Ancora sulla chimica cattiva

 

Ormai anche le dolomiti sanno che sono un chimico; sanno anche che sono alquanto irritabile quando leggo certe cose. E guardando alla foto di Figura 1 mi sono irritato non poco.

 

Figura 1. Post comparso sulla pagina pubblica di una nutrizionista

La dottoressa scrive: “i dolcificanti artificiali, che sono chimici e tossici”.

Cosa vuol dire che i dolcificanti artificiali sono chimici? Forse che il saccarosio (ovvero quella polverina bianca che usiamo per dolcificare il caffè al bar) non è inquadrabile come un composto chimico? Ed il fruttosio? E tutti gli altri zuccheri? Non sono forse anche essi composti chimici? Ma, del resto, esiste un qualche composto nell’intero universo che possa essere definito come “non chimico”? Anche le rocce che sono su Marte sono composti chimici.

Ancora una volta il termine “chimico” viene usato male.

Come sto ripetendo fino alla nausea da un po’ di tempo a questa parte, la chimica è una forma di conoscenza. Come questa conoscenza possa essere utilizzata è ben altro. Non voglio ripetermi per l’ennesima volta. Vi invito a leggere le interviste che ho rilasciato a “La medicina in uno scatto” (qui) e Gravità Zero (qui) oppure l’intervista che è apparsa su Il Sole 24 Ore (qui).

Il linguaggio popolare

Capisco che per le persone che non sono abituate al linguaggio scientifico il termine “chimico” voglia dire “di sintesi”, ovvero fatto in laboratorio. Ma il fatto che un composto chimico sia fatto in laboratorio non vuol dire che esso sia necessariamente tossico. Nella intervista a “La medicina in uno scatto” (qui) faccio l’esempio della nitroglicerina che è un composto che non esiste in natura; può essere usato come esplosivo (e di fatto è l’ingrediente della dinamite), ma anche come medicinale, dal momento che il suo sottoprodotto di degradazione nell’organismo umano è un ottimo vasodilatatore e viene usato come farmaco antianginoso. Questo è solo uno dei tanti esempi che si possono fare. Un altro è l’insulina. Fino a una cinquantina di anni fa, l’insulina (sì, quel famoso ormone la cui carenza è legata all’insorgenza del diabete) era isolata dal pancreas animale (in particolare del maiale). Il suo grado di purezza non era sufficiente a garantirne una completa innocuità perché gli individui che assumevano questo prodotto di origine animale potevano rispondere negativamente alle impurezze in esso contenuto. Oggi l’insulina è fatta in laboratorio (mediante l’uso di organismi geneticamente modificati, sì, proprio i bistrattati OGM) ed il suo grado di purezza assicura agli esseri umani un ottimo grado di tollerabilità. Oggi i diabetici possono condurre una vita “normale” fino a tarda età facendo ovviamente attenzione a ciò di cui si alimentano e facendo uso costante di questo farmaco di sintesi.

I dolcificanti di sintesi

Ed ora ritorniamo ai dolcificanti di sintesi. Sono tossici? Non più di quanto lo sia un qualsiasi altro alimento. Ne parlo molto dettagliatamente nel mio libro “Frammenti di Chimica“, ma ne ho parlato anche diverse volte in un mio reportage sui dolcificanti. Per esempio qui parlo dell’acesulfame K, qui della “tossicità” dello zucchero raffinato (ma ne parlo anche nell’intervista a Gravità Zero, qui), qui parlo della saccarina, qui dell’aspartame. Insomma, la “tossicità” degli edulcoranti di sintesi è una leggenda. È ovvio che se assumiamo quantità enormi di un qualsiasi dolcificante, questo bene non fa. Il trucco è tutto nella moderazione e nella variabilità alimentare.

Metabolismo veloce; metabolismo lento

Altro punto che mi lascia perplesso, e molto, è il concetto di “accelera il metabolismo”. Il metabolismo è una complessa serie di reazioni chimiche dalle quali traiamo la nostra capacità autopoietica (per approfondire ne ho già parlato in passato qui e qui). Il metabolismo (la cui complessità è in Figura 2) non può essere inteso come un’automobile che accelera quando pigiamo sul pedale dell’acceleratore o rallenta quando pigiamo il pedale del freno.

Figura 2. Mappa metabolica (Fonte)

Le reazioni metaboliche vanno in una direzione o nell’altra a seconda delle attività che svolgiamo durante la giornata. “Accelerare” o “rallentare” il metabolismo è un non-senso biochimico; in altre parole non significa nulla. L’uso di questi termini non fa altro che alimentare dei miti e delle leggende popolari che, a loro volta,  posso generare bufale.

Come difendersi dalle bufale?

L’educazione alla scienza, la difesa dalle bufale, passa anche dal modo con cui noi professionisti del settore usiamo le parole. Non possiamo, noi, abbassarci al linguaggio popolare. Dobbiamo fare in modo che il linguaggio popolare venga dismesso e le parole vengano usate nel modo opportuno. Questo lo possiamo fare solo se noi tutti ci impegniamo nella corretta divulgazione ed educhiamo il salumiere, la massaia, il professionista che è fuori dal contesto scientifico, all’uso corretto delle parole che appartengono al nostro mondo.

 

Fonte dell’immagine di copertinahttps://www.scientificast.it/chimica-bella-chimica-brutta-scientificast-126/

Frammenti di Chimica. La recensione di Nicola Porro

“Frammenti di chimica. Come smascherare falsi miti e leggende” è stato recensito da Nicola Porro, vicedirettore de Il Giornale. La recensione è apparsa il 4 Novembre 2018 sia in forma cartacea (Figura 1) che on line, qui.

Figura 1. “La biblioteca Liberale” di Nicola Porro. Il Giornale 04.11.2018
__________________________________________________
La vera scienza ha solo un metodo corretto.

di Nicola Porro

Indro Montanelli aveva definito i bordelli come le uniche istituzioni italiane in cui la tecnica venisse rispettata e la competenza riconosciuta. Oggi che l’istituzione non esiste più (regolamentata, voglio dire), a seguire Montanelli non ve n’è alcuna ove la tecnica sia rispettata o la competenza, quando c’è, riconosciuta. Anzi, se ricordiamo che oltre trent’anni fa, ai tempi del primo referendum sul nucleare, ai competenti del tema era inibito parlare perché, in quanto competenti, erano considerati anche “di parte”, se ne deduce che si avesse titolo a tanto più “discettare su” e “occuparsi di” un problema solo quanto più incompetenti si fosse stati. Ma allora non c’era internet: oggi, dal basso di una tastiera, chiunque può assurgersi a competente di qualsiasi cosa. Potremmo chiamarla demcrazia dell’esternazione. Grazie a essa, casalinghe annoiate possono disquisire di vaccini e irriducibili santoni dire che il bicarbonato è ottimo per curare il cancro.

La democrazia è un delicatissimo fiore e, se non è maneggiato con la massima cura, appassisce fino a marcire. In particolare, la democrazia non si applica alla scienza, intendendo con ciò il metodo scientifico. E negli odierni tempi di malintesa democrazia, i rischi di deterioramento crescono col crescere degli incompetenti, alla cui voce internet concede ampia eco. Per fortuna ogni tanto siamo deliziati dalla voce, anche se non sufficientemente possente, dei veri competenti. Una di queste rare e flebili voci è quella del Prof. Pellegrino Conte, ordinario di Chimica Agraria dell’Università di Palermo, che ci aiuta a “smascherare falsi miti e leggende”, come recita il sottotitolo del suo “Frammenti di Chimica” (C1V edizioni).

Non è un libro di chimica tradizionale, sennò non saremmo qui a scriverne (diciamo che il sottotitolo è più appetitoso del titolo), ma è una cassetta degli attrezzi per distinguere il vero dal verosimile, o dal palesemente falso. Bisogna sempre diffidare, avverte l’autore, dei santoni che dicono di essere dei novelli Giordano Bruno o redivivi Galileo Galilei e che lamentano di essere vittime della scienza ufficiale: non esiste alcuna scienza ufficiale! Così come non esiste il consenso scientifico: esiste solo il metodo scientifico. Ed è proprio sulla natura del metodo scientifico che l’autore ci illumina, in modo accattivante e piacevole. Gli esempi trattati sono molteplici, dall’immancabile omeopatia (che ogni buon chimico vede come il fumo negli occhi), alle acque in bottiglia, allo zucchero (sapete la differenza tra zucchero bianco e zucchero bruno?). Il libro è un prontuario che insegna a leggere le etichette, ma che può anche essere un salvavita, come salvavita sono, ci stupisce l’autore, alcuni esplosivi. Eh, già, perché a volte crogiolarsi in fasle credenze è come pretendere di usare una mappa di Roma quando ci si trova a Milano: esercizio forse divertente, ma che può essere fatale a chi si è veramente perduto.

__________________________________________________

 

Salute e Società. Tra scienza e pseudoscienza: lo streaming

Il 25 Ottobre 2018, presso il Dipartimento Scienze Agrarie, Alimentari e Forestali dell’Università degli Studi di Palermo, si è concluso il primo CNMP workshop dal titolo “Salute e Società. Tra scienza e pseudoscienza”. Tanti i relatori: il Prof. Dobrilla, il Prof. Fuso, il Dr. De Vincentiis,  il Prof. Cappello, il Prof. Burioni, il Dr. Saia, il Prof. Bonaccorsi, il Dr. Cartabellotta, il Dr. Mercadante, ed io stesso.

In Figura 1 si riporta il programma completo col titolo degli interventi.

Figura 1. Programma dettagliato del Workshop

Obiettivo dell’evento è stato quello di avvicinare il mondo accademico alla società civile per far comprendere in cosa consista il lavoro scientifico e in che modo poter riconoscere le fake news (o bufale, che dir si voglia). Tra i partecipanti oltre a professionisti di ogni settore, anche tantissimi studenti (Figura 3).

Figura 2. Il pubblico di studenti e professionisti intervenuti al Workshop

È stata una grande soddisfazione vedere un numero così elevato di studenti. Questo vuol dire che anche le menti più giovani sono curiose ed hanno voglia di apprendere i meccanismi attraverso cui si possono riconoscere le pseudoscienze così da poter dare esse stesse un contributo attivo alla lotta contro maghi, imbonitori e truffatori.

L’evento è stato condiviso in diretta streaming dalla pagina facebook della C1Vedizioni.

Qui di seguito trovate i filmati caricati sul mio canale YouTube personale delle singole presentazioni. Nello stesso canale potete anche trovare lo streaming completo nel caso aveste voglia e tempo di (ri)vivere tutte le emozioni e gli errori tecnici che, inevitabilmente, accompagnano l’organizzazione di un evento complesso come un Workshop.

Introduzione della Dr.ssa Tocci e intervento del Prof. Giorgio Dobrilla

 Medicina insolita nell’era 2.0

Intervento del Prof. Silvano Fuso

Chimica buona e chimica cattiva

Intervento del Dr. Armando De Vincentiis

Scienza e autoinganni

Intervento del Prof. Roberto Burioni

I vaccini, la scienza e le bugie

Intervento del Prof. Francesco Cappello

Il ruolo dell’anatomia umana nella battaglia contro la pseudoscienza

Intervento del Prof. Gugliemo Bonaccorsi

Prevenire le bufale con l’Health Literacy

Intervento del Dr. Nino Cartabellotta

Miti, presunzioni ed evidenze: un mix di ingredienti e le fake news sono servite!

Intervento del Dr. Sergio Saia

Le bufale scientifiche sul frumento e sui derivati

Intervento del Dr. Francesco Mercadante

Incubatori di devianze. Il linguaggio dei social network tra paradossi, cattiverie e mondi impossibili

Intervento Prof. Pellegrino Conte e conclusioni

La chimica contro le bufale

I patrocini

L’evento ha ricevuto il patrocinio morale dell’Università degli Studi di Palermo (UNIPA), del Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), del Dottorato di Ricerca in Scienze Agrarie, Alimentari e Forestali, della Associazione Italiana Società Scientifiche Agrarie (AISSA), della Società Italiana di Chimica Agraria (SICA), della Associazione Italiana di Ingegneria Agraria (AIIA), della Società Italiana di Pedologia (SiPE), della Società Italiana di Scienza del Suolo (SISS), del CICAP Puglia, della Fondazione GIMBE, della Società Italiana di Biologia Sperimentale (SIBS), dell’associazione dei Biologi Forensi (BIOFOR), dell’Associazione Studentesca Agraria Palermo (ASAP) e Intesa Universitaria (Figura 3).

Figura 3. Loghi delle Società ed Associazioni che hanno dato il patrocinio morale al Workshop “Salute e Società. Tra scienza e pseudoscienza”

 

Il Workshop “Società e Salute: tra scienza e pseudoscienza” sui giornali

Il 25 Ottobre 2018 si è concluso il primo CNMP Workshop dal titolo “Società e Salute. Tra scienza e pseudoscienza”. Obiettivo dell’evento è stata la sollevazione del mondo scientifico contro la diffusione delle pseudoscienze. Spettatori attenti, non solo professionisti di ogni settore, ma anche studenti. Ed è proprio a questi ultimi che il Workshop è dedicato. Bisogna fornire proprio ai più giovani gli strumenti adatti per riconoscere le fake news o bufale che si presentano ovunque: dai siti web alla carta stampata.

Diversi gli interventi tra cui quello del Dr. Nino Cartabellotta presidente dell’Osservatorio GIMBE. La sua lezione è stata oggetto di un articolo su LiveSicilia

Uno dei temi toccati si riassume in queste parole del Dr. Cartabellotta: “Siamo cresciuti nella cultura dell’aneddoto, quello che fa notizia è il sensazionalismo del trattamento straordinario e non i risultati della ricerca media”.

In attesa del montaggio dei filmati relativi ad ogni intervento, si può avere un sunto della lezione del Dr. Cartabellotta al link della redazione di LiveSicilia qui.

 

Frammenti di chimica su Oxygen

Ed eccomi qui in una trasmissione on line. Grazie a Carolina Sellitto per l’intervista nella sua Oxygen con la quale mi ha dato modo di poter parlare di chimica,  di scienza e di presentare il mio Frammenti di chimica. La corretta divulgazione si fa con tutti i mezzi possibili in modo da raggiungere le menti curiose del pubblico di ogni fascia di età ed estrazione culturale.

Carolina Sellitto presenta:Frammenti di Chimica con lo scienziato prof Pellegrino Conte

Publiée par Oxygen sur Vendredi 12 octobre 2018

 

Fonte dell’immagine di copertina: https://www.keeptheplanet.org/divulgazione-scientifica/

Numeri, numerielli e numericchi: la qualità dei dati scientifici (Parte II)

Eravamo rimasti alle riviste predatorie (qui), quelle riviste che, dietro corrispettivo di una tassa più o meno salata, pubblicano di tutto senza una seria revisione tra pari (peer review); anzi possiamo anche dire senza alcuna revisione tra pari.

Volete un esempio?

Cliccate qui e si aprirà uno studio dal titolo “Combined Effects of Ethylacetate Extracts of Propolis Inducing Cell Death of Human Colorectal Adenocarcinoma Cells”, autori: Britta Schulz, Elizabeth Smith , Richard Funden and Ulf Moosberger; rivista: J Integr Oncol 2018, 7:2 (DOI: 10.4172/2329-6771.1000207). In questo studio (citato nel numero 1274 della rivista Internazionale) si discute dell’attività anticancerosa della propoli, ovvero di una sostanza resinosa “fabbricata” dalle api, di origine vegetale e ritenuta la panacea di ogni male. Cosa c’è di strano in questo lavoro? Semplicemente che si tratta di un lavoro inventato dai giornalisti del Süddeutsche Zeitung Magazin e del Süddeutsche Zeitung nell’ambito di una inchiesta (pubblicata appunto sul numero 1274 di Internazionale) in merito ai giornali predatori. Gli stessi giornalisti del Süddeutsche Zeitung Magazin e del Süddeutsche Zeitung, poi, affermano che, per non lasciar traccia di questa pseudo scienza, hanno richiesto il ritiro del lavoro. Ed infatti, qui trovate proprio la retraction, sebbene non sia per nulla indicato che si è trattato di un lavoro inventato.

È finita? Certo che no.

Cliccate qui. Potrete accedere al lavoro dal titolo “Aspirin plus Vitamin C Provides Better Relief than Placebo in Managing the Symptoms of the Common Cold” con autori: Aurelio Sessa and Michael Voelker; rivista: J Health Care Prev 1: 102. Cosa ha di strano questo lavoro? Semplice. Lo studio è stato condotto usando la ben nota Aspirina© C Plus contro un placebo fatto di banale acqua gassata. La prima è risultata migliore della seconda nel trattamento dei sintomi del raffreddore. Il punto è che lo studio è incompleto. Per poter essere valido oltre ogni dubbio, gli autori avrebbero dovuto usare un campione controllo a cui somministrare la normale Aspirina©, quella che in farmacia ci costa pochi euro. Perché non l’hanno fatto? Semplicemente perché avrebbero dovuto riportare che gli effetti della costosa Aspirina© C Plus sono gli stessi della più economica Aspirina©.

In questo caso si parla di dati e lavori apparsi su riviste di editori che sono inclusi nella Beall’s list of predatory journals and publishers per cui, sapendo che la serietà di tali riviste è opinabile, uno scienziato serio si guarda bene dal prenderli in considerazione se non dopo essere entrato approfonditamente nel merito di quanto lì scritto ed aver fatto un’accurata revisione post pubblicazione (ricordo che il principio fondante del metodo scientifico si basa sull’importanza di ciò che viene detto e non su quella del contenitore dove viene pubblicato un lavoro. Ne ho parlato anche qui).

Le sciocchezze nelle riviste più accredidate: il caso del gruppo editoriale Nature

Bisogna ammettere che lavori dalla dubbia o inesistente serietà possono essere pubblicati anche su riviste più accreditate. Ne volete un esempio? Eccolo (qui). Si tratta di un lavoro sull’efficacia dell’omeopatia pubblicato su Scientific Reports (una rivista del gruppo editoriale Nature) che tutti i siti pro-omeopatia e tutti i quelli che pensano che l’omeopatia abbia un’efficacia più alta del placebo si affannano a pubblicizzare come pubblicata sulla molto più quotata Nature (qui e qui, per esempio). Cosa ha di strano questo lavoro?

Lo story-telling

Faccio una premessa. Le riviste del gruppo Nature hanno una particolarità: gli articoli sono scritti come se fossero una specie di story-telling. In altre parole, si privilegia la narrazione dei risultati e della loro interpretazione rispetto alla parte tecnico-sperimentale, ovvero l’elencazione dei materiali e metodi usati per gli esperimenti. Non fraintendetemi. Non è che materiali e metodi manchino; ci sono, solo che vengono inseriti in coda all’articolo pubblicato. Questo vuol dire che chi legge spesso si sofferma solo sullo story-telling senza approfondire oltre le modalità con cui sono stati condotti gli esperimenti. Questo modo di esporre una ricerca è positivo perché permette la comprensione di un articolo scientifico ad un pubblico molto più ampio di quello che accede a riviste che non usano il medesimo approccio narrativo: i lettori non si distraggono con particolari tecnici che, molte volte, risultano ostici ed incomprensibili. Il punto è che proprio nei materiali e metodi si annidano le insidie. È dalla lettura di quei paragrafi molto tecnici che si può capire se un progetto sperimentale è stato ben congegnato.

I dettagli tecnici

Andiamo nei particolari. A pagina 9 è scritto:

Drug treatment and groups. Animals were randomly divided into five groups, each consisting of 8 rats (n = 8). Group I: Normal control group of rats were orally administered once daily with 1 ml saline for 14 days. Group II: Sham operated group of rats were treated with 1 ml saline once daily for 14 days. Group III: CCI-induced neuropathy control group of rats orally received 1 ml saline once daily for 14 days. Group IV: CCI-induced neuropathy + RT treated group of rats orally received 0.1 ml of RT (1 × 10−12 dilution) with 1 ml of distilled water once daily for 14 days. Group V: CCI-induced neuropathy + gabapentin treated group of rats orally received Gabapentin (60 mg/kg/day, p.o.) suspended in 0.5% carboxymethyl cellulose (CMC) once daily for 14 days.

Da quanto riportato, si capisce che si tratta di una sperimentazione fatta su ratti divisi in 5 gruppi ognuno contenente 8 individui. Già da questo si potrebbe argomentare che 8 individui non sono una popolazione statisticamente significativa. Per poter avere dati che abbiano un significato statistico accettabile bisogna andare su numeri più grandi. Ed in effetti gli autori sembrano essere coscienti di questo limite perché a pagina 7 (nelle conclusioni del lavoro) scrivono:

Although, the results of present study suggested the anti-neuropathic effect of RT, further pre-clinical and clinical studies are warranted to confirm these effects. Several other biochemical mechanisms may be involved in RT mediated anti-neuropathic effect. Results of present study are suggestive of the anti-nociceptive effect of RT against neuropathic pain and deserve further validation of its effectiveness in various painful conditions.

In altre parole, occorrono esperimenti più approfonditi per validare le loro conclusioni.

La sperimentazione in cieco

Ma torniamo al “Drug treatment and groups”. Riuscite a notare cosa manca? Manca la sperimentazione in cieco. In altre parole, i trattamenti somministrati ai ratti dei cinque gruppi sono stati condotti in modo tale da non evitare né l’effetto Rosenthal né l’effetto Hawthorne. Si tratta di due possibili meccanismi dell’effetto placebo che ho già avuto modo di descrivere qui (ne parlo anche nel mio libro). La conclusione è che, sebbene pubblicato su una rivista prestigiosa di una casa editrice molto antica ed altrettanto prestigiosa, il lavoro non è fatto bene e le conclusioni non consentono di dire che i rimedi ad elevata diluizione sperimentati sono più efficaci dei placebo.

Altri esempi di lavori superficiali su riviste accreditate

Una delle riviste del mio settore è Journal of Chemical Ecology. È una rivista con un impact factor di 2.419 per il 2017. Certo non è paragonabile a quello di Nature che è 42, ma stiamo parlando di riviste scientifiche di carattere differente. Nature è una rivista generalista e, per questo, letta da scienziati di ogni settore disciplinare;  Journal of Chemical Ecology è un giornale di chimica ecologica ed è destinato ad una nicchia molto piccola di scienziati, ovvero chimici che si occupano di ecologia ed ecologi. Da qui discende che il numero di citazioni che possono ricevere i lavori di Nature è di gran lunga più alto di quello che possono ricevere i lavori di Journal of Chemical Ecology destinato ad un settore enormemente più piccolo di quello di Nature (ricordo che l’impact factor è un parametro quantitativo che si calcola confrontando il numero di citazioni di tutti gli studi pubblicati in un biennio col numero totale di studi pubblicati nello stesso biennio. Per esempio, supponiamo che il numero di citazioni di tutti gli studi pubblicati su una rivista nel biennio 2015-2016 sia 13000, mentre il numero di studi pubblicati nello stesso periodo sia 5000. L’impact factor si ottiene dal rapporto 13000/5000, ovvero esso è 2.6).

Fatta questa premessa doverosa per evitare che i non addetti ai lavori si mettano a fare confronti idioti tra riviste che non possono essere confrontate tra loro (e vi assicuro che stupidi che fanno questi confronti ce ne sono), vediamo cosa mi è capitato sotto le mani.

Le cifre significative

Chi mi legge da un po’ di tempo sa che non scrivo solo per il mio blog, ma anche per altri siti come Laputa e Chimicare. In quest’ultimo ho pubblicato un breve articolo sulla matematica elementare nella chimica. Lo potete trovare qui. Non voglio tediarvi con troppi dettagli. L’articoletto sulla matematica elementare per la chimica descrive il numero esatto di cifre che si deve utilizzare per esprimere il valore numerico di una grandezza fisica e il modo con cui si esprime l’errore sperimentale:

  1. Sono cifre significative tutte le cifre non nulle presenti nel numero che esprime la misura sperimentale
  2. Lo zero compreso tra numeri non nulli è una cifra significativa
  3. Gli zeri che seguono numeri non nulli sono anch’essi cifre significative
  4. Lo zero all’inizio del numero che esprime la misura sperimentale non è una cifra significativa
  5. Tutti gli esponenziali in un numero espresso in forma scientifica non sono cifre significative
  6. Se la prima cifra non significativa è <5, il valore dell’ultima cifra significativa rimane inalterato (1.03, con 3 cifra non significativa, viene approssimato a 1.0; un errore del tipo 0.012, con 2 non significativo, viene approssimato a 0.01)
  7. Se la prima cifra non significativa è >5, il valore dell’ultima cifra significativa viene approssimato per eccesso (1.06, con 6 cifra non significativa, viene approssimato a 1.1; un errore del tipo 0.016, con 6 non significativo, viene approssimato a 0.02)
  8. Se la prima cifra non significativa è =5, il valore dell’ultima cifra significativa resta inalterato se è un numero pari o 0, viene approssimato per eccesso se è un numero dispari (1.05, con 5 non significativo, viene approssimato a 1.0; 1.25, con 5 non significativo, viene approssimato a 1.2; 1.15, con 5 non significativo, viene approssimato a 1.2; un errore del tipo: 0.015, con 5 non significativo, si approssima a 0.02; un errore del tipo: 0.025, con 5 non significativo, diventa: 0.02)
Gli errori in Journal of Chemical Ecology

Ed eccoci arrivati al dunque. Nel 2012 appare su J Chem Ecol un articolo dal titolo “Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid” (qui). Non voglio porre l’attenzione sulla natura del lavoro, ma sul modo con cui gli autori (un insieme di entomologi, agronomi ed ecologi) hanno espresso i loro dati sperimentali. La Figura 1 riporta uno stralcio della Tabella 1 del lavoro citato.

Figura 1. Stralcio della Tabella 1 di un lavoro pubblicato su J Chem Ecol

In giallo ho evidenziato gli errori commessi dagli autori nel riportare il numero di cifre significative e i relativi errori sperimentali per le concentrazioni delle molecole indicate nella prima colonna a sinistra della tabella. Se aprite il lavoro (qui) potete divertirvi voi stessi a trovare gli errori commessi dagli autori nella restante parte della tabella, alla luce delle indicazioni che ho dato poco più sopra. Come possiamo ritenere affidabili le conclusioni di un lavoro scientifico se chi l’ha scritto si macchia di superficialità nell’esprimere i valori numerici delle grandezze che misura? Perché dovrei ritenere superficiale una parte del lavoro e non superficiale un’altra parte del lavoro? Devo dire che quando opero come revisore nei processi di peer review, gli errori che ho appena mostrato sono quelli che mi fanno rifiutare i lavori per la pubblicazione: se io insegno e pretendo dai miei studenti il rigore scientifico che si palesa anche, ma non solo, nella correttezza con cui si effettuano le misure e si riportano i dati sperimentali, pretendo analoga coerenza sia da me che dai miei colleghi che, come professionisti, siamo chiamati ad essere di esempio per le generazioni che ci sostituiranno nel nostro ruolo e nel mondo della ricerca scientifica.

Come è possibile che certi lavori arrivino ad essere pubblicati?

La risposta alla domanda è che anche noi scienziati siamo umani. Prima di tutto non siamo esperti di tutto lo scibile. Se un lavoro che deve essere sottoposto alla revisione tra pari arriva nelle mani di un non esperto del settore, la correttezza professionale dovrebbe imporre di non accettare l’incarico per la revisione. Ma non sempre accade. Anzi, più spesso di quanto si creda, accade che i lavori vengano revisionati da non esperti che non si dichiarano tali o addirittura da amici degli autori che chiudono entrambi gli occhi di fronte ad errori palesi. Quando ciò accade, un lavoro riesce ad essere pubblicato anche su una rivista prestigiosa semplicemente perché chi doveva accorgersi degli svarioni, o ha scientemente evitato le critiche oppure non aveva gli strumenti adatti per poterlo fare. A questo punto la domanda che una persona comune che non si occupa di scienza si può fare è: ma come faccio a fidarmi della letteratura scientifica? Se non si è preparati in modo adeguato, non ci sono molte possibilità per riconoscere un lavoro fatto bene, da uno pasticciato. L’unica arma che un lettore comune ha per distinguere la buona scienza da una scienza fatta male (o pseudo scienza) è il fattore tempo. Quando un lavoro viene pubblicato non passa inosservato. C’è sempre uno scienziato in un qualche laboratorio in giro per il mondo che si appropria dei dati pubblicati e cerca di riprodurli. Se nonostante tutti i tentativi non ci riesce, pubblica una nota in cui evidenzia l’inconsistenza dei dati riportati in letteratura. La confutazione/approvazione di un dato sperimentale pubblicato richiede tanto tempo e tanta pazienza, ma alla fine il protocollo che noi indichiamo come “metodo scientifico” consente di fare una cernita tra dati seri e dati meno seri: è capitato con i lavori di Wakefield, Schoen e tanti altri di cui ho già parlato qui.

Adesso, però, vi ho annoiato anche troppo. Il reportage continua la prossima settimana.

Fonte dell’immagine di copertina: qui

Frammenti di chimica: un estratto

Chimica e bufale. In che modo la chimica ci può aiutare a comprendere le mezze verità, le leggende, i miti, insomma quelle che in rete vengono identificate come bufale? Ne parlo in Frammenti di Chimica.

Volete avere qualche dettaglio in più?

D’accordo con l’editore della C1V Edizioni, è possibile richiedere un estratto del libro collegandosi al sito della casa editrice www.c1vedizioni.com e riempiendo la form che è in basso a destra.

Riceverete anche un invito ad iscrivervi alla newsletter (e questo vi consentirà di ottenere un regalo dalla casa editrice).

Entro 48 ore riceverete una mail con l’estratto del libro ed un codice promozionale di 4€ per il suo acquisto.

grazie di cuore e buona lettura

 

 

Anche i vaccini fanno oh!

È di queste ore la notizia che il nostro Ministro degli Interni (Salvini) nella sua campagna elettorale permanente ha strizzato gli occhi alla fazione antivaccinista presente in Italia nel tentativo di racimolare voti per le elezioni che si terranno nel momento in cui egli deciderà di far cadere questo governo: “Alcuni vaccini salvano la vita ma dieci vaccini per alcuni bambini sono inutili ed alcuni pericolosi. Non sono un ‘no vax’ e ci sono tante reazioni avverse documentate. Io ritengo che la salute dei bambini spetti alla mamma e al papà e quindi alcuni vaccini sono fondamentali, troppi vaccini rischiano di far male” (qui il link alla notizia).

Opinioni in ambito scientifico da parte di non addetti al settore lasciano il tempo che trovano, ma quando certe cose vengono dette da un esponente politico che ricopre una carica istituzionale importante come quella di Ministro degli Interni, le cose cambiano.

Se i vaccini sono pericolosi, non è certo togliendo l’obbligo vaccinale che essi diventano meno pericolosi.  Siano essi uno, due o dieci,  restano comunque pericolosi. Ed allora dovere delle istituzioni, incluso quello del Ministro degli Interni, è la salvaguardia della salute pubblica (Art. 32 della Costituzione). Alla pericolosità dei vaccini si risponde non solo togliendo l’obbligo ma anche eliminando del tutto le vaccinazioni. Perché se i vaccini sono pericolosi, più pericolosi delle malattie da cui si pretende essi ci proteggano, allora ne va impedita la somministrazione a tutti e non solo ai pochi illuminati ai quali si consentirebbe, abolendo l’obbligo vaccinale attualmente in vigore,  la libera scelta di non vaccinare.

Naturalmente la mia è una provocazione. Bene hanno fatto il Prof. Burioni ed il Prof. Lopalco ad alzare gli scudi contro questa infelice uscita del Ministro Salvini evidenziandone tutta l’inconsistenza scientifica (qui e qui le posizioni di Burioni e Lopalco, mentre qui quelle del Ministro della Salute).

Su cosa poggia l’idea sulla pericolosità dei vaccini del Ministro Salvini? La risposta la dà lui stesso quando loda Gatti e Montanari per il loro coraggio nel denunciare il contenuto tossico dei vaccini da essi analizzati mediante microscopia elettronica (qui la notizia).

Veniamo, quindi, al punto.

Non voglio entrare nel merito scientifico della validità dei vaccini.  Fior di medici (Burioni e Lopalco sono solo i front men) ne sanno molto più di me e  sono bravissimi a fugare ogni dubbio in merito.

Come chimico  voglio, invece, entrare nei dettagli del lavoro di Gatti e Montanari che è preso come riferimento dagli anti-vaccinisti e dal Ministro Salvini che, nonostante le sue dichiarazioni, si dice non anti-vaccinista (caro Ministro, la sua opinione di padre in merito all’utilità dei vaccini, purtroppo per lei, non è significativa. Non è lei, non virologo e non medico, a poter dire “i vaccini sono utili” oppure “alcuni vaccini sì, tanti altri no”. Sono gli addetti ai lavori che hanno passato anni sui libri e nelle corsie degli ospedali ad avere l’ultima parola sulla parte tecnica della prevenzione vaccinale, non lei. Lei può indicare la strada da percorrere in senso politico per le cose che le competono; ma, mi dispiace per lei, in merito agli aspetti tecnici sui vaccini e sulla validità del lavoro di Gatti e Montanari, le sue opinioni non hanno alcuna consistenza).

Nel 2016, I dottori Antonietta Gatti e Stefano Montanari hanno pubblicato un lavoro dal titolo “New Quality-Control Investigations on Vaccines: Micro- and Nanocontamination” su una rivista che si chiama International Journal of Vaccines and Vaccination. Questa rivista è inserita nella lista Beall degli editori e delle riviste predatorie. Una rivista predatoria è tale quando, a fronte di una tassa più o meno elevata, pubblica un lavoro senza una attenta valutazione in peer review. Per questo motivo articoli di natura pseudo scientifica appaiono in letteratura e diventano il baluardo di tante persone che, non abituate al pensiero razionale, non sono in grado di comprendere che le conclusioni riportate in questi lavori sono completamente sbagliate. Tuttavia, come ho avuto già modo di scrivere (qui), non bisogna focalizzarsi sul contenitore per giudicare un lavoro scientifico, bensì sul contenuto del lavoro stesso.

Ed eccoci qui. Leggiamo il lavoro assieme (qui).

Lasciamo da parte i fronzoli dell’introduzione. Questa in genere è scritta per riassumere i punti salienti che spingono una ricerca in una certa direzione. A noi non interessa. Sappiamo che gli autori vogliono trovare conferma ai loro bias cognitivi, ovvero vogliono dimostrare che i vaccini sono pericolosi perché contengono sistemi chimici di natura tossica. Soffermiamoci, invece, sull’aspetto tecnico e valutiamone la consistenza scientifica.

Dopo la lista delle preparazioni vaccinali che hanno deciso di analizzare, gli autori scrivono:

we performed a new kind of investigation based on observations under a Field Emission Gun Environmental Electron Scanning Microscope (FEG-ESEM, Quanta 200, FEI, The Netherlands) equipped with the X-ray microprobe of an Energy Dispersive Spectroscope (EDS, EDAX, Mahwah, NJ, USA) to detect the possible presence of inorganic, particulate contaminants and identify their chemical composition“.

La tecnica, i cui dettagli sono descritti qui,  qui e qui, consente di “vedere” e “quantificare” il contenuto elementare di sistemi inorganici presenti in micro-campioni rappresentativi dei sistemi sotto indagine.

La Figura 1 mostra il risultato quali- quantitativo ottenuto dall’analisi di una microgoccia (20 μL) di uno dei vaccini presi in considerazione (la microgoccia viene seccata prima di ogni analisi per cui quest’ultima viene effettuata sulla fase solida che si ottiene dal trattamento del campione).

Figura 1. Cristalli di vari sali identificati mediante spettroscopia EDS (Fonte)

Gli autori scrivono:

Figure 1a shows a layer of crystals of Sodium chloride (NaCl) embedding salts of Aluminum phosphate (AlPO4) in a drop of Gardasil (anti-HPV vaccine by Merck) as the EDS spectrum (Figure 1b) shows. Saline is the fluid base to any vaccine preparation and Aluminum salts or Aluminum hydroxide [Al(OH)3] are the adjuvants which are usually added. Looking at the area outside these precipitates but inside the liquid drop, we identified other things: single particles, clusters of particles and aggregates (organic-inorganic composites) that are due to an interaction of the inorganic particulate matter with the organic part of the vaccine“.

In altre parole, Gatti e Montanari, dicono di aver trovato cristalli di cloruro di sodio (il normale sale da cucina) assieme a fosfato di alluminio la cui presenza è giustificata dal fatto che, come adiuvante vaccinale, vengono utilizzati sia sali di alluminio che idrossido di alluminio. Oltre a quanto già riportato,  gli autori evidenziano come abbiano trovato anche complessi metallo-organici come conseguenza delle interazioni tra le componenti inorganiche e quelle organiche presenti nei vaccini.

Subito dopo la fotografia mostrata in Figura 1, gli autori riportano tutta una serie di foto al microscopio elettronico dalle quali affermano di aver trovato tanti altri metalli pesanti e tante altre sostanze addirittura non dichiarate nella composizione dei vaccini che di solito si legge sui bugiardini. Per esempio, riportano della presenza di ferro, rame, cromo, silicio, titanio, piombo etc etc etc.

Sono veramente informazioni che fanno paura, vero? Una persona a digiuno di chimica quando legge che nei vaccini sono stati trovati miscele di metalli pesanti come quelli indicati, ha ragione a preoccuparsi. Ma come? Si parla tanto dei pericoli dei metalli pesanti e ce li ritroviamo nei vaccini che vengono iniettati in esserini indifesi come sono i neonati?

Che dire. Le preoccupazioni sarebbero fondate se non ci fosse un “ma”. Prendiamo per esempio il cromo. Simbolo Cr, il cromo è un metallo di transizione (Figura 2) con due stati di ossidazione importanti sotto l’aspetto biochimico: Cr3+ (anche indicato come Cr(III)) e Cr6+ (anche indicato come Cr(VI)).

Figura 2. Tavola periodica degli elementi (Fonte)

Come indicato in tutti i testi di farmacologia, l’attività biochimica delle due forme di cromo è diversa. Il Cr(III) è un microelemento essenziale per la vita dell’uomo. Esso è coinvolto nel metabolismo del glucosio cosicché una sua carenza può provocare il diabete oltre che problemi cardiaci. Un suo eccesso nella nostra dieta può portare a problemi di salute come l’insorgenza di macchie cutanee. Il Cr(VI), a differenza del Cr(III), non è un micronutriente e l’esposizione al cromo (VI)  provoca eruzioni cutanee, problemi di stomaco e ulcera, problemi respiratori, indebolimento del sistema immunitario, danni a fegato e polmoni, alterazione del materiale genetico, cancro ai polmoni e morte.

Questa breve disamina sul cromo mi serve solo per far capire che non basta dire che in un sistema chimico ci sono metalli pesanti per aver paura. Per potersi preoccupare è necessario che si conosca anche sotto quale forma è presente quel determinato metallo pesante. Nei vaccini non è presente il cromo nello stato di ossidazione +6.

È vero che alte concentrazioni di uno qualsiasi dei metalli anzidetti, anche se biochimicamente non tossico, può provocare danni alla salute. Tuttavia, sono gli stessi autori del lavoro che ci aiutano a capire che non dobbiamo preoccuparci. Vediamo perché.

Leggiamo la tabella 3 del lavoro di Gatti e Montanari. In particolare, facciamo attenzione alla seconda colonna, quella indicata come “Total Debris n.”, ovvero numero di particelle sotto forma di precipitato. Si legge che gli autori hanno individuato nelle diverse tipologie di vaccino un numero di particelle solide che va da 2 (in Anatetall) a 2723 (in Varilrix). Sono veramente tante, vero? Direi di si. Trovare ben 2723 particelle solide in 20 μL di vaccino (questa è la quantità usata per le analisi) vuol dire che in 1 mL di una dose vaccinale ci sono 136150 particelle solide. È un numero veramente grande. Perché dovremmo consentire che ad un neonato vengano iniettate queste enormi quantità di particelle solide? Chi ci può assicurare che questo numero così alto di particelle solide non porti problemi ai bambini?

A questo punto bisogna ricorrere alle conoscenze di chimica elementare e ricordare che il parametro che ci consente di valutare l’effetto di una sostanza sulla salute umana è la concentrazione. La concentrazione in chimica si riferisce al numero di moli di una sostanza per unità di volume. In altre parole la concentrazione è un parametro che ci consente di dire quanto di una data sostanza è presente in dato volume di soluzione.

Ricordo anche che un parametro molto importante in chimica è il numero di Avogadro. Esso ci dice che una mole di sostanza contiene 6.022 x 1023 particelle elementari. In altre parole, per esempio, una mole di acqua pesa 18 g e contiene 6.022 x 1023 molecole del tipo H2O.

A questo punto ci possiamo chiedere: 136150 particelle differenti a che concentrazione corrispondono?

Semplice. Basta dividere il numero di particelle per il numero di Avogadro e per il volume iniettato. Supponiamo, allora, di fare un’iniezione di 1 mL (cioè 1 x 10-3 L), si ottiene:

[136150/6.022 x 1023]/1 x 10-3 mol/L = 2.26 x 10-16 mol/L

In altre parole, la concentrazione di sostanza corrispondente a 2723 particelle solide ottenute per evaporazione di 20 μL di vaccino è al di sotto delle femto moli (< 10-15 mol, oppure fmol) per litro. Si tratta, insomma, di una quantità di materia che è assolutamente innocua sotto il profilo farmacologico.

Gli autori del lavoro giocano semplicemente col modo di esprimere le misure. 2723 particelle in 20 μL sembra un numero elevatissimo. Ma se lo esprimiamo  in unità mol/L, che sono quelle normalmente utilizzate in farmacologia, ne viene che i vaccini sono assolutamente puri sotto l’aspetto chimico.

Conclusioni

Gatti e Montanari, col loro lavoro, hanno semplicemente dimostrato che i vaccini hanno una elevatissima purezza chimica. Caro Ministro Salvini, forse farebbe meglio a far leggere certi riferimenti ai suoi consulenti scientifici prima di fare le dichiarazioni che ho letto.

Altre letture

I love it when an antivax study meant to show dirty vaccines are backfires so spectacularly

 

Fonte immagine di copertina: Wikimedia Commons. Photo Credit: James GathanyContent Providers(s): CDC – This media comes from the Centers for Disease Control and Prevention’s Public Health Image Library (PHIL), with identification number #2674.

 

”Acqua che squilli, acqua che brilli, dacci l’ossigeno senza rovelli”, ovvero sul perché l’acqua ricca di ossigeno è una bufala

Sì, lo so. Come poeta non sono un granché. Niente al confronto con D’Annunzio che scriveva:

Acqua di monte,
acqua di fonte,
acqua piovana,
acqua sovrana,
acqua che odo,
acqua che lodo,
acqua che squilli,
acqua che brilli,
acqua che canti e piangi,
acqua che ridi e muggi.
Tu sei la vita
e sempre sempre fuggi.

(“Acqua” di G. D’Annunzio)

Ma se io sono una scarpa come poeta, ci sono persone che possono essere considerate delle vere e proprie ciabatte in ambito scientifico ed in particolare nel settore chimico.

In questi giorni sto intervenendo su una pagina facebook di una ditta che produce acqua arricchita di ossigeno. Addirittura nella loro pagina internet affermano di solubilizzare fino al 3000 % di ossigeno rispetto alle normali acque da tavola. Ad onor del vero, sembra che le acque ricche di ossigeno siano di moda attualmente. Basta andare in Google e digitare “acqua ricca di ossigeno” perché vengano trovate pagine internet di aziende che mettono in vendita questa acqua ritenuta più salutare della normale acqua da rubinetto, sia che l’ossigeno sia presente in modo “naturale”, sia che questo vi sia stato aggiunto.

Ma perché si sente l’esigenza di porre l’accento sul contenuto di ossigeno disciolto nelle acque?

Il BOD ed Il COD

Da un punto di vista squisitamente chimico spiego ai miei studenti (insegno sia ”Chimica del Suolo“ che ”Recupero di aree degradate”) che il contenuto di ossigeno disciolto nell’acqua è un parametro molto importante per la qualità (in termini positivi) di questo comparto ambientale. Infatti, anche gli organismi marini hanno bisogno di ossigeno per sopravvivere, esattamente come noi organismi terrestri. La differenza è che mentre noi siamo adatti a vivere in un fluido gassoso, ovvero l’aria fatta da circa il 79% di azoto molecolare, il 20% di ossigeno molecolare e l’1% di altri gas come l’anidride carbonica e l’argon, gli organismi marini sono adatti a vivere in un  liquido, cioè l’acqua, da cui riescono ad estrarre l’ossigeno che occorre per i loro processi metabolici.

In termini fisiologici, l’ossigeno di cui abbisognano le nostre cellule viene “catturato” dai polmoni, “legato” all’emoglobina e trasportato dove serve (Figura 1).

Figura 1. Schema della respirazione polmonare (Fonte)

La stragrande maggioranza degli organismi marini è dotata, invece, di branchie (Figura 2).

Figura 2. Meccanismo di funzionamento delle branchie (Fonte)

L’acqua passa attraverso le branchie venendo a contatto con delle sottilissime membrane al di là delle quali si trova il sangue. L’ossigeno disciolto nell’acqua diffonde attraverso queste sottilissime membrane per diffondere nel sangue povero di ossigeno.
I diversi meccanismi con cui gli organismi terrestri e quelli marini assorbono l’ossigeno per la realizzazione dei propri processi metabolici, fanno in modo che noi non possiamo sopravvivere in acqua, né gli organismi marini possono sopravvivere al di fuori dell’acqua (mi scuso con i miei lettori biologi se non sono stato troppo corretto nella descrizione dei processi di assunzione dell’ossigeno).

Fatta questa premessa semplicistica, due dei parametri che i chimici usano per valutare la qualità di un’acqua riferita alla sua capacità di sostenere la vita marina sono il Biochemical Oxygen Demand (o BOD) ed il Chemical Oxygen Demand (anche indicato come COD).

Il “BOD” è una misura della quantità di ossigeno che i microorganismi presenti nelle acque usano per la decomposizione aerobica della sostanza organica. Più elevato è il BOD, meno ossigeno è disponibile per il sostentamento della vita degli organismi marini (per es. i pesci).

Il “COD” è una misura della quantità di ossigeno richiesta per l’ossidazione della sostanza organica presente nelle acque sia per effetto di reazioni di natura microbiologica che di reazioni in cui non sono coinvolti i microorganismi. Come per il BOD, più elevato è il valore del COD, meno ossigeno è disponibile per il sostentamento della vita acquatica.

L’ossigeno disciolto riguarda gli organismi terrestri?

Da quanto appena scritto, si capisce che la quantità di ossigeno molecolare disciolto in acqua è importante per la vita acquatica. Ma cosa c’entriamo noi? Perchè l’ossigeno disciolto dovrebbe riguardarci? Una risposta la si trova in rete cercando nei vari siti di aziende produttrici di acqua ad alto contenuto di ossigeno:

  1. l’ossigeno disciolto migliora le prestazioni lavorative
  2. l’ossigeno disciolto favorisce la digestione
  3. l’ossigeno disciolto esalta il gusto delle pietanze
  4. l’ossigeno disciolto aumenta la resistenza fisica

etc etc etc

Insomma, come si legge, sembra che l’ossigeno disciolto nelle acque che beviamo sia come l’olio di serpente, ovvero una panacea per tutti i mali. Peccato che non avendo branchie come i pesci, l’ossigeno disciolto nell’acqua a noi non serva assolutamente a nulla.  In altre parole, le acque cosiddette ricche di ossigeno non sono altro che acque potabili in grado di toglierci la sete e mantenerci idratati esattamente come tutte le acque potabili di questo mondo, incluse quelle dal rubinetto.

Quanto ossigeno può essere disciolto in acqua?

Chi studia la chimica, anche al livello di scuola superiore, sa benissimo che esiste una relazione diretta tra pressione parziale di un gas, temperatura e solubilità del gas in un liquido.

La Figura 3 mostra l’andamento della solubilità dell’ossigeno molecolare in acqua deionizzata.

Figura 3. Solubilità dell’ossigeno molecolare in acqua deionizzata (Fonte)

Le tre curve indicano la quantità di ossigeno disciolto in acqua deionizzata a tre pressioni differenti: 1 atm (curva blu), 2 atm (curva rossa) e 4 atm (curva gialla). Per spiegare la traslazione delle curve (ovvero perché quella gialla è più in alto e quella blu più in basso) immaginate di dover spingere sott’acqua dei palloncini gonfi di aria. Se ne volete spingere uno solo, dovete applicare una certa forza; per spingerne due, dovete applicare una forza maggiore; questa forza aumenta all’aumentare del numero di palloncini che intendete spingere sotto il pelo dell’acqua.

La Figura 4 mostra la solubiità dell’ossigeno molecolare in un’acqua contenente dei sali.

Figura 4. Solubilità dell’ossigeno molecolare in acqua salata (Fonte)

La posizione delle curve è identica a quella mostrata in Figura 3 (curva gialla in alto, curva blu in basso). Tuttavia, salta subito agli occhi che l’ammontare di ossigeno disciolto nelle stesse condizioni della Figura 3, è inferiore.  Perché? La solubilità di un gas in acqua (o in un liquido qualsiasi) non dipende solo da temperatura e pressione, ma anche dalla presenza di soluti disciolti.

Come ho già avuto modo di scrivere (qui), il processo di solubilizzazione di un soluto in un solvente può essere considerato come una vera e propria reazione chimica in tre stadi:

  1. soluto-soluto → 2 soluto
  2. solvente-solvente → 2 solvente
  3. soluto + solvente → soluto-solvente

in cui l’ultimo stadio descrive la formazione di interazioni tra il soluto ed il solvente. Più affini sono soluto e solvente, maggiore è la solubilità del primo nel secondo. Non discuto in questa sede delle condizioni di saturazione per cui non è possibile sciogliere un soluto in un solvente oltre una certa quantità.

Nel caso dell’ossigeno in acqua deionizzata, tutte le molecole di acqua sono “a disposizione” per l’interazione con l’ossigeno che si scioglie nel solvente. Se, però, nel solvente è già presente un soluto, lo schema di solubilizzazione a tre stadi precedentemente descritto, si arrichisce di due ulteriori stadi:

  1. soluto1-soluto1 → 2 soluto1
  2. soluto2-soluto2 → 2 soluto2
  3. solvente-solvente → 2 solvente
  4. soluto1 + solvente → soluto1-solvente
  5. soluto2 + solvente → soluto2-solvente

Se il secondo soluto corrisponde all’ossigeno molecolare in fase gassosa, lo stadio 2 appena descritto non deve essere preso in considerazione. Quello che accade è che l’ossigeno molecolare in forma di gas compete con il soluto1 disciolto per le interazioni col solvente. Poichè l’affinità tra acqua e sale è maggiore che tra acqua e ossigeno gas,  ne viene che quando l’ossigeno viene “spinto” nell’acqua salata, la quantità di ossigeno gas in grado di sciogliersi (secondo lo schema descritto) è inferiore a quella in grado di sciogliersi in acqua deionizzata.

In definitiva, più basso è il contenuto salino di un’acqua, più elevata è la quantità di ossigeno che si può sciogliere; più alta è la pressione esercitata sulla superficie del liquido, maggiore è la quantità di ossigeno disciolto; a parità di contenuto salino e di pressione, più bassa è la temperatura del sistema e maggiore è la quantità di ossigeno che si può sciogliere.

Conclusioni

Possiamo sciogliere tutto l’ossigeno che ci pare in un litro di acqua adottando gli accorgimenti descritti nella parte finale del paragrafo precedente, tuttavia questo ossigeno non ci serve perché non abbiamo le branchie come gli organismi marini; in ogni caso, una volta che non sono rispettate le condizioni atte a garantire la massima solubilizzazione del gas in acqua, valgono le condizioni di equilibrio alla temperatura ed alla pressione di esercizio. In altre parole, quando apriamo una bottiglia di acqua arricchita di ossigeno alla pressione atmosferica ed alle temperature di questi giorni (oltre i 30 °C) ci dobbiamo aspettare una effervescenza dovuta  alla fuoriuscita del gas per raggiungere le condizioni di equilibrio a quei valori di temperatura e pressione. Il prodotto che si beve è né più né meno che acqua potabile (e ci mancherebbe) con tutte le caratteristiche tipiche di un’acqua qualsiasi venduta al supermercato o presa al rubinetto di casa.

Fonte dell’immagine di copertina

 

 

 

Come si costruiscono le bufale. Il caso dello zucchero raffinato

Nella mia attività, sia di docente/ricercatore che, più recentemente, di divulgatore, mi trovo spesso di fronte a una serie di notizie che apparentemente sembrano serie, ma che in realtà sono delle vere e proprie bufale. La bufala nasce dal fatto che si mescolano ad arte informazioni vere con altre verosimili e con alcune del tutto prive di fondamento. L’obiettivo è quello di indurre il lettore poco preparato o poco attento a credere a delle vere e proprie sciocchezze. Volete un esempio?

Ho appena trovato un sito in cui si esaltano le proprietà della stevia partendo da presupposti tutt’altro che scientifici. Ecco il link.

Analizziamo quello che è scritto nell’incipit:

“Stevia, tutto quello che c’è da sapere sul dolcificante naturale del momento. Lo zucchero raffinato, si sa, non è benefico per il nostro organismo e molte persone cercano alternative naturali alla sua dolcezza artificiale

Ho colorato in rosso una frase in cui compare, messo lì apparentemente in modo casuale, “zucchero raffinato” e  “si sa”. Ovvero, secondo gli autori di questo articoletto, è noto ormai anche a cani e porci che lo zucchero raffinato non è benefico per il nostro organismo.

Cosa vuol dire “zucchero raffinato”?

La raffinazione dello zucchero è un processo che parte dalla frammentazione meccanica della barbabietola da zucchero (è la pianta da cui ricaviamo il saccarosio nelle zone a clima temperato come l’Europa; nei paesi tropicali, il saccarosio viene ricavato dalla canna da zucchero) e passa per l’estrazione delle componenti idrosolubili usando acqua calda. Non mi risulta che l’acqua calda sia tossica. Certo se uno immerge la mano in acqua bollente si ustiona, ma questa è un’altra storia e, comunque, l’elevata temperatura non rende l’acqua tossica. A questo link si trova il significato dell’aggettivo “tossico” secondo l’enciclopedia Treccani.

L’estrazione in acqua calda genera un miscuglio (o sugo grezzo) che contiene anche il saccarosio. Tale miscuglio, però, è ben lontano dall’essere appetibile. Per poter ottenere il saccarosio dal caratteristico sapore dolce, occorre usare idrossido di calcio (Ca(OH)2) che consente la precipitazione di tante componenti poco appetibili oltre che la neutralizzazione delle sostanze acide contenute nel sugo grezzo (il termine tecnico è “defecazione”, ma mi rendo conto che non è una parola molto gettonata nel linguaggio comune quando associata a qualcosa che dobbiamo mangiare). Anche l’idrossido di calcio non è tossico. Al massimo può causare irritazioni, ma solo quando non è sciolto in acqua alle concentrazioni usate per la raffinazione dello zucchero (qui la scheda tecnica). In ogni caso, la fase successiva è la rimozione di tutto il calcio mediante uso di anidride carbonica (CO2). Quest’ultima permette la precipitazione del carbonato di calcio che poi viene successivamente allontanato. Neanche l’anidride carbonica è tossica. Certo, se saturiamo un ambiente chiuso con questo gas moriamo, ma non perché la CO2 sia tossica, solo perché ci asfissiamo per mancanza di ossigeno. Non sto a farla lunga, aggiungo solo che dopo queste operazioni, vengono operati processi di cristallizzazione successivi che servono  per separare i cristalli di saccarosio dalle impurezze ancora presenti nel sugo che lo contiene. La cristallizzazione non viene fatta usando solventi organici (questi si potenzialmente tossici), ma attraverso variazioni di temperatura. Infine, lo sbiancamento definitivo viene fatto usando il vapor d’acqua. Anche il vapor d’acqua non è tossico. Se fosse così saremmo già morti da un pezzo considerando tutta l’umidità che è presente nell’aria.

Raffinato non non vuol dire tossico

Il termine “raffinato”, in definitiva, non è sinonimo di “pericoloso” o “tossico”. Non so da cosa nasca l’idea comune che tutto ciò che è raffinato sia pericoloso. Forse perché si associa l’idea di “raffinazione” alla lavorazione del petrolio (che certamente non è commestibile) per ottenerne le frazioni da usare nelle diverse attività antropiche? Ma cosa c’entra la raffinazione del petrolio con quella del saccarosio? Assolutamente nulla.

Sotto l’aspetto chimico, “raffinare” significa “purificare”, ovvero, nel caso specifico del saccarosio, eliminare dallo zucchero comune tutte quelle componenti che non lo rendono appetibile, come avete letto nel paragrafo precedente.

Vi sembra, allora, che la polvere bianca che usiamo per dolcificare il nostro cappuccino la mattina sia tossica? No. Non lo è. Non c’è nulla lì dentro che la renda tossica. Al più il saccarosio rappresenta un problema serio per i diabetici, ma questa è un’altra storia di cui ho già parlato qui.

Quindi se “raffinato” non è sinonimo di tossico, il “si sa” buttato lì è solo uno specchietto per le allodole. È solo un modo per attirare l’attezione dei gonzi e far loro credere che esiste una lobby del saccarosio (big-sucrose) che ci vuole tutti morti. Non c’è male come complottismo, devo dire. Fa il paio con “big-pharma”, le scie chimiche e, piuttosto di recente, con big-microwave (sì perché grazie al mio articolo sui forni a microonde sono stato indicato come servo del potere industriale dei forni a microonde).

In ogni caso, se non siamo soggetti a diabete e ci sentiamo male dopo aver esagerato con l’assunzione di dolci, il responsabile non è il saccarosio, ma la nostra intemperanza che non ci consente di controllarci e fare attenzione alle dosi di dolce che assumiamo.

Le bufale sulle alternative naturali

Come avete potuto leggere, ho evidenziato in blu un altro pezzo dell’incipit dell’articolo sulla stevia. “le persone cercano altenative naturali alla dolcezza artificiale”. Ma ha un senso questa frase? Il saccarosio viene estratto dalla barbabietola da zucchero (o dalla canna da zucchero). Si tratta per caso di sistemi artificiali? Cosa c’è di più naturale di una pianta come la barbabietola? Il saccarosio che si estrae dalla barbabietola non si forma per un atto magico. È un prodotto del metabolismo della pianta stessa. E perché la stevia dovrebbe essere una pianta più naturale della barbabietola?

La differenza tra un edulcorante steviolitico ed il saccarosio è che il primo non contiene il secondo e può essere usato senza problemi dai diabetici. È il glucosio contenuto nel saccarosio il vero problema per chi è affetto da diabete. Eliminando il saccarosio, si elimina il glucosio e si tengono sotto controllo i problemi di iperglicemia. La stevia, come qualsiasi altro edulcorante privo di glucosio, offre il vantaggio di poter essere assimilato anche da persone affette da questa patologia molto limitante.

Come si ottiene l’edulcorante steviolitico?

Nel paragrafo più su ho descritto per sommi capi l’estrazione del saccarosio dalla barbabietola da zucchero ed ho evidenziato che non vengono utilizzati solventi tossici. Peraltro, il processo di estrazione è progettato in modo tale da non lasciare alcun residuo dei composti usati durante il processo di raffinazione. Ma come si ottiene un sacchettino di edulcorante steviolitico? Non voglio entrare nei dettagli della composizione chimica di questo edulcorante. Basti sapere che si tratta solo di una miscela di diversi composti che vengono estratti dalla pianta che si chiama Stevia rebaudiana. Ebbene sì. Anche l’edulcorante noto col nome commerciale di stevia viene estratto da una pianta (esattamente come il saccarosio estrato dalla barbabietola). Ma sapete come? Esistono diversi metodi. Si può usare una miscela di acqua calda ed alcol etilico, oppure si può usare il metanolo. Sì. Avete letto bene. Si può usare il metanolo, ovvero un composto che è tossico nel vero senso della parola. Ne volete sapere di più? Basta leggere la scheda di sicurezza di questo alcol: qui. È ovvio che ci sono anche altre procedure estrattive oltre a quelle appena citate. Per esempio si può procedere per macerazione in acqua seguita da processi di filtrazione vari, scambio ionico, osmosi inversa ed essiccamento. Si tratta di un processo di produzione che può essere indicato come “raffinazione”, esattamente come quella del saccarosio. Il punto è che i supporters dei prodotti naturali a fini meramente commerciali si guardano bene dall’usare il termine “raffinazione” o “raffinato” quando parlano di dolcificante steviolitico. Anzi, molto subdolamente, come avete potuto leggere, parlano di dolcezza naturale dell’edulcorante steviolitico contro quella artificiale del saccarosio. Eppure si tratta di due edulcoranti entrambi di origine vegetale, con la stessa dignità chimica di fregiarsi dell’aggettivo “naturale”.

Conclusioni

Non lasciatevi fregare da chi esalta le proprietà della stevia spingendo sul concetto di edulcorante naturale. Da questa beve nota potete capire che non è così. Nessuno vieta di utilizzare la stevia al posto del saccarosio o di qualsiasi altro dolcificante di sintesi o meno. L’importante è essere coscienti del fatto che si tratta solo di una scelta soggettiva che deve incontrare i propri gusti personali. Per esempio, a me piace molto il sapore dell’aspartame rispetto a quello della stevia, ma è solo un fatto assolutamente soggettivo.

Fonte dell’immagine di copertina: Wikimedia Commons