Riusciamo a sbucciare un’arancia senza sporcarci?

Riusciamo a sbucciare le arance senza sporcarci?
Inverno, tempo di freddo e di agrumi. Buone le arance, i mandarini ma buone soprattutto le clementine senza semi. Per uno come me, non dover “sputazzare” semi in giro per la stanza, è una gran cosa!

Avete mai fatto caso che quando si sbuccia un frutto del genere le mani si sporcano di succo? C’è stato qualcuno che si è chiesto se sia possibile trovare un metodo per evitare di sporcarsi quando si sbucciano gli agrumi. La notizia è apparsa nelle news di Science [1]. Ebbene è stato evidenziato che non c’è modo di non sporcarsi quando si sbucciano gli agrumi. Pare che basti una minima pressione per far schizzare via gocce di succo ad una velocità di circa 10 m/s, ovvero una velocità più elevata di quella degli insetti, con una accelerazione circa 1000 più intensa di quella che “sentono” gli astronauti quando lasciano la Terra.

Interessante, vero? Immagino che se qualcuno ha fatto uno studio del genere, c’è stato un committente che ha fatto una specifica richiesta. Magari in futuro potranno essere prodotti agrumi che non sporcano le mani mentre vengono sbucciati, con buona pace di quelli come me a cui piace sentire l’odore “agrumoso” sulle dita.

Riferimenti
[1] http://www.sciencemag.org/…/video-reveals-why-there-s-no-cl…

Il buco nell’ozono. Breve escursione nella chimica dell’atmosfera

La funzione “filtro” dell’ozono.
Si legge da tutte le parti che l’inquinamento ambientale, ed in particolar modo quello di origine antropica, provoca numerosi problemi ai vari comparti ambientali. Uno di questi è l’aria la cui composizione, negli strati più elevati, vede la presenza di una molecola che prende il nome di ozono.
L’ozono è una forma allotropica dell’ossigeno. In altre parole, l’ossigeno si può trovare sia sotto forma di molecola biatomica (O2) che di molecola triatomica (O3). E’ questa ultima forma di ossigeno a cui si dà il nome di “ozono” la cui struttura, per i più curiosi, è descritta nel riferimento [1].
La presenza dell’ozono negli strati alti dell’atmosfera è molto importante perché questa molecola è in grado di “intercettare” le radiazioni ultraviolette (RUV) proteggendoci dai loro effetti deleteri [2]. Sotto il profilo chimico, la reazione di “schermatura” da parte dell’ozono è:

O3 + RUV → O + O2                                                       (1)

In altre parole si forma un atomo di ossigeno eccitato ed una molecola di ossigeno. Il primo può ricombinarsi col secondo per riformare l’ozono (reazione (2)), oppure può reagire con un’altra molecola di ozono per formare ossigeno molecolare (reazione (3)):

O + O2 → O3                                                                       (2)

O + O3 → 2O2                                                                    (3)

L’inquinamento come causa della riduzione dell’ozono atmosferico
Come si intuisce, in sistemi non perturbati (come per esempio in assenza di contaminazione) le reazioni (1)-(3) assicurano il corretto apporto di ozono per evitare gli effetti delle radiazioni UV [2]. Nel momento in cui un certo tipo di contaminanti (che tecnicamente possiamo indicare come “catalizzatori”) viene in contatto con l’ozono, le reazioni (1)-(3) subiscono delle “alterazioni” legate al fatto che viene inibita la reazione (2) con incremento della quantità di ossigeno molecolare che non viene più trasformato in O3. La conseguenza è l’assottigliamento progressivo dello strato di ozono atmosferico che, giornalisticamente parlando, è conosciuto come “buco nell’ozono”. L’insieme delle reazioni che trasformano l’ozono in ossigeno molecolare in presenza di un generico contaminante (indicato con X) è:

X· + O3 → XO +O2                                                        (4)

XO + O → X· +O2                                                           (5)

X· è un radicale libero [3], ovvero un sistema molto reattivo che ha come caratteristica quella di avere un elettrone spaiato. La somma delle reazioni (4) e (5) dà la reazione (6) che consente di dire che l’azione di X· è quella di incrementare la quantità di ossigeno mediante l’inibizione della reazione (2), ovvero la riconversione in ozono, con conseguente assottigliamento dello spessore dello strato di ozono nell’atmosfera:

O3 + O → 2O2                                                               (6)

 I precursori dei radicali liberi
Alcuni precursori dei radicali coinvolti nelle reazioni (4) e (5) grazie ai quali si genera l’assottigliamento dello strato di ozono sono metano (CH4), acqua (H2O), protossido di azoto (N2O, meglio conosciuto come gas esilarante), o i famigerati clorofluorocarburi (CFC).
Metano ed acqua reagiscono con l’ossigeno atomico eccitato ottenuto nella reazione (1) per formare radicali ossidrili (OH·), ovvero i “catalizzatori” indicati con X nelle reazioni (4) e (5), secondo le reazioni (7) e (8):

O + CH4 → OH· + CH3                                              (7)

O + H2O → 2 OH·                                                        (8)

Sostituendo i radicali ossidrili alle X delle reazioni (4) e (5) si completa lo schema reattivo che porta alla degradazione dell’ozono in ossigeno molecolare.
Il ruolo del protossido di azoto è descrivibile con lo schema di reazioni da (9) a (11):

O + N2O → 2 NO·                                                      (9)

NO· + O3 → NO2 · + O2                                          (10)

NO2 · + O → NO· + O2                                             (11)

Infine i clorofluorocarburi come il CF2Cl(una volta usati come liquidi refrigeranti come per esempio nei frigoriferi) reagiscono come indicato nelle reazioni da (12) a (15)

CF2Cl2 + RUV → CF2Cl∙ + Cl∙                           (12)

Cl∙ + O3 → ClO∙ + O2                                             (13)

ClO∙ + O∙ → Cl∙ + O2                                              (14)

CF2Cl∙ + O2 → CF2O + ClO∙                               (15)

Questi appena descritti sono solo alcuni esempi di precursori dei radicali coinvolti nella degradazione dell’ozono atmosferico. Molti altri, con meccanismi più dettagliati che sono al di là dello scopo di una nota divulgativa su un bolg, sono riportati nelle letture consigliate.
Nuove ipotesi in merito alla degradazione dell’ozono atmosferico
Recentemente [4] è stato proposto un meccanismo alternativo per l’azione dei CFC nella degradazione dell’ozono. In particolare, l’acqua sotto forma di minuscoli cristalli di ghiaccio sospesi in atmosfera, interagisce con la radiazione cosmica, ovvero la luce solare, generando elettroni solvatati (e-) che rimangono assorbiti sulla superficie solida (Figura 1) secondo la reazione (16):

H2O + radiazione cosmica → e- + H3O+ + OH·     (16)

Gli elettroni solvatati reagiscono con i clorofluorocarburi assorbiti sulla superficie dei cristalli di ghiaccio per formare CF2Cl∙ e Cl∙ che poi innescano le reazioni riportate in (13)-(15)

Figura 1. Esempio di elettroni solvatati assorbiti su una superficie solida
L’ozono fa bene?
Alla luce di tutto quanto scritto si potrebbe pensare che siano tutte rose e fiori, ovvero che l’ozono apporti benefici all’essere umano. In realtà, non è così. Quanto appena analizzato in modo sommario ci informa che l’ozono è utile per impedire che raggi dannosi per la salute umana possano arrivare alla superficie terrestre. Noi ci siamo evoluti nel modo in cui ci presentiamo anche grazie al fatto che un “ombrello” fatto di ozono ha impedito ai raggi ultravioletti di una certa intensità di arrivare negli strati più bassi dell’atmosfera. Come si sarebbe evoluta la vita se questi raggi non fossero stati schermati? Non è dato saperlo e, comunque, la scienza non si fa con le ipotesi assurde. Resta il fatto che è grazie alla protezione offerta dall’ozono che la vita si presenta come la conosciamo. Da tutto quanto scritto si intuisce anche che l’ozono è una molecola reattiva ed in effetti i suoi effetti sulla salute umana si possono riassumere come segue:
“Concentrazioni relativamente basse di Ozono provocano effetti quali irritazioni alla gola ed alle vie respiratorie e bruciore agli occhi; concentrazioni superiori possono portare alterazioni delle funzioni respiratorie ed aumento della frequenza degli attacchi asmatici” [5].
L’Ozono, infine, “è responsabile anche di danni alla vegetazione e ai raccolti, con la scomparsa di alcune specie arbore dalle aree urbane. Alcune specie vegetali particolarmente sensibili alle concentrazioni di Ozono in atmosfera vengono oggi utilizzate come bioindicatori della formazione di smog fotochimico” [5].
Riferimenti
Letture consigliate ed approfondimenti

L’ innalzamento ebullioscopico: il ruolo dei legami a idrogeno nel comportamento dell’acqua.

Un po’ di tempo fa ho scritto un post riguardante il ruolo che i legami a idrogeno ricoprono nel comportamento dell’acqua. In particolare è stata analizzata la caratteristica delle molecole di acqua di “escludere” i soluti durante il processo di raffreddamento [1]. Adesso voglio concentrarmi (come promesso) sul ruolo che i legami a idrogeno ricoprono nel modulare le proprietà colligative. In particolare, voglio concentrarmi sull’innalzamento ebullioscopico [2], rimandando ad una nota successiva la spiegazione sull’abbassamento crioscopico [3].
E’ stato già evidenziato [1] che per innalzamento ebullioscopico si intende l’aumento della temperatura di ebollizione conseguente alla dissoluzione di un soluto in un solvente. In genere, per spiegare questo fenomeno si fa riferimento al fatto che l’addizione di un soluto in un solvente comporta un abbassamento della tensione di vapore di quest’ultimo con la conseguenza che è necessaria una temperatura più elevata per arrivare all’ebollizione [2].
Cosa vuol dire tensione di vapore? Molto semplicisticamente la “tensione di vapore” è la pressione (ovvero la forza) esercitata sulle pareti di un recipiente chiuso da parte delle molecole di vapore di una sostanza in equilibrio con la fase condensata (liquida o solida) della stessa sostanza [4].

Figura 1. Esempio di equilibrio tra una fase condensata (in questo caso liquida) ed il vapore
La Figura 1 esemplifica quanto appena scritto. Le molecole sulla superficie del liquido racchiuso nel pallone tappato di Figura 1 “sfuggono” dalla superficie e “galleggiano” nello spazio vuoto seguendo delle traiettorie casuali. Nelle condizioni di equilibrio, il numero di molecole di vapore che ritornano nella fase condensata (ovvero liquida, in questo caso) è uguale al numero di molecole che “sfuggono” dalla superficie. L’ “abbassamento della tensione di vapore” di cui si diceva sopra significa che la pressione esercitata dalle molecole di vapore sulle pareti del recipiente chiuso si abbassa per effetto dell’addizione di un soluto al solvente. In altre parole, l’equilibrio descritto dalla reazione riportata in Figura 2 si sposta verso sinistra (ovvero dalla parte del solvente in fase liquida) e l’ebollizione si interrompe. Occorre innalzare la temperatura per riportare il sistema all’ebollizione

Figura 2. Equilibrio tra fase liquida e fase vapore di un solvente di una generica soluzione
Come mai l’addizione di un soluto ad un solvente comporta l’abbassamento della tensione di vapore con conseguente innalzamento ebullioscopico? Molto semplicisticamente si potrebbe dire che il soluto “aggancia” le molecole di solvente impedendo che esse “sfuggano” dalla superficie della fase condensata. Occorre una quantità di calore più elevata (e, quindi, una temperatura più alta) per consentire alle molecole di solvente di opporsi alla resistenza offerta dal soluto e ristabilire le condizioni di equilibrio all’ebollizione.
Per spiegare meglio quanto accade addizioniamo il cloruro di sodio (NaCl) in acqua. il cloruro di sodio è un solido ionico [5] in cui lo ione sodio (catione) interagisce con lo ione cloruro (anione) mediante interazioni di natura elettrostatica. L’acqua è una molecola in cui la densità elettronica intorno all’ossigeno è più elevata che attorno agli atomi di idrogeno (Figura 3). Per questo motivo, l’ossigeno è dotato di una parziale carica negativa, mentre gli atomi di idrogeno di una parziale carica positiva (Figura 3). Dal momento che il centro delle cariche negative è diverso da quello delle cariche positive (ovvero si osserva l’anzidetta separazione di carica), la molecola di acqua ha carattere dipolare.

Figura 3. Struttura della molecola di acqua. Il colore rosso indica che gli elettroni di legame sono spostati verso l’ossigeno conferendo ad esso una parziale carica negativa. Di conseguenza gli atomi di idrogeno, avendo una densità di carica inferiore, sono parzialmente positivi
Abbiamo già evidenziato che il carattere dipolare della molecola di acqua è causa della formazione dei legami a idrogeno [1]. In questa sede il carattere dipolare dell’acqua ci consente di spiegare il meccanismo di dissoluzione del cloruro di sodio. Infatti, quando il cloruro di sodio viene messo in acqua si generano delle interazioni di natura elettrostatica del tipo Na(+)/H2O e Cl(-)/H2O. La componente negativa del dipolo acqua è orientata verso la carica positiva del sodio, mentre la parte positiva dello stesso dipolo è orientata verso lo ione cloro (Figura 4). In questo modo i due ioni del solido ionico si separano e si realizza la dissoluzione del sale.
Il processo di dissoluzione mediato dall’azione dell’acqua che circonda i due ioni si chiama “solvatazione”. In generale, i processi di dissoluzione di un soluto in un solvente sono dovuti alla solvatazione. Se questa non si può realizzare, la dissoluzione non avviene.
Le molecole di acqua si dispongono “a strati” intorno agli ioni. Ognuno degli strati viene indicato come “sfera di idratazione”. Le molecole di acqua più interne, ovvero quelle più vicine agli ioni, si collocano nella prima sfera di idratazione. A seguire tutte le altre sfere di idratazione [6]. L’identificazione del numero di sfere di idratazione richiede degli studi approfonditi [7] che vanno oltre gli scopi di questa nota.

Figura 4. Dissoluzione del cloruro di sodio in acqua. I due ioni sono solvatati
L’orientazione delle molecole di acqua intorno allo ione sodio è tale che non vengono più soddisfatti i requisiti geometrici necessari per la realizzazione dei legami a idrogeno (dei requisiti necessari per la formazione dei legami a idrogeno se ne è già parlato nel post precedente [1]). Per questo motivo i legami a idrogeno tra le molecole di acqua nella prima sfera di idratazione si interrompono [7]. Inoltre, l’interazione acqua/sodio comporta uno “scivolamento” della densità elettronica dei legami H-O dell’acqua verso l’ossigeno. Tradotto, vuol dire che aumenta la polarità del legame H-O, ovvero aumenta l’intensità della carica positiva sugli atomi di idrogeno a causa dell’aumento dell’intensità della carica negativa sull’ossigeno come effetto dell’interazione con lo ione sodio [7]. Per questo motivo le molecole di acqua nella prima sfera di idratazione (incapaci di formare legami a idrogeno tra loro) sono in grado di legarsi alle molecole di acqua nella seconda sfera di idratazione con legami a idrogeno la cui intensità è più forte che nell’acqua libera (ovvero l’acqua in cui non è disciolto alcun soluto). La natura dei legami a idrogeno tra le molecole di acqua nella prima e nella seconda sfera di idratazione incrementa la polarità dei legami H-O nelle molecole di quest’ultima sfera di idratazione. Le molecole di acqua della seconda sfera di idratazione sono, quindi, in grado di interagire con le molecole della terza sfera di idratazione con legami a idrogeno più forti di quelli che si realizzano tra le molecole di acqua libera. L’intensità dei legami a idrogeno diminuisce all’aumentare della distanza delle molecole di acqua dallo ione.
Uno ione in grado di intensificare le interazioni a idrogeno tra le molecole di acqua presenti nelle diverse sfere di idratazione si dice “strutturante”. La capacità strutturante di uno ione dipende dalle sue dimensioni. Più lo ione è piccolo, più elevata è la sua densità di carica (ovvero la quantità di carica per unità di volume) e più elevata è la forza del campo elettrico da essa generata in conseguenza della quale lo ione è in grado di indurre un ordine tra le molecole di acqua oltre la prima sfera di idratazione. Sono ioni destrutturanti quelli che hanno densità di carica tale che il campo elettrico da essa generato non è in grado di polarizzare le molecole di acqua al di fuori della prima sfera di idratazione (in altre parole ioni a dimensione crescente sono progressivamente più destrutturanti). Lo ione sodio ha caratteristiche strutturanti, mentre lo ione cloro ha caratteristiche destrutturanti. Tuttavia, è possibile misurare la forza strutturante/destrutturante di uno ione [7] e concludere che nel cloruro di sodio la natura strutturante dello ione sodio predomina su quella destrutturanrte dello ione cloro.
La conseguenza di tutto quanto scritto è che il sale da cucina (ma questo è un discorso di carattere generale) ha caratteristiche “strutturanti” per cui esso è in grado di ancorare le molecole di acqua alla superficie della fase liquida in modo tale che la quantità di energia necessaria per rimuoverle risulta essere più alta che in assenza del soluto.
Note conclusive
Questa trattazione si applica alle soluzioni lontane dall’idealità quali quelle ambientali come per esempio quella che viene indicata come “soluzione suolo”. Lo so. Sono stato particolarmente prolisso, ma mi sono lasciato prendere la mano. Una nota nata come “Pillola di scienza” è diventata la trascrizione di una delle mie lezioni di chimica del suolo. Spero di non aver annoiato e che qualcuno possa trovare ispirazione da quanto scritto. I miei studenti possono, certamente, usare queste cose come appunti integrativi al loro studio.
Riferimenti
  1. https://www.facebook.com/RinoConte1…
  2. http://www.chimica-online.it/downlo…
  3. http://www.chimica-online.it/downlo…
  4. http://www.chimica-online.it/downlo…
  5. http://www.chimicamo.org/chimica-ge…
  6. http://www.chimicamo.org/chimica-ge…
  7. https://www.researchgate.net/public…

Richard Willstätter ed i pigmenti vegetali

Pigmenti vegetali e la ricerca del chimico tedesco Willstätter.
Richard Martin Willstätter nasce a Karlsruhe il 13 Agosto del 1872. Si tratta di un chimico tedesco pioniere dello studio delle sostanze naturali, ovvero dei metaboliti secondari delle piante.

Richard Martin Willstätter (fonte: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1915/willstatter-bio.html)
I suoi studi si incentrano inizialmente sulla struttura e la sintesi di alcuni alcaloidi vegetali (cocaina ed atropina) oltre che di alcuni chinoni.

Strutture di atropina e cocaina, due alcaloidi naturali
Durante questa prima fase della sua vita accademica, approfondisce le tecniche analitiche che, successivamente gli spianano la strada per il riconoscimento della struttura di flavoni e antociani, ovvero dei tipici pigmenti delle piante, oltre che della clorofilla, pigmento fondamentale per la fotosintesi clorofilliana.

Formula di struttura delle clorofille. Clorofilla (a) X = CH3 Clorofilla (b) X = CHO (fonte: http://www.minerva.unito.it/Chimica&Industria/Dizionario/Supplementi02/AdditiviAlimentari/SchedaE140.htm)
Le sue scoperte nel campo dei pigmenti vegetali gli valgono nel 1915 il premio Nobel per la chimica con la seguente motivazione: “for his researches on plant pigments, especially chlorophyll” (fonte: https://www.nobelprize.org/nobel_pr…)
Il lavoro pioneristico di Willstätter gli consentì di capire che esistono diverse forme di clorofilla e che sebbene isolate da piante diverse, esse sono identiche in tutti gli organismi vegetali.

Spettro di assorbimento della clorofilla. I massimi sono a 420 nm e 665 nm. L’assenza di massimi nella regione del “verde” rende conto della tipica colorazione che la clorofilla conferisce alle foglie
Infine, riuscì a capire che esiste una relazione tra clorofilla ed emoglobina.

Somiglianza tra i gruppi tetrapirrolici presenti nell’emoglobina (a sinistra) e nella clorofilla (a destra)
Approfondimenti

Le macchine molecolari e il Nobel per la Chimica 2016

Fino a ieri le macchine molecolari erano note solo ad un ristretto pubblico di chimici impegnati o nello studio dei processi biochimici alla base del metabolismo o nella sintesi di nuove molecole da utilizzare nel campo delle nanotecnologie. Insomma era roba per pochi eletti, di nerds della conoscenza o topi da laboratorio, se proprio vogliamo dirla in un modo più prosaico. Ed, invece, la commissione che assegna i premi Nobel ha deciso di premiare tre scienziati, Jean-Pierre Sauvage, Fraser Stoddart e Bernard L. Feringa “for the design and synthesis of molecular machines“, da anni impegnati nella progettazione e nella sintesi di questi sistemi complessi tanto che ora il termine “macchine molecolari” viaggia di bocca in bocca e presto diventerà patrimonio comune come il termine “plastica” che è associato, sebbene non proprio correttamente, al nome di Giulio Natta, premio Nobel, assieme a Karl Ziegler, nel 1963 per le sue scoperte nell’ambito della chimica dei polimeri.

I vincitori del premio Nobel per la chimica 2016 (fonte https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/)
Ma cosa sono le macchine molecolari?
Tutti sappiamo cosa sia una macchina. Basta aprire un qualsiasi dizionario per trovare che una macchina è uno “strumento, apparato, congegno costituito da un numero variabile di parti collegate fra loro in rapporto cinematico, che serve per la trasformazione o per la trasmissione dell’energia o per il compimento di determinate operazioni” (da: http://dizionario.internazionale.it/…). In altre parole, si tratta di un sistema più o meno complesso composto da tante parti assemblate assieme in modo tale che il loro movimento relativo sia in grado di trasmettere energia o di compiere un lavoro.

Locomotiva a vapore, tipica macchina fatta di parti assemblate assieme, in grado di muoversi e capaci di compiere un lavoro (fonte https://www.flickr.com/photos/powerhouse_museum/sets/72157607071380541/)
In natura esistono tantissimi sistemi che possono essere assimilati a delle macchine. Una di queste è, per esempio, l’emoglobina, una proteina allosterica formata da quattro subunità – ovvero da quattro diverse componenti assemblate nel modo opportuno, che è in grado di trasportare l’ossigeno all’interno delle cellule e l’anidride carbonica fuori da esse (il funzionamento della molecola ed il significato di allosterismo sono già stati evidenziati in un mio articolo sul blog: http://www.laputa.it/blog/elogio-de…). La capacità che ha l’emoglobina di modulare la sua azione attraverso il movimento delle sue subunità la rende una vera e propria macchina in miniatura, ovvero una nanomacchina o macchina molecolare, il cui scopo è quello di consentire l’ossigenazione delle cellule al fine di assicurare il corretto funzionamento del nostro metabolismo.

L’emoglobina – tipica macchina molecolare la cui azione è modulata dalla sua capacità di movimento (fonte http://www.pianetachimica.it/mol_mese/mol_mese_2003/05_Emoglobina/emoglobina_1_ita.html)
Ma l’emoglobina non è la sola macchina molecolare presente negli esseri viventi.
Cosa dire, per esempio, degli enzimi che prendono il nome di DNA polimerasi e che sono coinvolti nella replicazione del DNA? Le DNA polimerasi sono delle molecole complesse che, in modo molto semplicistico, funzionano “scivolando” lungo i filamenti di DNA. Man mano che gli enzimi procedono, i due filamenti di DNA, avvolti a formare la famosa doppia elica descritta per la prima volta da Watson e Crick su Nature (http://www.nature.com/nature/dna50/…), si separano come se fossero le due parti di una cerniera che si aprono per effetto del passaggio del cursore metallico. Via via che le DNA polimerasi incontrano un “dente” della catena, esse “prelevano” dall’ambiente circostante la molecola adatta da “incastrare” sul “dente” stesso in modo tale da sintetizzare un filamento (ovvero una catena) di DNA che sia esattamente complementare a quella lungo cui stanno scivolando.

Schema della replicazione del DNA (fonte: http://www.chimica.unipd.it/fabrizio.mancin/pubblica/Suprachem/macchine%20molecolari.pdf)
Vogliamo parlare, poi, dell’ATP-asi, l’enzima coinvolto nella sintesi dell’ATP? Si tratta di un complesso molecolare che funziona come una vera e propria turbina per convertire l’energia associata ad un gradiente protonico (cioè la differente concentrazione di ioni H+ tra i due lati di una membrana cellulare) in energia chimica contenuta nei legami della molecola di ATP. L’enzima è fatto da tre parti. Una parte dell’enzima, “chiusa” all’interno della parete cellulare, è indicata come F0; questa è legata ad una estremità di una sorta di “albero a camme” la cui altra estremità è connessa ad una “lingua” che viene, generalmente, indicata come F1. I protoni presenti da un lato della membrana (quello dove essi sono in concentrazione più elevata) si incanalano in F0 attivandone un movimento meccanico di tipo rotatorio. Il movimento rotatorio viene trasmesso ad F1 attraverso l’albero a camme. Si verificano, quindi, due condizioni. Da una parte, il movimento rotatorio consente di “pompare” i protoni da un lato all’altro della parete cellulare. Dall’altra, la trasmissione del moto da F0 a F1 consente a quest’ultima subunità di “aprirsi” e “catturare” gli “ingredienti” necessari per la sintesi dell’ATP. Una volta catturati gli ingredienti, F1 si chiude impedendone l’allontanamento e promuovendo la formazione di ATP. Dopo la sintesi di ATP, la subunità F1 si apre e consente alla molecola appena formata di fuoriuscire (qui si trova un bellissimo filmato sul funzionamento dell’ATP-asi: https://www.youtube.com/watch?v=Pjd…).

Struttura e schema di funzionamento dell’ATP-asi (fonte: http://www.chimica-online.it/biologia/sintesi-atp.htm)
La tendenza attuale nel mondo chimico è la “biomimesi”, ovvero lo sviluppo di tecnologie chimiche in grado di produrre molecole che, in qualche modo, funzionino come i sistemi presenti in natura. Io stesso, in passato, sono stato impegnato in ricerche di questo tipo quando studiavo catalizzatori biomimetici per il recupero ambientale (http://www.suprahumic.unina.it/home…).
E’ proprio guardando al funzionamento delle macchine molecolari presenti nel metabolismo degli esseri viventi che è nata l’idea di usare aggregati di molecole (ovvero supramolecole) per “compiere” lavoro mirato a livello molecolare come trasmissione di energia o movimento. I primi prototipi di macchine molecolari sintetiche furono i rotassani e i catenani in cui il movimento meccanico era limitato ad uno “scivolamento” di due subunità l’una dentro l’altra.

Prototipi di macchine molecolari (fonte: http://www.ordinechimicicalabria.it/portale2016/congresso/contributi%20scientifici/T03%20CREDI.pdf)
Altro simpatico esempio di macchina molecolare è quello che è stato definito “ascensore molecolare” il cui futuro sembra essere quello di “veicolare”, attraverso meccanismi di “cattura/rilascio”, molecole aventi particolari caratteristiche chimiche (per esempio i contaminanti ambientali).

Esempio di ascensore molecolare (fonte: http://www.ordinechimicicalabria.it/portale2016/congresso/contributi%20scientifici/T03%20CREDI.pdf)
Alla luce di tutto quanto illustrato, è possibile dare una definizione di macchina molecolare (o nanomacchina) come di un aggregato molecolare (o supramolecola) in grado di compiere movimenti meccanici per trasmettere moto o trasferire energia attraverso stimoli chimico-fisici come interazione con la luce o gradienti di concentrazione.
Note conclusive
Chiedo scusa a tutti i biochimici per l’enorme superficialità che ho utilizzato per la descrizione dei meccanismi biochimici. Essi sono tutt’altro che così semplici, tuttavia ho cercato di semplificare al massimo il funzionamento delle macchine molecolari di tipo metabolico per un pubblico non troppo esperto. Spero di essere riuscito nell’intento.
Per approfondire:
  1. http://prometeo.sif.it/papers/onlin…
  2. http://www1.unipa.it/flor/materiale…
  3. http://www.ordinechimicicalabria.it/…
  4. http://www.itscienzachimica.altervista.org/…
  5. http://www.chimica-online.it/biolog…
  6. http://www.scienzagiovane.unibo.it/…
Fonti delle immagini:
  1. L’immagine di copertina è presa da: http://www.steinbeck-molecular.de/s…
  2. L’immagine dei laureati Nobel per la chimica 2016 è presa da: https://www.nobelprize.org/nobel_pr…
  3. La locomotiva a vapore è presa da: https://www.flickr.com/photos/powerhouse_museum/sets/72157607071380541/
  4. L’immagine dell’emoglobina è presa da: http://www.pianetachimica.it/mol_me…
  5. Lo schema della replicazione del DNA è preso da: http://www.chimica.unipd.it/fabrizi…
  6. Lo schema dell’ATP-asi è preso da: http://www.chimica-online.it/biolog…
  7. Lo schema dei rotassani, dei catenani e dell’ascensore molecolare è preso da: http://www.ordinechimicicalabria.it/…

Naturale vs sintetico: l’ormone della crescita

Oggi vi scrivo della somatotropina ovvero di una molecola che viene anche semplicemente indicata come “ormone della crescita”. Si tratta di un peptide (ovvero di un sistema organico formato da diversi amminoacidi legati assieme) prodotto nell’ipofisi e responsabile della nostra crescita.

L’ormone della crescita utilizzato come farmaco per curare gli individui affetti da nanismo.

Sapete come si ottiene? Si ottiene per via sintetica, ovvero, si sintetizza in laboratorio usando la tecnica del DNA ricombinante. Si tratta della stessa tecnica di sintesi che consente di ottenere i prodotti geneticamente modificati (i famosi OGM tanto vituperati in Italia). Come mai una molecola così importante viene sintetizzata in laboratorio e non ottenuta “naturalmente” attraverso processi di estrazione?

Come ho già scritto, questa molecola è prodotta dall’ipofisi. L’unico metodo “naturale” noto per poterne ottenere in quantità sufficienti da produrre farmaci da distribuire “urbi et orbi” (e realmente utilizzato prima che venisse messa a punto la tecnica del DNA ricombinante) è l’estrazione dalle ghiandole del sistema endocrino di giovani uomini morti o di scimmie. Il problema delle estrazioni è che non si ottiene un prodotto puro, ma sempre “contaminato”. Infatti, il problema fondamentale dei processi estrattivi è che non consentono di “distinguere” tra molecola “giusta” e molecola leggermente “modificata” casualmente per motivi “naturali”. La somatotropina modificata geneticamente ed in modo naturale è anche quella che può dar luogo alla malattia di Creutzfeld-Jacob, altrimenti conosciuta come “morbo della mucca pazza”.

Quando in passato veniva usata la somatotropina ottenuta per processi estrattivi, quindi “naturalmente”, era abbastanza alto il rischio di contrarre il morbo della mucca pazza.

La sintesi chimica attraverso la tecnica del DNA ricombinante consente di ottenere una molecola estremamente pura senza alcun pericolo di contrarre la malattia anzidetta.

Ricordiamo anche questo, quando sentiamo i “naturisti” affermare che ciò che è naturale è necessariamente “buono”.

Per saperne di più

http://www.eusebio.pro/Ormone_della_crescita_gh.pdf

http://www.amegighi.it/…/3-IPOFISI%20e%20ORMONI%20IPOFISARI…

http://www.med.unipg.it/…/Fisi…/Il%20Sistema%20Endocrino.pdf

https://it.wikipedia.org/wiki/DNA_ricombinante

Share