e Mentos

🎯 Obiettivi didattici

  • Osservare e descrivere fenomeni di nucleazione eterogenea
  • Comprendere il concetto di tensione superficiale e solubilità dei gas
  • Riconoscere la differenza tra fenomeni fisici e chimici
  • Introdurre il metodo scientifico: osservazione, ipotesi, verifica, confronto dati
  • Stimolare il pensiero critico e il lavoro di gruppo

🧰 Materiali

Quantità Materiale
1–2 Bottiglie da 1.5 o 2 L di Coca Cola/Diet Coke
1 confezione Mentos (preferibilmente menta)
facoltativi Zucchero, sabbia, gessetti, sale grosso, caramelle dure
1 Contenitore/sottovaso/catino (per contenere la fontana)
✔️ Carta, penne o tablet per prendere appunti
✔️ Canovacci, stracci, secchio, detersivo

📌 Procedura base (semplificata)

  1. Posizionare la bottiglia su un piano all’aperto o in un contenitore.
  2. Preparare il sistema di rilascio rapido delle Mentos (ad esempio con un cartoncino a scivolo o un tubo).
  3. Far cadere rapidamente 1–3 Mentos nella bottiglia aperta.
  4. Osservare il fenomeno: altezza, durata, forma della fontana, eventuale schiuma residua.
  5. Ripetere con altri materiali (gesso, sabbia, sale…) e confrontare l’effetto.
  6. Annotare le osservazioni. Stimolare ipotesi: perché cambiano i risultati?

📚 Spunti teorici (modulabili per il grado scolastico)

  • Fisica: pressione interna, energia potenziale, accelerazione del liquido
  • Chimica fisica: tensione superficiale, solubilità dei gas, acido carbonico e variazione di pH
  • Chimica generale: differenza tra cambiamento fisico e chimico
  • Scienza dei materiali: effetto della rugosità e della forma dei solidi sulla nucleazione
  • Metodo scientifico: osservazione, variabili, confronto controllato

🧠 Domande guida per la discussione

  • Cosa accade quando inseriamo le Mentos nella bibita?
  • Che differenza c’è tra Coca Cola normale e Diet Coke?
  • Perché altri materiali (es. sale o sabbia) funzionano diversamente?
  • È una reazione chimica o un fenomeno fisico?
  • Come potremmo misurare e confrontare le fontane? (es. altezza, tempo, schiuma)

📏 Varianti possibili

  • Cambiare la temperatura della bibita (fredda vs ambiente)
  • Provare con acqua frizzante o altre bevande gassate
  • Usare un righello o griglia per stimare l’altezza
  • Fare video al rallentatore e analizzare la dinamica
  • Includere una prova con ultrasuoni (se si dispone di un pulitore a ultrasuoni)

🚸 Note di sicurezza

  • L’esperimento è sicuro, ma va fatto in ambienti controllati o all’aperto
  • Tenere gli occhi lontani dal getto (meglio osservare di lato)
  • Prevedere pulizia immediata di superfici scivolose o appiccicose

La chimica del barbecue. Cosa si nasconde dietro una grigliata perfetta?

Cosa rende irresistibile il profumo che si sprigiona da un barbecue?

Perché una bistecca alla brace ha un sapore così complesso e unico rispetto a una cotta in padella? E come mai la semplice fiamma, a contatto con carne, verdure o formaggi, riesce a creare un’esplosione di aromi che conquista tutti?

La risposta non sta solo nell’abilità del cuoco o nella qualità degli ingredienti: è scritta nella chimica, una storia affascinante fatta di temperature, reazioni e molecole aromatiche. Una danza invisibile che trasforma pezzi di carne e verdura in piatti dal profumo inconfondibile.

Capire cosa succede sulla griglia non serve solo a saziare la curiosità scientifica: significa anche imparare a domare meglio il fuoco, scegliere i tempi giusti, sfruttare le reazioni naturali per ottenere una grigliata perfetta.

E poi, diciamolo: sapere che dietro ogni morso c’è la celebre reazione di Maillard, o che il fumo trasporta molecole come guaiacolo e siringolo, offre un ottimo argomento per fare colpo sugli amici mentre si aspetta che la brace sia pronta.

La reazione di Maillard: la magia chimica dietro la crosticina

Quando il cibo supera circa 140–165 °C, sulla superficie degli alimenti avviene una serie di reazioni chimiche note come reazione di Maillard. È un processo complesso che coinvolge principalmente:

  • i gruppi carbonilici (–C=O) degli zuccheri riducenti presenti negli alimenti,
  • e i gruppi amminici (–NH₂) degli amminoacidi o delle catene laterali delle proteine.

Questi gruppi reagiscono formando inizialmente glicosilamine instabili, che poi si trasformano in composti chiamati Amadori (o composti di Amadori). Da qui, la reazione prosegue dando luogo a decine di trasformazioni successive che generano:

  • pigmenti bruni (melanoidine)
  • composti aromatici come furani, pirazine, tiofeni
  • molecole che arricchiscono l’aroma con note di tostato, caramellato, “nocciolato”.

La struttura di tutte le molecole menzionate sono riportate in Figura 1.

Figura 1. Strutture chimiche tipiche dei prodotti della reazione di Maillard, responsabili di aroma e colore durante la cottura.

È proprio questo intricato intreccio chimico che regala alla carne grigliata il suo sapore inconfondibile e la crosticina croccante.

Dal punto di vista pratico, la Maillard richiede:

  • una temperatura sufficientemente alta (troppo bassa: la reazione non parte; troppo alta: carbonizzazione e gusto amaro),
  • una superficie relativamente asciutta, perché l’acqua in eccesso dissipa il calore e rallenta il processo.

Il ruolo del fumo: aromi che vengono dal fuoco

Quando il grasso, i succhi della carne o i condimenti colano sulle braci incandescenti, non si limitano a bruciare: subiscono una vera e propria pirolisi (decomposizione termica in assenza o carenza di ossigeno) che libera una miriade di composti volatili. Tra questi troviamo:

  • aldeidi e chetoni, che contribuiscono a note dolciastre o leggermente fruttate;
  • fenoli (come guaiacolo e siringolo), responsabili delle tipiche note affumicate, simili a quelle che si percepiscono in alcuni whisky torbati;
  • acidi organici, che aggiungono un tocco di acidità e complessità;
  • e purtroppo anche idrocarburi policiclici aromatici (IPA), potenzialmente dannosi se la combustione è incontrollata o eccessiva.

Le strutture tipiche dei composti elencati sono riportate in Figura 2.

Il tipo di legno scelto per alimentare il barbecue o l’affumicatura ha un ruolo fondamentale nella qualità e nel profilo aromatico del fumo.

  • Il rovere tende a produrre fumi più robusti, ricchi di tannini e aromi complessi;
  • il ciliegio dona sentori più dolci e delicati;
  • il melo regala un affumicato leggero, quasi fruttato.

La combustione del legno stesso sprigiona anche lignina e cellulosa che, degradandosi, originano i composti aromatici più caratteristici. È per questo che chi ama il barbecue studia con attenzione quale legno usare, dosando la quantità di fumo per evitare che prevalga un sapore amaro o eccessivamente bruciato.

In sintesi: quando si sente dire che “la brace dà sapore”, dietro c’è una vera orchestra chimica che lavora nel fumo e nei vapori caldi, trasformando il cibo e arricchendolo di complessità.

Figura 2. Composti volatili e potenzialmente tossici che si formano durante la pirolisi dei grassi e del legno nel barbecue.

Brace sì, fiamma no: l’arte di domare il fumo

Chi si avvicina al barbecue scopre presto un segreto fondamentale: la grigliata perfetta non si fa sulla fiamma viva, ma sopra una brace uniforme.
Le fiamme dirette, infatti, bruciano troppo rapidamente la superficie del cibo, creando zone carbonizzate e amare e aumentando la formazione di composti potenzialmente nocivi (come gli idrocarburi policiclici aromatici, Figura 2).

Le braci, invece, rilasciano un calore più stabile e diffuso che permette alle reazioni come la Maillard di avvenire con calma, creando la crosticina dorata senza bruciare.

Anche il fumo va controllato:

  • Evitare che grassi o marinature troppo oleose cadano in quantità eccessive sulla brace, perché produrrebbero fiammate improvvise e fumo acre.
  • Usare legni stagionati, senza vernici o resine, per generare un fumo aromatico più “pulito”.
  • Regolare l’ingresso dell’aria (nei barbecue con coperchio) per mantenere una combustione lenta e controllata.

Così, la magia chimica lavora al meglio: il calore trasforma lentamente le proteine e gli zuccheri, il fumo arricchisce di note affumicate e il risultato sarà una carne saporita e profumata, senza retrogusti amari o bruciati.

Marinature, verdure e formaggi: come i condimenti cambiano la chimica del barbecue

Non c’è barbecue senza spezie, erbe, marinature… e neanche senza qualche verdura o formaggio sulla griglia.
Tutti questi “ingredienti extra” non servono solo a insaporire, ma modificano davvero la chimica della cottura.

Le marinature a base di olio, vino, birra o succo di limone non solo aggiungono aromi, ma:

  • rendono la carne più tenera grazie a una parziale denaturazione delle proteine (specialmente per effetto di acidi e alcol);
  • favoriscono la formazione di crosticine più aromatiche, perché gli zuccheri e le proteine extra della marinata diventano nuovi “combustibili” per la reazione di Maillard;
  • creano una sottile pellicola protettiva che limita la perdita di succhi durante la cottura.

Le spezie e le erbe portano in dote oli essenziali e molecole aromatiche che, con il calore, si volatilizzano o si trasformano, generando sentori nuovi: pensiamo al timolo del timo, al carvacrolo dell’origano, oppure alla capsaicina del peperoncino che resiste anche alla cottura.

Verdure e formaggi, a loro volta, reagiscono in modi diversi:

  • le verdure ricche di zuccheri, come peperoni e cipolle, sviluppano aromi dolci e note caramellate;
  • i formaggi, grazie alla loro parte proteica e grassa, diventano veri “catalizzatori” di Maillard, aggiungendo complessità e note tostate.

In pratica, ogni ingrediente che aggiungiamo porta nuovi substrati chimici da trasformare sul fuoco, moltiplicando profumi e sapori.
Ecco perché ogni barbecue diventa unico: dipende dal legno scelto, dalle spezie, dai succhi della carne, dal tipo di brace… un mix irripetibile di scelte e reazioni chimiche.

Il controllo del calore: scienza e arte della brace

Il barbecue non è solo istinto: è vera e propria termodinamica applicata.
Il calore che cuoce la carne arriva in tre modi diversi:

  • per irraggiamento, cioè l’energia che parte dalle braci incandescenti e investe direttamente il cibo;
  • per conduzione, quando la parte a contatto con la griglia trasmette calore agli strati più interni;
  • per convezione, grazie al movimento dell’aria calda che avvolge e cuoce lentamente anche le zone non direttamente esposte.

Gestire questi tre flussi è fondamentale per evitare che la carne diventi stopposa fuori e cruda dentro.

  • La cottura diretta, sopra la brace viva, genera subito temperature elevate: è ideale per pezzi piccoli e sottili (come bistecche o spiedini) e per formare la crosticina grazie alla reazione di Maillard.
  • La cottura indiretta, invece, tiene la carne lontana dalla fonte diretta di calore e sfrutta il calore più dolce della convezione: perfetta per grossi tagli o per cuocere lentamente senza bruciare la superficie.

La bravura del grigliatore sta proprio nell’alternare queste due tecniche: una rosolatura iniziale a fuoco diretto per fissare i succhi e formare la crosta, seguita da una fase più lunga a fuoco indiretto per portare l’interno alla temperatura desiderata.

Infine, non bisogna dimenticare che diversi alimenti reagiscono in modo diverso al calore:

  • le carni più grasse resistono meglio alle alte temperature perché il grasso protegge e ammorbidisce le fibre;
  • i tagli magri o le verdure, invece, rischiano di asciugarsi e richiedono temperature più dolci o cotture più brevi.

In breve, dietro una grigliata perfetta c’è sempre un grigliatore che, anche senza saperlo, diventa un piccolo ingegnere del calore.

Perché la carne diventa tenera (e perché deve riposare)

Durante la cottura, nella carne avviene una trasformazione invisibile ma fondamentale: le proteine, soprattutto quelle del collagene presente nei tessuti connettivi, iniziano a denaturarsi sopra i 60°C.
Quando la temperatura interna sale intorno ai 70-80°C, il collagene si trasforma lentamente in gelatina, una sostanza che lega l’acqua e rende la carne più succosa e tenera.

Ecco perché i tagli ricchi di tessuto connettivo, come costine, punta di petto o spalla, danno il meglio con la tecnica “low & slow”: cotture a bassa temperatura (90-120°C sulla griglia) per diverse ore. Questo tempo serve proprio a permettere alle fibre dure di “sciogliersi” e diventare morbide.

Ma il processo non si ferma quando togliamo la carne dal barbecue: per qualche minuto, il calore continua a diffondersi verso il centro, e i succhi che durante la cottura si sono spinti verso l’esterno rientrano lentamente nelle fibre.
È il motivo per cui gli chef consigliano sempre di lasciare riposare la carne qualche minuto, coperta leggermente con un foglio di alluminio:

  • se la tagliassimo subito, i succhi colerebbero sul tagliere, lasciando la carne asciutta;
  • invece, aspettando, otterremo una fetta più umida, uniforme e saporita.

Anche qui, la chimica è la nostra alleata: conoscere queste trasformazioni ci insegna che il riposo non è solo “una pausa”, ma l’ultimo passo di cottura, essenziale per valorizzare ore di preparazione.

Il lato nascosto del barbecue: quando la chimica diventa un rischio

Non tutto ciò che nasce sulla brace è buono: la combustione incompleta del legno, del carbone o del grasso colato sulla brace produce molecole come gli idrocarburi policiclici aromatici (IPA) e le ammine eterocicliche. Questi composti, se assunti in grandi quantità o per lunghi periodi, sono potenzialmente cancerogeni.

Un aspetto poco noto è che gli IPA sono ancora più pericolosi se inalati: respirare il fumo che sale dalla griglia espone direttamente i tessuti dei polmoni, dove queste molecole possono trasformarsi in forme ancora più reattive, capaci di legarsi al DNA. È lo stesso meccanismo per cui il fumo di sigaretta aumenta il rischio di diversi tipi di carcinoma polmonare.

Cosa possiamo fare per ridurre il rischio senza rinunciare al piacere del barbecue?

  • Evitare fiammate e contatto diretto della carne con la fiamma.
  • Cuocere a brace, non a fiamma viva.
  • Marinare la carne prima di cuocerla: le marinature a base di vino, birra, olio, spezie ed erbe aromatiche contengono antiossidanti che riducono la formazione di ammine eterocicliche.
  • Rimuovere le parti carbonizzate prima di mangiare.
  • Usare legni adatti e ben stagionati, evitando resine o additivi chimici.

In sintesi: conoscere i meccanismi chimici non serve solo a far bella figura con gli amici, ma anche a grigliare in modo più sano e consapevole.

I consigli dello scienziato del BBQ (non del grigliatore esperto)

Non sono un maestro della griglia. Sono un chimico che, incuriosito dai profumi e dalle reazioni che si sprigionano da una grigliata, ha deciso di studiare cosa accade davvero tra brace, carne e molecole.

Ecco alcuni spunti – scientificamente fondati – per una grigliata più gustosa e (un po’) più sana:

  • Brace, non fiamma viva: il calore della brace è più stabile e uniforme. Evita fiammate che carbonizzano la carne e favoriscono la formazione di sostanze indesiderate.
  • Marinature intelligenti: acidi (limone, vino, aceto) e antiossidanti (spezie, erbe, birra) non solo danno sapore, ma riducono la formazione di composti potenzialmente dannosi.
  • Cottura indiretta per i pezzi grandi: permette al calore di penetrare meglio, ammorbidendo i tessuti connettivi senza bruciare l’esterno.
  • Riposo dopo la griglia: aspettare qualche minuto prima di tagliare la carne permette ai succhi di ridistribuirsi e la rende più tenera e succosa.
  • Niente legna verniciata o resinosa: usa legni naturali e stagionati per un fumo aromatico e sicuro.
  • Togli il grasso in eccesso: meno gocciolamenti sulla brace = meno fumo acre e meno IPA nell’aria.

Non servono strumenti da laboratorio o complicati termometri molecolari: basta un po’ di consapevolezza e curiosità per trasformare la grigliata in un piccolo esperimento scientifico… con ottimi risultati nel piatto.

Conclusione: scienza e passione sulla griglia

Capire un po’ di chimica non toglie nulla alla poesia del barbecue: anzi, la arricchisce. Permette di scegliere meglio il tipo di legno, il taglio di carne, la temperatura e i tempi giusti. Così, la prossima volta che preparerete la brace, potrete raccontare agli amici che dietro quella crosticina dorata si nasconde una sinfonia di reazioni, dalla Maillard ai composti aromatici del fumo, che i chimici studiano da decenni.
E magari, tra una costina e una birra, ci sarà anche spazio per un po’ di divulgazione scientifica fatta con leggerezza e… buon gusto.

P.S. Se alla fine qualcosa dovesse andare storto sulla griglia… ricordatevi: è sempre colpa della termodinamica, non del chimico che vi ha raccontato la storia 😎🥩🤓

📚 Letture consigliate

Harold McGee – On Food and Cooking: The Science and Lore of the Kitchen

Nathan Myhrvold & al. – Modernist Cuisine: The Art and Science of Cooking

Jeff Potter – Cooking for Geeks: Real Science, Great Hacks, and Good Food

Microplastiche, lavastoviglie e fake news: come orientarsi tra dati e paure

Già in un mio precedente articolo avevo affrontato il tema delle microplastiche, cercando di distinguere tra rischi reali, ipotesi ancora in fase di studio e allarmismi infondati. Se volete rinfrescarvi la memoria o approfondire meglio il quadro generale, potete leggerlo qui:
👉 Microplastiche: i rischi che conosciamo, le sorprese che non ti aspetti

In questa sede voglio, invece, portare alla vostra attenzione il pericolo della divulgazione basata sull’allarmismo.

33 milioni di micro- e nanoplastiche? Cosa c’è davvero dietro le notizie virali

Negli ultimi giorni si è diffusa online una notizia allarmante: le lavastoviglie sarebbero una fonte importante di microplastiche, con milioni di particelle rilasciate ad ogni ciclo di lavaggio. Su siti come HDBlog (vedi screenshot qui sotto) si parla addirittura di 33 milioni di nanoplastiche generate da un solo ciclo di lavaggio, dipingendo un quadro piuttosto drammatico per l’ambiente domestico e urbano.

Immagine presa dal sito HDBlog

Tuttavia, analizzando con attenzione lo studio scientifico originale su cui si basa questa notizia, emergono diversi aspetti importanti e ben diversi da quelli riportati in modo semplicistico e sensazionalistico da molti siti di “pseudo divulgazione”.

Innanzitutto, lo studio mostra che sì, le lavastoviglie rilasciano micro- e nanoplastiche, ma la quantità è estremamente bassa: meno di 6 milligrammi di plastica all’anno per persona, cioè meno del peso di un chicco di riso. Paragonare questo dato numerico alla dichiarazione di milioni di particelle è fuorviante, perché il numero di particelle non dice nulla sulla massa o sull’impatto reale, che rimane trascurabile su base individuale.

Inoltre, la tipologia di plastica e la dimensione delle particelle variano in base al tipo di articolo lavato (polietilene, polipropilene, nylon, ecc.), e i materiali più “vecchi” o usurati rilasciano più frammenti. Lo studio suggerisce quindi che sia importante approfondire come l’invecchiamento della plastica influisca sulla generazione di microplastiche, cosa che non viene mai menzionata nei titoli allarmistici.

Dal punto di vista ambientale, sebbene i sistemi di trattamento delle acque reflue trattengano circa il 95% delle microplastiche, la quantità complessiva globale rilasciata nell’ambiente sta crescendo con l’aumento dell’uso della plastica. Tuttavia, le lavastoviglie domestiche rappresentano solo una piccola fonte rispetto ad altre.

Un articolo più attendibile e chiaro sull’argomento, che riporta fedelmente i risultati della ricerca, è quello di Phys.org, sito scientifico noto per l’accuratezza e la qualità della divulgazione. Vi consiglio di leggere anche lì per avere un quadro completo e serio della situazione.

Come riconoscere le fake news ambientali?

Molto spesso mi chiedono: “Se non sono esperto, come faccio a capire se una notizia è attendibile”? La risposta non è semplice, ma c’è una regola d’oro: non fermatevi mai alla prima fonte che conferma ciò che già pensate o che alimenta le vostre paure o convinzioni. Spesso chi cerca notizie sensazionalistiche cade nel cosiddetto cherry picking, ovvero sceglie solo quei dati o informazioni che supportano la propria idea, ignorando tutto il resto. Questo atteggiamento è comune a chi si sente “rivoluzionario” o “antisistema”, ma in realtà non ha le competenze scientifiche per comprendere a fondo la questione.

Per evitare di cadere in queste trappole, è fondamentale confrontare le informazioni con fonti diverse e affidabili, preferendo siti di divulgazione scientifica consolidata, che spiegano dati, metodi e limiti delle ricerche. Ma come riconoscere un sito davvero affidabile? Ecco alcuni indicatori:

  • Chiarezza e trasparenza delle fonti: i siti seri riportano sempre riferimenti precisi agli studi scientifici originali o a istituti riconosciuti, spesso con link diretti alle pubblicazioni o informazioni sugli autori.

  • Presentazione equilibrata dei dati: non si limitano a enfatizzare solo risultati sensazionalistici, ma spiegano anche i limiti delle ricerche e le diverse interpretazioni possibili.

  • Assenza di titoli esagerati o clickbait: i titoli sono informativi, senza allarmismi o esagerazioni mirate solo a catturare l’attenzione.

  • Autori qualificati e trasparenza: i contenuti sono scritti o revisionati da esperti o giornalisti scientifici con esperienza e il sito fornisce informazioni su chi li produce.

  • Aggiornamenti regolari e dialogo con i lettori: i siti affidabili aggiornano le informazioni con nuovi studi, correggono eventuali errori e talvolta rispondono alle domande o ai commenti.

  • Scopo divulgativo ed educativo: l’obiettivo è informare e spiegare con rigore, non vendere prodotti o promuovere agende ideologiche.

Le testate generaliste o i siti di pseudo divulgazione spesso puntano più al click facile e all’effetto emotivo che a un’informazione rigorosa e bilanciata. Il risultato è un circolo vizioso di paure ingiustificate, confusione e disinformazione, che non aiuta né il pubblico né la causa ambientale che vogliamo davvero sostenere.

Conclusioni

La lotta all’inquinamento da plastica passa innanzitutto dal controllo e dalla prevenzione all’origine, riducendo l’uso di plastica, migliorando il riciclo e introducendo filtri efficaci nelle apparecchiature domestiche come lavatrici e lavastoviglie. Non facciamoci ingannare da titoli e numeri sensazionalistici: l’informazione corretta è il primo passo per agire con consapevolezza.

L’atomo della pace: This is the dawning of the Age of Aquarius

“L’energia liberata dall’atomo non sarà più impiegata per la distruzione, ma per il bene dell’umanità.” Con queste parole, nel 1953, il presidente degli Stati Uniti Dwight D. Eisenhower lanciava al mondo il programma Atoms for Peace, in un celebre discorso all’Assemblea Generale delle Nazioni Unite. Era il tentativo, ambizioso e visionario, di trasformare il simbolo stesso della guerra in una promessa di progresso, usando le tecnologie nucleari non per armare le nazioni, ma per alimentare ospedali, centrali elettriche e laboratori scientifici.

Settant’anni dopo, quella visione resta più attuale che mai. In un pianeta che affronta crisi ambientali sempre più gravi e una domanda crescente di energia, l’atomo torna a farsi sentire: non come spettro del passato, ma come possibile chiave per un futuro più sostenibile.

Eppure, mentre la scienza offre strumenti per usare l’energia nucleare a beneficio della società, c’è ancora chi preferisce impiegarla per rafforzare equilibri di potere instabili, costruendo arsenali atomici in grado di distruggere il pianeta che abitiamo. Una scelta anacronistica, fondata su interessi politici miopi e incapaci di cogliere il potenziale positivo di una delle scoperte più straordinarie del Novecento.

Nel dibattito sulla transizione energetica, l’energia nucleare torna oggi al centro dell’attenzione. Di fronte all’urgenza climatica e alla crescente domanda globale di energia, le tecnologie nucleari civili si presentano come una delle soluzioni più promettenti per garantire una produzione elettrica stabile, sicura e a basse emissioni di carbonio.

Nonostante il peso simbolico lasciato da eventi come Chernobyl e Fukushima, i dati raccolti in decenni di esercizio mostrano che il nucleare civile è, per unità di energia prodotta, una delle fonti più sicure e pulite disponibili. Le nuove tecnologie oggi in sviluppo, come i reattori modulari di piccola taglia (SMR) e i reattori di IV generazione, puntano a migliorare ulteriormente la sicurezza, l’efficienza del combustibile e la gestione dei rifiuti. Alcuni progetti prevedono sistemi di sicurezza passiva, in grado di spegnere il reattore in caso di emergenza senza intervento umano né alimentazione elettrica esterna. Altri lavorano su cicli del combustibile chiusi, per ridurre drasticamente la quantità di scorie radioattive a lunga vita.

Parallelamente, progetti come ITER e numerose iniziative private stanno esplorando la strada della fusione nucleare, l’unica tecnologia in grado di imitare il funzionamento del Sole: energia virtualmente illimitata, senza il rischio di fusione del nocciolo e con rifiuti di gran lunga meno problematici rispetto alla fissione.

La chimica ambientale resta al cuore di queste sfide: dalla separazione degli attinidi alla progettazione di materiali resistenti, dalla speciazione degli isotopi radioattivi alla modellazione del loro comportamento nel suolo e nelle acque sotterranee. Capire come gli elementi si muovono, decadono, si adsorbono o si fissano in forma solida non è solo un esercizio accademico: è una condizione necessaria per progettare impianti più sicuri, prevedere il comportamento delle scorie e gestire correttamente il rischio.

Tuttavia, un ostacolo importante resta la percezione pubblica del rischio. L’energia nucleare continua a suscitare paure profonde, spesso basate su eventi eccezionali e su una comunicazione scientifica carente. Colmare questo divario tra realtà tecnica e immaginario collettivo è una responsabilità etica, oltre che culturale.

I radionuclidi non sono pericolosi per natura. Lo diventano solo quando vengono gestiti con superficialità, trascuratezza o opacità. Gli stessi elementi che in passato hanno provocato danni enormi se impiegati in modo irresponsabile, oggi ci permettono di curare malattie, studiare il passato, comprendere il clima e produrre energia pulita.

Abbiamo ereditato l’età dell’atomo come simbolo di potere e minaccia, ma possiamo ancora trasformarla in qualcos’altro. Forse è il momento di farla coincidere, almeno in parte, con quella età dell’Acquario cantata negli anni ’60: un’epoca immaginata di pace, di fiducia nella scienza, di armonia tra progresso e umanità.

Non si tratta di utopia, ma di responsabilità. Perché l’atomo, da solo, non porta né salvezza né rovina. È la mano che lo guida, e la visione che lo orienta, a determinarne il destino.

Sta a noi decidere se vivere nella paura del passato o costruire, con consapevolezza, un futuro possibile e migliore.

Una buccia vi sfamerà

Dalla fame di guerra al valore nascosto negli scarti: viaggio scientifico e umano nella buccia di patata.

Mi sto avvicinando ai sessant’anni. È più il tempo che ho vissuto che quello che ancora mi resta e, con la vecchiaia, certe volte vengo sommerso dai ricordi di quando ero piccolo. Entrambi i miei genitori hanno vissuto la guerra. Mia madre come bambina. Nata nel 1938, aveva circa un anno quando Hitler invase la Polonia e circa due quando l’Italia entrò in guerra. Ora non c’è più. È scomparsa nel 2016 per le conseguenze di un tumore ai polmoni. Ma mi ricordo che di tanto in tanto le venivano dei flash grazie ai quali ricordava di quando i suoi fratelli (lei era l’ultima di quattro; ben 22 anni la separavano dal fratello più grande) la prendevano in braccio cercando di non terrorizzarla per accompagnarla nei rifugi anti aerei. Un po’ come nel film “La vita è bella” che ha valso a Roberto Benigni il premio Oscar.

Mio padre, invece, di sedici anni più anziano di mia madre, ha passato l’intera guerra come POW (prisoner of war) in Africa. Si era trasferito in Etiopia per lavorare assieme agli zii quando aveva circa 16 anni e si trovava ad Adis Abeba come impiegato civile quando gli inglesi sconfissero gli italiani. Fu imprigionato per cinque anni in vari campi di prigionia sparsi per il continente africano e ha sempre raccontato degli stenti che ha dovuto sopportare per poter sopravvivere: dagli incontri di pugilato contro pugili professionisti per poter racimolare qualche alimento per tenersi in vita, alle fosse scavate nella sabbia nelle quali si seppelliva per sopravvivere al caldo dei deserti africani. Anche mio padre non c’è più. È scomparso nel 1998 ed anche lui per le conseguenze di tumori ai polmoni.

Non sto scrivendo questa storia per intenerire, ma solo per creare il contesto di quanto mi accingo a raccontare.

Sia dai racconti dei miei genitori, sia da quelli che faceva mia nonna, la madre di mio padre – l’unica nonna che ho conosciuto, ho sempre saputo che la guerra è una brutta bestia. Lo sanno benissimo tutti quelli che ancora oggi sono sotto i bombardamenti: il cibo scarseggia, la fame, quella vera, non quella da “buco allo stomaco” di noi viziati che le guerre non le abbiamo mai vissute e viviamo, sostanzialmente, nell’opulenza, si fa sentire. E quando la fame si fa sentire si mangia qualunque cosa, altro che “questo non mi piace” o “ho una lieve intolleranza al glutine”. Quando la fame avanza, ci mangeremmo qualsiasi cosa. Ed è quello che accadeva durante la guerra: anche quelli che per noi oggi sono scarti, venivano usati per alimentarsi. E sapete quali scarti venivano usati, tra gli altri? Le bucce di patata.

Quando me lo raccontavano non riuscivo a immaginarlo. Le bucce? Quelle che si buttano via senza pensarci? Eppure, col tempo, e forse anche grazie al mio lavoro, ho imparato che il racconto di mia nonna e dei miei genitori era molto più che una memoria di sopravvivenza: era un piccolo spaccato di biochimica popolare.

Le bucce non sono rifiuti

Dal punto di vista nutrizionale, le bucce di patata non sono uno scarto. Al contrario: rappresentano una parte preziosa del tubero. Contengono una quantità significativa di fibre alimentari, vitamine e sali minerali, spesso superiore a quella della polpa stessa. In particolare, la vitamina C, le vitamine del gruppo B e il potassio si concentrano proprio vicino alla superficie esterna. Inoltre, la buccia ospita una varietà di polifenoli, composti antiossidanti come l’acido clorogenico, che oggi studiamo per il loro ruolo nella protezione cellulare.

Dal punto di vista energetico, le bucce non sono ricche quanto la polpa amidacea, ma in tempi di carestia potevano comunque offrire un contributo calorico importante. Se bollite o fritte, conservavano buona parte dei micronutrienti ed erano capaci di saziare. Non è un caso, infatti, che in molte parti d’Europa, dalla Germania alla Russia, le bucce siano state cucinate, essiccate o addirittura ridotte in farina nei periodi più difficili.

Un equilibrio delicato

C’è però un lato oscuro: le bucce di patata contengono anche glicoalcaloidi naturali, come la solanina e la chaconina, che le piante producono come difesa contro funghi e insetti. In piccole dosi non rappresentano un pericolo, ma in alte concentrazioni possono causare disturbi gastrointestinali e neurologici. Le bucce verdi, germogliate o esposte alla luce sono le più ricche di solanina, e vanno evitate. Ma le bucce sane, ben cotte, erano, e sono ancora, sicure, specie se trattate con il buon senso tramandato più che con la chimica.

Una lezione dal passato

Oggi, in un mondo che produce più rifiuti alimentari di quanto possa giustificare, quella vecchia storia di bucce mangiate per fame mi torna alla mente con una sfumatura diversa. Non solo come testimonianza di resilienza, ma come invito a riconsiderare il valore del cibo in ogni sua parte. In laboratorio, so bene quanto lavoro ci sia dietro l’estrazione di un antiossidante da una buccia. Ma forse il sapere contadino, quello di mia nonna o dei miei genitori, aveva già intuito tutto: che in una buccia c’è più nutrimento di quanto sembri, e che a volte, per sopravvivere bisogna imparare a guardare il cibo con occhi diversi.

E così, mentre il ricordo di quelle storie si fa ogni giorno più tenue, mi piace pensare che un pezzetto di chimica, di biologia e di dignità sia rimasto impigliato in quella buccia sottile. E che valga ancora la pena raccontarlo.

Riferimenti

Potato Skin: Nutrition Facts and Calories for 100 Grams

A comparative study on proximate and mineral composition of coloured potato peel and flesh

Composition of phenolic compounds and glycoalkaloids alpha-solanine and alpha-chaconine during commercial potato processing

The Best & Edible Fruit and Vegetable Skins You Need to Try

Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato‐derived products

 

Parabrezza puliti e insetti scomparsi: ma davvero davvero?

Nel 2020, durante la pandemia, pubblicai una breve nota sul cosiddetto “windscreen phenomenon“. Per chi volesse rileggerla, ecco il link:

Sugli insetti e sui parabrezza – www.pellegrinoconte.com

Negli ultimi anni, questa teoria ha continuato a circolare. L’idea che il numero di insetti stia diminuendo drasticamente perché i parabrezza delle auto si sporcano meno rispetto al passato è oggi più attendibile di quanto non lo fosse cinque anni fa?

Osservazioni aneddotiche vs. evidenze scientifiche

È importante distinguere tra osservazioni personali e dati scientifici. Il fatto che oggi i parabrezza sembrino più puliti non costituisce una prova concreta del declino globale degli insetti. Le variabili in gioco sono molteplici: cambiamenti nei modelli di traffico, aerodinamica delle auto moderne, variazioni climatiche locali e stagionali, per citarne alcune.

Studi recenti sul declino degli insetti

Diversi studi scientifici hanno documentato un effettivo declino delle popolazioni di insetti:

Il problema del “windscreen phenomenon” come indicatore

Utilizzare il numero di insetti sul parabrezza come misura del declino globale presenta diverse problematiche:

  • Variabilità delle condizioni di guida: percorsi, velocità, condizioni climatiche e tipologie di veicoli influenzano significativamente il numero di insetti che colpiscono il parabrezza.
  • Effetti di bordo e distribuzione degli insetti: le strade creano discontinuità nel paesaggio, influenzando la distribuzione degli insetti e rendendo difficile generalizzare le osservazioni.
  • Bias di campionamento: le osservazioni sono spesso limitate a determinate aree e periodi, non rappresentando accuratamente la situazione globale.

Conclusione

Come scrivevo già nel 2020, anche oggi è necessario ribadire che, sebbene il declino degli insetti sia un fenomeno reale ed allarmante, le conclusioni devono basarsi su studi scientifici solidi, non su impressioni personali. Il “windscreen phenomenon” può forse stimolare la curiosità o fornire uno spunto iniziale, ma non rappresenta in alcun modo una prova scientifica.

L’aneddotica non è probante e il “lo dicono tutti” non è – né sarà mai – un metodo scientificamente valido.

Come disse un celebre divulgatore: la scienza non si fa per alzata di mano.

La democrazia scientifica non funziona come quella politica: non tutte le opinioni hanno lo stesso peso. E, a ben vedere, nemmeno in politica tutte le opinioni sono uguali – quelle che negano i diritti fondamentali dell’uomo non possono e non devono essere considerate accettabili.

In ambito scientifico, il confronto è possibile solo tra persone con un background adeguato, perché solo così si può parlare la stessa lingua: quella del metodo.

Chimica e intelligenza artificiale: un’alleanza per il futuro della scienza

Avrete sicuramente notato che oggi l’intelligenza artificiale (AI) sta diventando una presenza sempre più costante nelle nostre vite. Sono tantissimi gli ambiti in cui l’AI riesce a sostituire con successo l’essere umano. Si potrebbe dire che questa rivoluzione sia iniziata molto tempo fa, con i primi robot che hanno cominciato a svolgere compiti ripetitivi al posto dell’uomo, come nelle catene di montaggio o, più drammaticamente, nei contesti bellici, dove i droni sono diventati strumenti chiave per ridurre il numero di vittime umane.

Negli ultimi anni, lo sviluppo vertiginoso delle reti neurali artificiali ha portato alla nascita di veri e propri “cervelli digitali” che, presto, anche se non sappiamo quanto presto, potrebbero avvicinarsi, per certi aspetti, alle capacità del cervello umano.

Nel frattempo, però, l’intelligenza artificiale già funziona alla grande ed è sempre più presente in numerosi settori, tra cui la chimica, che rappresenta uno dei campi più promettenti.

All’inizio può sembrare curioso accostare molecole, reazioni chimiche e leggi della fisica a concetti come algoritmi e reti neurali. Eppure, l’unione di questi mondi sta rivoluzionando il modo in cui facciamo ricerca, progettiamo nuovi materiali, affrontiamo le sfide ambientali e persino come insegniamo la scienza.

Ma cosa significa, concretamente, applicare l’intelligenza artificiale alla chimica?

Scoprire nuove molecole (senza provare tutto in laboratorio)

Uno degli ambiti in cui l’intelligenza artificiale si è rivelata più utile è la scoperta di nuovi composti chimici. Fino a qualche tempo fa, per trovare una molecola utile, un farmaco, un catalizzatore, un materiale con proprietà particolari, bisognava fare molti tentativi sperimentali, spesso lunghi e costosi.

Negli ultimi decenni, la chimica computazionale ha cercato di alleggerire questo carico, permettendo ai ricercatori di simulare al computer il comportamento di molecole, reazioni e materiali. Tuttavia, anche le simulazioni più avanzate richiedono molto tempo di calcolo e competenze specialistiche, oltre ad avere dei limiti nella scala e nella complessità dei sistemi che si possono trattare.

Qui entra in gioco l’intelligenza artificiale: grazie a modelli di machine learning sempre più raffinati, è possibile prevedere rapidamente il comportamento di una molecola, come la sua stabilità, la reattività, o la capacità di legarsi a un bersaglio biologico, semplicemente a partire dalla sua struttura. Questi algoritmi apprendono da enormi quantità di dati sperimentali e teorici e sono in grado di fare previsioni accurate anche su molecole mai testate prima.

In altre parole, l’AI sta cominciando a superare i limiti della chimica computazionale tradizionale, offrendo strumenti più rapidi, scalabili e spesso più efficaci nel guidare la ricerca. Invece di provare tutto in laboratorio (o simulare tutto al computer), oggi possiamo usare modelli predittivi per concentrare gli sforzi solo sulle ipotesi più promettenti.

Cosa vuol dire “machine learning”?

Il machine learning, o apprendimento automatico, è una branca dell’intelligenza artificiale che permette a un computer di imparare dai dati. Invece di essere programmato con regole rigide, un algoritmo di machine learning analizza una grande quantità di esempi e impara da solo a riconoscere schemi, fare previsioni o prendere decisioni.

È un po’ come insegnare a un bambino a distinguere un cane da un gatto: non gli spieghi la definizione precisa, ma gli mostri tante immagini finché impara da solo a riconoscerli.

Nel caso della chimica, l’algoritmo può “guardare” migliaia di molecole e imparare, per esempio, quali caratteristiche rendono una sostanza più solubile, reattiva o stabile.

Simulare ciò che non possiamo osservare

In molti casi, la chimica richiede di capire cosa succede a livello atomico o molecolare, dove gli esperimenti diretti sono difficili, costosi o addirittura impossibili. Ad esempio, osservare in tempo reale la rottura di un legame chimico o l’interazione tra una superficie metallica e un gas può essere tecnicamente molto complicato.

Qui entrano in gioco la chimica computazionale e, sempre di più, l’intelligenza artificiale. I metodi classici di simulazione, come la density functional theory (DFT) o le dinamiche molecolari, permettono di studiare reazioni e proprietà microscopiche con una certa precisione, ma sono spesso limitati dalla potenza di calcolo e dal tempo necessario per ottenere risultati.

L’AI può affiancare o persino sostituire questi metodi in molti casi, offrendo simulazioni molto più rapide. Gli algoritmi, addestrati su grandi insiemi di dati teorici o sperimentali, riescono a prevedere energie di legame, geometrie molecolari, traiettorie di reazione e persino comportamenti collettivi di materiali complessi, con un livello di precisione sorprendente.

Questo approccio è particolarmente utile nella chimica dei materiali, nella catalisi e nella chimica ambientale, dove le condizioni reali sono dinamiche e complesse, e spesso è necessario esplorare molte variabili contemporaneamente (temperatura, pressione, pH, concentrazione, ecc.).

In sintesi, grazie all’AI, oggi possiamo “vedere” l’invisibile e testare ipotesi teoriche in modo veloce e mirato, risparmiando tempo, denaro e risorse. La simulazione assistita dall’intelligenza artificiale sta diventando una delle strategie più promettenti per affrontare problemi scientifici troppo complessi per essere risolti con i soli strumenti tradizionali.

Insegnare (e imparare) la chimica in modo nuovo

Anche il mondo dell’istruzione sta vivendo una trasformazione grazie all’intelligenza artificiale. La didattica della chimica, spesso considerata una delle materie più “dure” per studenti e studentesse, può oggi diventare più coinvolgente, personalizzata ed efficace proprio grazie all’uso di strumenti basati su AI.

Uno dei vantaggi principali è la possibilità di adattare il percorso di apprendimento alle esigenze del singolo studente. Grazie a sistemi intelligenti che analizzano le risposte e i progressi individuali, è possibile proporre esercizi mirati, spiegazioni alternative o materiali supplementari in base al livello di comprensione. Questo approccio personalizzato può aiutare chi è in difficoltà a colmare lacune e, allo stesso tempo, stimolare chi è più avanti ad approfondire.

L’AI può anche contribuire a rendere la chimica più visiva e interattiva. Alcune piattaforme, ad esempio, usano modelli predittivi per generare visualizzazioni 3D di molecole, reazioni chimiche o strutture cristalline, rendendo più intuitivi concetti spesso astratti. In più, i chatbot educativi (come quelli alimentati da modelli linguistici) possono rispondere a domande in tempo reale, spiegare termini complessi in modo semplice o simulare piccoli esperimenti virtuali.

Un’altra frontiera interessante è quella della valutazione automatica e intelligente: sistemi di AI possono correggere esercizi, test e report di laboratorio, offrendo feedback tempestivo e accurato. Questo libera tempo per l’insegnante, che può concentrarsi sulla guida e sul supporto più qualitativo.

Infine, l’intelligenza artificiale può aiutare anche chi insegna: suggerendo materiali didattici aggiornati, creando quiz su misura per ogni lezione, o analizzando l’andamento della classe per identificare i concetti che vanno ripresi o approfonditi.

In sintesi, l’AI non sostituisce il docente o il laboratorio, ma li potenzia, offrendo nuovi strumenti per rendere l’insegnamento della chimica più accessibile, efficace e stimolante.

Una rivoluzione che non sostituisce il chimico

Di fronte a questi progressi, è naturale chiedersi: quale sarà allora il ruolo del chimico nel futuro? La risposta è semplice: sarà sempre più centrale, ma in modo diverso.

L’intelligenza artificiale è uno strumento potente, ma resta pur sempre uno strumento. Può accelerare le ricerche, suggerire ipotesi, esplorare combinazioni complesse o evidenziare correlazioni nascoste. Ma non può, da sola, sostituire la competenza critica, l’intuizione, l’esperienza e la creatività che solo un/una chimico/a formato/a può offrire.

Un errore molto comune, oggi, è considerare l’AI come una sorta di enciclopedia moderna, da cui si possano estrarre risposte esatte, univoche, perfette. Ma la chimica non funziona così e neppure l’intelligenza artificiale. Entrambe si muovono su terreni complessi, fatti di ipotesi, interpretazioni, modelli e approssimazioni. Pretendere dall’AI risposte definitive senza saper valutare, filtrare o indirizzare i risultati è un rischio.

Proprio come un bambino brillante, l’AI va educata e guidata. Ha bisogno di esempi buoni, di dati corretti, di domande ben formulate.

E, soprattutto, ha bisogno di essere “letta” da occhi esperti, capaci di interpretare e contestualizzare quello che produce.

In chimica, come nella scienza in generale, la conoscenza non è mai solo questione di calcoli o statistiche: è anche, e soprattutto, comprensione profonda dei fenomeni.

Quindi, piuttosto che temere l’arrivo dell’intelligenza artificiale, dobbiamo imparare a collaborarci con intelligenza.

Il chimico del futuro non sarà un tecnico che esegue, ma un regista che sa orchestrare strumenti nuovi per rispondere a domande sempre più complesse. Ed è proprio questa, forse, la sfida più stimolante dei nostri tempi.

Riferimenti

Aldossary & al. (2024) In silico chemical experiments in the Age of AI: From quantum chemistry to machine learning and back. ChemRxiv. 2024; Doi: 10.26434/chemrxiv-2024-1v269. Disponibile al link: https://chemrxiv.org/engage/chemrxiv/article-details/65cdf1309138d231612baac8.

Anjaneyulu & al. (2024) Revolution of Artificial Intelligence in Computational Chemistry Breakthroughs. Chemistry Africa 7, 3443–3459. https://doi.org/10.1007/s42250-024-00976-5.

Blonder & Feldman-Maggor (2024) AI for chemistry teaching: responsible AI and ethical considerations. Chemistry Teacher International 6(4), 385–395. https://doi.org/10.1515/cti-2024-0014.

Dral (2024) AI in computational chemistry through the lens of a decade-long journey. Chemical Communications. 60, 3240-3258. https://doi.org/10.1039/D4CC00010B.

Dral, Bowman, Liu, Maseras (editors) (2024) Artificial intelligence in computational chemistry (special issue). Disponibile al link: https://www.sciencedirect.com/special-issue/105PZW0WJF7.

Kovner & Berkeley (2024) ‘AI-at-scale’ method accelerates atomistic simulations for scientists. Disponibile al link: https://techxplore.com/news/2024-12-ai-scale-method-atomistic-simulations.html.

Kovner & Berkeley (2025) Computational chemistry unlocked: A record-breaking dataset to train AI models has launched. Disponibile al link: https://phys.org/news/2025-05-chemistry-dataset-ai.html.

Nongnuch & al. (2021) Best practices in machine learning for chemistry. Nature Chemistry 13, 505–508. https://doi.org/10.1038/s41557-021-00716-z.

Yuriev & al. (2024) The Dawn of Generative Artificial Intelligence in Chemistry Education. Journal of Chemical Education 101, 2957-2929. https://doi.org/10.1021/acs.jchemed.4c00836.

Udourioh & al. (2025) Artificial Intelligence-Driven Innovations in Chemistry Education: Transforming Teaching and Learning Practices. In: Handbook on Artificial Intelligence and Quality Higher Education. Volume 1 (pp.379-388). Publisher: Sterling Publishers, Slough UK and Delhi, India. Disponibile al link: https://www.researchgate.net/publication/388675124_Artificial_Intelligence-Driven_Innovations_in_Chemistry_Education_Transforming_Teaching_and_Learning_Practices.

Zhang & al. (2025) Artificial intelligence for catalyst design and synthesis. Matter 8, 102138. https://doi.org/10.1016/j.matt.2025.102138.

Bullismo accademico

Recentemente, grazie ad un amico e collega, ho letto un articolo molto interessante sul cosiddetto bullismo accademico, ovvero quella serie di atteggiamenti perversi che vengono usati contro le minoranze accademiche (tra cui spiccano le donne) per bloccare le carriere universitarie. Si tratta di un articolo molto interessante che, volendo, ha anche una certa applicabilità generale al di fuori dell’accademia. Mi riferisco, in particolare, a tutti quegli atti di prevaricazione che portano anche al femminicidio e messi in atto da quei maschi che sentono minata la loro mascolinità da donne che cercano di farsi strada nella famiglia, nel sociale e nel lavoro.

Non sono un sociologo e men che meno uno psicologo o psichiatra. Tuttavia, sbagliata o giusta che sia, mi sono fatto un’opinione in merito all’odio che porta i maschi a rivalersi sulle donne. Si tratta del rifiuto di accettare l’evoluzione culturale. Come esseri umani ci stiamo evolvendo. L’evoluzione non è soltanto legata all’adattamento fisico all’ambiente che ci circonda, ma è anche legata alla cultura, ovvero alla forma mentis che ci consente di assumere atteggiamenti e pensieri che sono diversi da quelli che erano in auge 10, 20 o 30 anni fa. L’evoluzione culturale sembra più veloce nelle donne che nei maschi e questi ultimi non accettano che una donna possa emanciparsi, pensare meglio di loro, lavorare meglio di loro ed ottenere risultati migliori dei loro. L’incapacità culturale di affrontare il confronto sfocia nella cosiddetta violenza di genere.

La parola chiave per descrivere efficacemente la violenza di genere o quella verso le minoranze sotto rappresentate è: mediocrità. In altre parole solo un maschio mediocre non è in grado di accettare che ci possa essere qualcuno (donna o uomo che sia) migliore di lui. In questo contesto i termini “uomo” e “donna” non si riferiscono solo ad una separazione di genere fisico, ma anche al modo con cui ogni essere umano percepisce se stesso.

Come ho detto, non sono uno specialista e quanto appena scritto è solo una mia opinione. Tuttavia, vale la pena leggere l’articolo di cui accennavo sopra. L’articolo è in inglese. Pertanto, per agevolare la lettura di chi non è ferrato in inglese, l’ho tradotto. Inserisco, però anche l’articolo originale sotto forma di immagine. In originale, il lavoro si trova qui.

___________________________

COME IL BULLISMO DIVENTA MEZZO PER FARE CARRIERA

di Susanne Täuber e Morteza Mahmoudi

Tra i recenti scandali di bullismo e molestie (sessuali) di alto profilo nell’ambito accademico, molti coinvolgono personaggi considerati “accademici di spicco”, ma che hanno in realtà un passato di bullismo e numerose denunce accumulate nel corso degli anni1.

Spesso, chi non è abituato all’ambito accademico ritiene che queste persone siano dei bulli pur avendo raggiunto posizioni di rilevo nei loro settori di interesse. L’attitudine al buon comportamento in ambito scientifico viene separata da quella legata alla loro personalità umana. In altre parole, la persona “scienziato” viene vista come indipendente dalla persona “essere umano”. Tuttavia, coloro che hanno subito bullismo spesso descrivono modelli comportamentali che suggeriscono un’interpretazione completamente diversa: il bullismo sembra essere più un mezzo usato dai mediocri per arrivare in cima ai vertici della loro carriera invece che qualcosa di separato dalla loro personalità scientifica. In altre parole, i bulli accademici arrivano ad essere considerati ottimi professionisti grazie al loro bullismo e non nonostante esso.

Esistono molteplici modi, tutti relazionati tra loro, in cui il bullismo può essere usato come mezzo per promuovere la propria carriera ed i propri interessi in ambito accademico. Comportamenti da bullo, come abuso di potere, mobbing e svalutazione dei successi altrui, rallentano o annullano le carriere degli avversari cosicché i bulli riescono ad eliminare efficacemente la concorrenza e raggiungere posizioni di vertice. Una volta lì, tali accademici possono utilizzare le stesse strategie per promuovere i loro “accoliti” e diventare intoccabili.

Cosa rende il bullismo mezzo non etico, ma efficace, per scalare le gerarchie? Un numero sempre maggiore di ricerche suggerisce che gli accademici mediocri ricorrano al bullismo per eliminare la concorrenza2,3. In particolare, quando le gerarchie maschili vengono “disturbate” dalle donne, si innescano dei comportamenti ostili soprattutto da parte di quegli uomini che non sono in grado di svolgere il loro lavoro in modo soddisfacente. Infatti, sono proprio questi coloro che rischiano di perdere di più dall’”ingerenza” femminile4.

I membri di gruppi accademici sottorappresentati riferiscono di essere (o essere stati) bersagli di bullismo con l’intento di sabotare le loro carriere. Alcuni racconti suggeriscono che i bulli entrano in azione quando i destinatari del bullismo acquisiscono un successo più o meno rilevante nel loro campo rischiando, quindi, di diventare troppo ingombranti per gli accademici mediocri. Ad esempio, una ricercatrice che lavorava nei Paesi Bassi ha notato di essere stata trattata piuttosto bene fino a quando ha ottenuto una sovvenzione multimilionaria3. Dopo ciò, è diventata oggetto di molestie, incluse aggressioni fisiche. Sabotando le carriere degli altri, i bulli eliminano efficacemente la concorrenza. Quando altri accademici nel dipartimento ottengono risultati oggettivamente migliori, sabotare o emarginare viene scelto come percorso alternativo per raggiungere la vetta2,3.

Quali sono le strutture che supportano i bulli? Nonostante siano abbastanza diffusi processi di selezione altamente competitivi negli ambienti accademici, i criteri di valutazione sono spesso oscuri. Ciò consente ai bulli e ai loro alleati, che secondo uno studio sono probabilmente maschi e provengono dalle istituzioni più prestigiose, di utilizzare criteri di rendimento in continua evoluzione per giustificare il rifiuto di conferire l’abilitazione, le promozioni e le cattedre ai loro bullizzati5.

Il concetto di bulli che hanno alleati o che costruiscono reti attraverso le gerarchie emerge anche in alcuni resoconti: le vittime di bullismo parlano di direttori di dipartimento che potrebbero voler promuovere i propri “eredi e ereditiere”, anche se stanno lavorando a un livello inferiore rispetto ai loro colleghi.

Una ricercatrice dei Paesi Bassi ha riferito che, quando ha vinto un importante finanziamento, le persone hanno iniziato a dubitare delle capacità di uno dei prìncipi ereditari del dipartimento che doveva essere promosso, attribuendo poi la colpa a lei3. Come risultato, è stata vittima di bullismo e ha lasciato l’università, mentre il “collega maschio è ora professore associato, anche se le sue prestazioni non sono superiori alla media”. La questione è stata affrontata in modo toccante altrove, con un’attenzione particolare agli uomini che molestano sessualmente le donne nell’ambito accademico6: “L’abuso di potere non è incidentale alla ‘grandezza’ di questi uomini; è centrale ad essa”.

Non sono solo i criteri oscuri e il favoritismo a creare terreno fertile per il bullismo. L’ambiente accademico iper-competitivo offre un “vantaggio di sopravvivenza” per tutte quelle persone che hanno tratti di personalità come l’audacia, la tendenza al dominio, la cattiveria e la spregiudicatezza7. Questi tratti di personalità sono chiaramente associati a comportamenti da bullo8. Ciò può manifestarsi nel sovrastimare regolarmente i propri successi e sminuire quelli degli altri, diffondere storielle false per danneggiare le reputazioni, o deridere pubblicamente, insultare e offuscare i successi dei colleghi9. Pertanto, la nostra attuale cultura accademica, con la sua iper-competizione, l’occupazione precaria e la ripida gerarchia, sembra incentivare i bulli fornendo le condizioni che permettono loro di prosperare9,10.

L’ambiente accademico ha urgentemente bisogno di un cambio di paradigma per eliminare le condizioni che permettono ai bulli di dominare. È giunto il momento di affrontare efficacemente le questioni che le leadership passate (sia a livello di dipartimento che di ateneo) hanno troppo spesso trascurato o sfruttato a proprio vantaggio: il bullismo, il mobbing e gli abusi nei confronti di coloro che sono sottorappresentati ed emarginati per i motivi più diversi.

Dobbiamo assicurarci che i leader accademici siano giocatori di squadra culturalmente sensibili, consapevoli delle dinamiche di potere e privilegio, e che non incentivino il bullismo, ma piuttosto stimolino lo spirito di comunità. Per raggiungere questo obiettivo sarà necessario il contributo proattivo di tutti gli interessati in modo interdipendente e collaborativo. Abbiamo bisogno di attenzione e azione collaborativa da parte di tutti i membri della forza lavoro scientifica, a livello locale e globale, per essere solidali permettere l’emancipazione degli studiosi per arrivare ad un cambiamento sistematico atteso da tempo in ambito accademico.

Riferimenti

  1. Goulet, T. L. Science 373, 170–171 (2021).
  2. Naezer, M. M., van den Brink, M. C. L. & Benschop, Y. W. M.
    Harassment in Dutch Academia: Manifestations, Facilitating
    Factors, Effects and Solutions (LNVH, 2019).
  3. Young Academy Groningen. Report on Harassment at the
    University of Groningen (2021).
  4. Kasumovic, M. M. & Kuznekoff, J. H. PLoS ONE 10, e0131613
    (2015).
  5. Moss, S. E. & Mahmoudi, M. EClinMed 40, 101121 (2021).
  6. Mansfield, B. et al. Human. Geogr. 12, 82–87 (2019).
  7. Tijdink, J. K. et al. PLoS ONE 11, e0163251 (2016).
  8. Namie, G. Results of the 2017 WBI Workplace Bullying Survey
    (WBI, 2017).
  9. Forster, N. & Lund, D. W. Glob. Bus. Organ. Excell. 38, 22–31
    (2018).
  10. Moss, S. Nature 560, 529 (2018).

Immagine di copertina creata con https://runwayml.com/

Di dubbi, incertezze ed altre amenità del genere

Come ho già avuto modo di scrivere qualche tempo fa, non aggiorno il blog con la frequenza di un tempo perché molti degli argomenti che oggi vanno di moda sono già stati commentati da me negli anni passati. Si pensi, per esempio, alla polemica «naturale=buono» di cui ho parlato qui e qui, oppure al periodico successo di cose come il Dr. Bestiale di cui ho già parlato qui, o, ancora, l’intolleranza al lattosio di cui ho scritto qui e qui, per non parlare, poi, dell’enorme numero di articoli che ho scritto in merito all’omeopatia (qui) o altre pseudo scienze come l’agricoltura biodinamica (qui). Capirete, quindi, che ritornare sempre sugli stessi argomenti, perché periodicamente di moda, è alquanto noioso. Mi annoio io a scriverne e annoio voi che, sulla base della vostra stima nei miei confronti, siete “costretti” a leggere sempre le stesse cose, magari scritte con parole diverse. Tuttavia, di tanto in tanto, ci sono degli argomenti che ancora mi colpiscono e che mi lasciano perplesso soprattutto quando a scriverne/parlarne sono persone che si dicono amanti della scienza.

Ma veniamo al punto.

I disapprove of what you say, but I will defend to the death your right to say it

Gli “amanti della scienza” molto spesso riportano nelle loro lettere, nei loro siti o ovunque sia possibile la famosa massima secondo cui «non condivido la tua opinione, ma sono pronto a combattere affinché tu possa esprimerla liberamente» attribuendola nientepopodimenoché a Voltaire. Queste persone, per lo più pseudo scienziati, usano questo aforisma per rimarcare la differenza del loro modo di pensare rispetto a quello degli scienziati che apparterrebbero, secondo loro, ad una casta di tipo sacerdotale chiusa e poco avvezza ai cambiamenti. Gli scienziati, in parole povere, sarebbero quelli che si opporrebbero allo sviluppo culturale di certe discipline (o addirittura del paese) chiudendosi a riccio nei confronti di idee innovative in grado di apportare benefici in ogni ambito dello scibile. 

Cominciamo con lo stabilire che da nessuna parte nell’opera di Voltaire è riportata la frase anzidetta. Questa fu scritta virgolettata in “The friends of Voltaire nel 1903 da Evelyn Beatrice Hall sotto lo pseudonimo di Stephen G. Tallentyre. Quindi, Voltaire, che ha scritto il famoso “Trattato sulla tolleranza”, non si è mai sognato di dire quelle cose riportate come sue. Lo stesso Sandro Pertini, in un suo discorso, cadde nell’equivoco di attribuire a Voltaire la massima su menzionata (qui). Purtroppo, usare in modo strumentale frasi ad effetto attribuendole a grandi menti per esaltarne la significatività è uno sport molto attuale. Ricordo che nel 1938 in Italia furono promulgate le leggi razziali. Se dovessimo prendere alla lettera ciò che viene indicato come l’aforisma massimo della libertà di espressione, dovremmo concludere che, seppure le leggi razziali furono quanto di più bieco una mente umana avesse potuto concepire, gli individui che le promulgarono avevano tutto il diritto di farlo e di seguire le condotte opportune per realizzarle. Ma ciò contraddice sia l’operato di Pertini che si è battuto, rischiando più volte la vita, contro il fascismo – corrente politica responsabile delle anzidette leggi  che i principi basilari di tutti i trattati in cui vengono stabiliti i diritti inalienabili degli individui intesi come persone umane. Da questa breve disamina, quindi, ne viene che la libertà è sacrosanta (peraltro è uno dei diritti inalienabili della persona umana) ma ha dei limiti entro cui essa può essere esercitata.

Adesso, però, come al mio solito, sto andando un po’ per la tangente.

Libertà di parola ed opinioni

Ritorniamo all’aspetto scientifico legato all’aforisma incorrettamente attribuito a Voltaire. Secondo gli pseudo scienziati, il diritto di parola e di opinione è sacrosanto. Ma io sono più che d’accordo. Il problema è che una cosa è il diritto di parola e opinione in ambito politico (sempre entro i limiti dettati dal rispetto per i diritti umani inalienabili), altro è il diritto di parola e opinione in ambito scientifico. Tradotto in parole molto più semplici: in ambito scientifico, una cosa è la libertà di parola, altro sono le parole in libertà.

Come ho avuto più volte il modo di evidenziare (per esempio qui), la Scienza (la S – in maiuscolo – non è casuale) è un complesso corpo di conoscenze che richiede lo sviluppo di competenze che si raggiungono con anni di studi e sacrifici. L’idea dello scienziato come il Don Chisciotte di turno che va per la propria strada all’inseguimento di una intuizione illuminante ma contraria al pensiero scientifico corrente è da film hollywoodiano. Avete mai visto un film – nato per l’intrattenimento – in cui si pone l’accento sul tempo passato da uno studioso a leggere e capire le cose invece che su scene di azione più o meno movimentate? Penso proprio di no. E volete sapere perché? Lo studio è noioso. A chi volete che interessi vedere uno che resta seduto al tavolo a sfogliare libri su libri per giorni interi solo per capire questa o quella formuletta? Il film deve intrattenere, deve tener legato l’utente/spettatore alla sedia ed attrarlo. Se l’utente/spettatore si annoia incomincia il passaparola negativo per cui altri utenti/spettatori non andranno a vedere il film con evidenti danni economici. Ed allora molto meglio inventarsi che Einstein era una “rapa” in matematica (non è assolutamente vero) e che, nonostante questo, sia stato in grado di vincere il premio Nobel; meglio inventarsi che Galileo Galilei ha combattuto contro il sistema imperante ed ha perso, invece che spiegare che l’eliocentrismo era già in voga e che Galilei è stato osteggiato dalla chiesa – quindi da una setta religiosa – che vedeva nelle sue “osservazioni” qualcosa che poteva scardinare il potere temporale del Papa.

L’intuizione scientifica

L’intuizione scientifica non nasce dal nulla. Nasce, piuttosto, dall’apprendimento continuo di cose già note che vengono “sviscerate” in tutti i modi possibili. Una volta individuati i limiti delle cose note (questo si fa attraverso gli esperimenti e la loro interpretazione) viene fuori l’intuizione geniale che consente l’avanzamento delle conoscenze. In questo senso amo ripetere che alla fine dell’Ottocento si riteneva che la fisica non avesse più nulla da dire. Tutto era già stato detto e scoperto da sir Isaac Newton. Ed invece, dal paradosso del corpo nero è nata quella che oggi è conosciuta come meccanica quantistica – che ha inglobato la meccanica classica (quella di Newton, per intenderci)  che ha consentito lo sviluppo di nuove tecnologie come la TAC (Tomografia Assiale Computerizzata), la NMR (Risonanza Magnetica Nucleare) fino ad arrivare ai computer quantistici. Del resto fu Bernardo di Chartres, intorno alla prima metà del 1100, a dire qualcosa del tipo “siamo seduti sulle spalle dei giganti” intendendo che la conoscenza – scientifica o meno, dico io – può essere intesa come un castello in continua crescita in cui è possibile individuare torri alte la cui stabilità è assicurata dalle fondamenta solide, costruite da chi ci ha preceduto, e torri basse e diroccate le cui fondamenta non hanno resistito all’azione del tempo. In altre parole, se oggi siamo in grado di controllare i movimenti di Curiosity (il rover che sta analizzando il suolo di Marte) lo dobbiamo a Newton, dalla cui fisica siamo in grado di calcolare l’energia necessaria per sfuggire alla forza gravitazionale terrestre, a Marconi, che ha scoperto la trasmissione dei segnali senza fili, a tutti quei chimici che hanno elaborato le tecniche analitiche in grado di campionare e analizzare i suoli etc. etc. etc.

Il dubbio

Un corollario interessante all’aforisma scorrettamente attribuito a Voltaire è che bisogna essere tolleranti, anzi aperti alla discussione, con chiunque avanzi dubbi – più che legittimi  su tutto quanto riguarda la scienza. Del resto, l’avanzamento delle conoscenze scientifiche non si basa sui dubbi? Il problema qui è capire cosa si intende per dubbio.

Quando sono in aula per i miei corsi mi trovo spessissimo in presenza di dubbi. A parte quelli personali legati all’efficienza della mia esposizione, i dubbi principali sono quelli dei miei studenti che possono non aver capito qualcosa che ho detto o che possono avere domande per correlare ciò che sanno a ciò che ho esposto. Si tratta, quindi, di dubbi – quelli degli studenti – che servono per chiarire concetti noti in modo tale da permetterne un immagazzinamento migliore così da poterli utilizzare nei momenti opportuni. Per quanto riguarda i miei dubbi, si tratta di domande che mi faccio prima, durante e dopo la lezione per capire quanto sono stato efficiente nell’esposizione. Non sempre lo sono perché dipende dai momenti umorali in cui mi trovo. Quando me ne rendo conto ripeto la lezione cercando di essere più chiaro. Quindi, nel caso del rapporto asimmetrico docente-studenti, i dubbi servono per crescere e migliorare. Io imparo dagli studenti a spiegare meglio, ovvero cerco di migliorare come docente, mentre gli studenti imparano da me cose che serviranno loro nelle future esperienze da professionisti.

Un discorso analogo vale se faccio una domanda al mio elettricista o al mio idraulico. In questo caso io faccio il discente, loro sono i docenti. 

Ma cosa succede se la tolleranza in merito alla libertà di espressione e di opinioni viene invocata da qualcuno che, non avendo competenze in quel campo, volesse obiettare, per esempio, che la Terra è piatta? Si tratta veramente di un dubbio? Ovviamente, no! Questo non è un dubbio. Questa è semplicemente ignoranza. La persona che volesse intavolare una discussione sulla geoidicità del nostro pianeta è solo uno/a che ci fa perdere tempo. Evidentemente ha saltato tutte le lezioni (dalle elementari alle superiori) in cui si è discusso e si sono portate prove in merito. Lo stesso è valido quando a evocare dubbi sulla validità ed efficacia dei vaccini è mamminapancina86. In realtà, nella mia vita mi è capitato che ad avere dubbi sui vaccini non fossero solo persone ignoranti (nel senso etimologico del termine), ma anche professionisti che hanno una cultura e una preparazione che li pone agli apici del loro campo. Ma di questo accennerò fra poche righe. In generale, si tratta di ignoranza pura e semplice, che pone queste persone al livello di studenti che devono ancora imparare e a cui è utile dare spiegazioni semplici, sempre che si rendano conto del rapporto di asimmetria tra loro e chi ha studiato e “perso tempo” per approfondire l’argomento su cui loro hanno espresso dubbi.

Il dubbio qualificato

Se possiamo prendere con ilarità i “dubbi” sulla Terra piatta, non possiamo fare altrettanto quando, invece, si parla di vaccini, di omeopatia, di agricoltura biodinamica, di negazione del riscaldamento climatico o della componente antropica legata al riscaldamento climatico. A maggior ragione quando ad avanzare tali “dubbi” non sono ciarlatani incolti, ma professionisti che hanno una formazione culturale adatta a discernere tra vero, verosimile e falso. In questo caso, come ho già scritto altrove (qui), si tratta di persone che per meri fini opportunistici – che siano economici o per esercitare un qualsiasi potere, poco importa  si comportano come quelli che prima fanno la curva e poi inseriscono i punti sperimentali. Sono persone inaffidabili. Con esse non è possibile intavolare alcuna discussione perché si arroccano su posizioni asimmetriche per cui i loro dubbi sono legittimi, mentre le prove fisiche portate da chi confuta le loro teorie astruse non sono valide. 

Da tutta questa digressione ne viene che a livello scientifico quando si parla di dubbio si intende sempre il cosiddetto “dubbio qualificato”. Si tratta di un dubbio che non coinvolge tutti i possibili interlocutori, ma solo coloro che hanno una formazione culturale in comune, ovvero hanno studiato, elaborato e compreso quanto attinente a un determinato argomento. È proprio questa comprensione che consente di fare domande nel merito per ottenere risposte in grado di dirimere problemi che da soli non sarebbe possibile fare.

Conclusioni

Cosa voglio concludere con questa lunga digressione? Solo che bisogna fare attenzione a quelle persone che usano la massima falsamente attribuita a Voltaire. Queste persone, lungi dall’essere “modeste” come vorrebbero apparire mediante l’uso dell’aforisma citato, sono, in realtà, dei narcisisti che hanno mal compreso i processi che vengono seguiti per lo sviluppo scientifico e ritengono sé stessi dei geni che, pur non avendo competenze specifiche in un particolare campo, ritengono di aver diritto di parola proprio in quel settore di cui conoscono molto poco – o addirittura niente – come se fossero dei grandi luminari. Ancora oggi, a distanza di oltre quarant’anni, è ancora valido quanto tenne a scrivere Asimov nella sua rubrica “My turn” il 21 gennaio del 1980 (qui): “my ignorance is just as good as your knowledge”.

Ringraziamenti

Con questa lunga disamina spero di non avervi annoiato troppo. Tuttavia, come talvolta accade, ci sono dei momenti in cui, dopo aver letto e/o sentito certe cose, mi rimane l’amaro in bocca e sento l’esigenza di condividere in questo blog i miei pensieri. Pertanto, ringrazio tutti voi, miei lettori, per la pazienza che avete avuto nel voler leggere queste elucubrazioni e ringrazio il Dr. Michele Totta per la sua pazienza nel revisionare questo articoletto. Il Dr Totta, peraltro, è un valente divulgatore che gestisce un canale YouTube “Senza logica mal si cogita” che invito a seguire (qui).

Fonte dell’immagine di copertina

 https://commons.wikimedia.org/wiki/File:2005_Mus%C3%A9e_Rodin_3.jpg

Incontri con persone straordinarie: Cristina Fazzi

Preludio.

È da un po’ di tempo che non scrivo articoli nel blog. Non c’è un motivo particolare se non quello relativo al fatto che penso che troppo presenzialismo sia nocivo: trovo molto più utile scrivere quando ho qualcosa di curioso ed interessante da raccontare come in questo caso. Ho deciso di aprire una nuova rubrica dedicata alle persone straordinarie che ho avuto la fortuna di incontrare nella mia vita.

Da dove parto? Da Cristina Fazzi.

Brevi note biografiche.

Molti di voi si chiederanno chi sia mai Cristina Fazzi. È un medico. Si è laureata in chirurgia a Catania e, dopo alcune esperienze nella sua Sicilia, ha deciso, per puro caso, di trasferirsi in Zambia dove aiuta come medico le popolazioni locali. Ha dato vita ad una ONG che si occupa, tra le tante cose, di trovare fondi e gestire progetti per costruire ospedali ed ambulatori nelle zone più o meno accessibili dello Zambia. Ha adottato un bambino (oggi giovane uomo) in Zambia e, grazie alla sua determinazione, è stata capace di aprire la strada – in realtà ancora impervia – alle adozioni dei single in Italia. Infatti, per circa tre anni ha portato avanti una battaglia per far riconoscere l’adozione del suo Joseph – del tutto regolare in Zambia – anche in Italia; e ci è riuscita. Ad oggi ha in affido altri sette bambini Zambiani che sta crescendo con grande amore.

Ma non è delle sue avventure di mamma single che voglio parlarvi. Né voglio illustrarvi le peripezie che si è trovata a vivere e che tuttora vive in Zambia per la realizzazione dei suoi progetti umanitari. Tutto questo lo potete leggere nella sua biografia dal titolo “Karìbu. Lo Zambia, una donna, una grande avventura” scritto a quattro mani con Lidia Tilotta (qui).

I miei ricordi.

Ho avuto modo di incontrare la dottoressa Fazzi in occasione della presentazione del suo libro al Policlinico di Palermo. Ho partecipato a quell’incontro spinto da un mio collega che, sentendomi parlare del biochar, oggetto, come ben sapete, della mia attività di ricerca, ha pensato che fosse utile una mia partecipazione alla presentazione del libro di Cristina Fazzi e Lidia Tilotta. Non avevo eccessive aspettative, in realtà. Pensavo che sarebbe stata la solita presentazione noiosa con gli autori che fanno la solita passerella per promuovere il solito libro dalla tiratura limitata destinato ad essere la solita meteora nel panorama della letteratura divulgativa del nostro paese. Ed invece…

Invece è stata un’illuminazione. Non appena la Dottoressa Fazzi ha cominciato a raccontare perché si è trasferita in Zambia mi sono venuti in mente i racconti di mio padre che negli anni Trenta del secolo scorso (sì, mio padre nacque nel 1922 e quest’anno, fosse stato ancora in vita, avrebbe compiuto 100 anni. Un’età ragguardevole. Ma, per un figlio, un genitore non ha mai un’età ragguardevole e dovrebbe essere immortale…ma questo non c’entra con quanto voglio scrivere) si trasferì assieme ad alcuni zii nell’Eritrea italiana in cerca di opportunità di lavoro. Lì fu fatto prigioniero dagli inglesi (come il nonno della dottoressa Fazzi) e, campo di concentramento dopo campo di concentramento, sopravvisse, prigioniero, fino al 1946, anno in cui fu liberato e, pesando una quarantina di chili scarsi, tornò in Italia. Nonostante le sue traversie, egli ha sempre raccontato del suo mal d’Africa e della nostalgia che quel continente gli provocava. Ovviamente, la storia di mio padre non c’entra nulla con la dottoressa Fazzi. Il punto è che la dottoressa, col suo incipit, mi ha portato alla mente tante cose e mi ha commosso. Mi ha commosso non solo perché ha fatto emergere dalla profondità dei miei ricordi cose che erano sedimentate e messe da parte perché, nonostante la mia età, non ho ancora superato la perdita di mio padre, ma anche perché mi ha illuminato e reso veramente chiaro il concetto di “aiutiamoli a casa loro”.

Aiutiamoli a casa loro. Parte I

Vi ricorda qualcosa questa locuzione? Ormai va di moda. E pur di “aiutarli a casa loro” raccogliamo qualsiasi cosa e, sotto forma di aiuti umanitari, mandiamo tutto nei paesi in via di sviluppo, convinti che quanto “racimoliamo” possa davvero essere utile. In realtà, questa è un’operazione che serve solo a noi stessi. Serve per lenire i sensi di colpa che ci attanagliano perché sappiamo benissimo che, per usare tutte le comodità di cui disponiamo, deprediamo le risorse naturali di paesi lontanissimi da noi rendendoli sempre più poveri.

Come ha raccontato la dottoressa Fazzi, a cosa mai potranno servire gli omogeneizzati nelle zone povere dei paesi africani, tra cui lo Zambia? Perché sto citando gli omogeneizzati? Perché uno dei racconti della dottoressa Fazzi ha riguardato il rifiuto da parte sua di un carico di aiuti umanitari fatto da omogeneizzati.

Gli omogeneizzati.

Sappiamo tutti che cosa sono gli omogeneizzati. Sappiamo benissimo che sono utilissimi per lo svezzamento dei bambini e per ottimizzare la loro crescita. Eppure, in Zambia – ma anche negli altri paesi poveri – questa tipologia di prodotti è inutile: in questi paesi non è possibile produrre omogeneizzati. Quindi, una volta consumati, le popolazioni locali non avrebbero più cibo utile per lo svezzamento dei bambini. Ed allora? Dovrebbero attendere altri aiuti ed altri ancora in un loop infinito che non farebbe altro che implementare la loro dipendenza dai paesi più ricchi dell’emisfero.

Aiutiamoli a casa loro. Parte II

“Aiutiamoli a casa loro”, quindi, significa rimboccarsi le maniche e andare lì, nei paesi poveri, per insegnare a quelle popolazioni a usare al meglio le risorse disponibili in loco. Esattamente come sta facendo la dottoressa che ha costruito non so più quanti pozzi e quanti ambulatori/cliniche/ospedali per “aiutare a casa loro” persone che vivono ai margini del mondo moderno. Meglio ancora se, accanto alle opere fisiche, si provvede anche all’educazione, cioè alla corretta divulgazione scientifica per convincere le popolazioni locali della inutilità delle superstizioni utili solo formalmente ma non sostanzialmente alla sopravvivenza in zone veramente impervie del globo.

Come ha sapientemente evidenziato la dottoressa Fazzi, se “riesco ad istruire 10 persone delle popolazioni locali sulla utilità dei vaccini nella prevenzione delle malattie, queste 10 persone a loro volta potranno convincere, ognuna, altre 10 persone e così via di seguito, fino ad arrivare a una situazione in cui la conoscenza potrà ricacciare indietro le credenze tribali e fornire le basi per il reale sviluppo del paese” (ho virgolettato le parole che, però, riportano i concetti espressi dalla dottoressa Fazzi).

Educare.

Alla luce di quanto espresso, l’educazione deve giocare un ruolo primario per “aiutare a casa loro” le persone che vivono in condizioni estreme. L’educazione, però – e questa è una mia considerazione personale che viene dall’aver conosciuto la dottoressa Fazzi – deve riguardare non solo le popolazioni locali, ma anche noi. Dobbiamo imparare che non è sgravandoci la coscienza dai sensi di colpa mediante l’invio di qualsiasi cosa nei paesi in via di sviluppo che possiamo risolvere i loro problemi. Dobbiamo imparare ad ascoltare le persone come la dottoressa Fazzi per capire quali sono le reali esigenze delle popolazioni locali e quali sono le loro risorse naturali. Sono queste ultime a dover essere messe al centro dell’attenzione per poter consentire un vero sviluppo culturale e “fisico” di popoli poveri quali quello dello Zambia.

E la ricerca scientifica?

E questo è il punto, adesso. Cosa facciamo noi in concreto per aiutare i paesi come lo Zambia? L’Agraria di Palermo ha cercato e cerca di operare nei paesi in via di sviluppo per “aiutare a casa loro” le popolazioni locali.

Agli inizi degli anni ’10 di questo secolo è stato sviluppato il  progetto Burundi (qui) grazie al quale la professionalità dei docenti dell’attuale Dipartimento di Scienze Agrarie, Alimentari e Forestali è stata messa a disposizione per la realizzazione di opere concrete affinché le popolazioni locali potessero “crescere” da sole utilizzando le risorse locali.

Poco prima della pandemia del 2020, lo stesso Dipartimento ha realizzato una convenzione col vescovado di Mbulu in Tanzania per la realizzazione di un video divulgativo da diffondere tra le popolazioni del posto in modo da spiegare come risolvere i problemi più comuni legati alle tecniche agricole locali.

Io stesso faccio parte di un gruppo di ricerca internazionale che qualche anno fa ha condotto delle sperimentazioni in Nepal per valutare l’efficienza del biochar nell’aumentare la produzione agricola locale (qui). In particolare, abbiamo potuto verificare che il biochar (se volete sapere che cos’è basta cliccare qui) prodotto con residui vegetali locali (qui per sapere come si produce il biochar in zone in via di sviluppo) e funzionalizzato con urina di vacca, era in grado di incrementare di quattro volte la produzione di zucca.

Potremmo fare altro? Certo che sì. Potremmo fare molto di più che progetti estemporanei che si concretizzano con elaborati utili allo sviluppo di tesi di laurea o di pubblicazioni su riviste più o meno qualificate. Tuttavia, questo richiede non solo la volontà personale di ognuno di noi, ma anche una vera e propria coordinazione globale che coinvolga sia le autorità italiane che quelle dei paesi in via di sviluppo in modo da supportare le attività dei ricercatori ed evitare le esperienze negative molto ben descritte nel libro della dottoressa Fazzi.

Share