Dal Voltaren al vaccino: perché temiamo ciò che ci salva e ignoriamo ciò che ci nuoce

Uno dei cavalli di battaglia degli antivaccinisti, soprattutto durante la pandemia di Covid, è stato: Non sappiamo cosa ci iniettano. Una frase che sembra prudente, ma che in realtà nasconde il vuoto più assoluto. In rete, e purtroppo anche in certi palchi mediatici, si sono lette e ascoltate fandonie indegne: vaccini pieni di grafene, di materiale “fetale”, di microchip. Panzane. Bufale. Balle cosmiche spacciate per verità scomode.

Il punto è che la percezione del rischio, quando si parla di vaccini, viene distorta fino al ridicolo. Gli stessi che si indignano davanti a una fiala di vaccino non si fanno problemi ad abusare di Voltaren per un mal di schiena, di Tachipirina per un raffreddore o di Aspirina a stomaco vuoto. Farmaci che, se presi male o in dosi eccessive, hanno effetti collaterali ben documentati e tutt’altro che lievi. Ma nessuno apre gruppi Telegram per denunciare il “complotto della Tachipirina”.

E allora torniamo alle basi. La differenza tra pericolo e rischio.
Il pericolo è una proprietà intrinseca di una sostanza: la candeggina, per esempio, è pericolosa. Ma il rischio dipende dall’uso: se non la bevi, se non la respiri, la candeggina non ti ammazza. Lo stesso vale per i farmaci. Aspirina e Tachipirina hanno pericoli reali, ma li consideriamo a basso rischio perché li usiamo con buon senso.

Con i vaccini si è creata la tempesta perfetta: un farmaco nuovo, un’emergenza sanitaria mondiale e un esercito di disinformatori pronti a manipolare la paura. Eppure, i dati clinici erano chiari già nel 2021: i vaccini anti-Covid erano molto più sicuri di tanti farmaci da banco. I rischi di complicazioni gravi erano rarissimi, infinitamente inferiori rispetto a quelli legati alla malattia. Ma invece di guardare i numeri, ci si è lasciati spaventare dai fantasmi.

C’è chi liquida la pandemia come una “farsa”, chi parla di “censura” e di “virostar” in televisione. È il classico copione: invece di discutere sui dati, si attacca chi li porta. Roberto Burioni e altri virologi sono stati accusati di essere “ospiti fissi” senza contraddittorio. Ma davvero serve un contraddittorio tra chi studia i virus da decenni e chi diffonde complotti sui microchip nei vaccini? Sarebbe come chiedere di contrapporre un astrologo a un astronomo quando si parla di orbite planetarie.

La realtà è che i dati c’erano, e chiunque poteva consultarli: studi clinici, report di farmacovigilanza, pubblicazioni scientifiche. Non erano nascosti – erano ignorati. La vera censura è quella che gli antivaccinisti applicano a se stessi e ai loro seguaci: censura dei numeri, censura dei fatti, censura del pensiero critico.

Il risultato? Una percezione capovolta: farmaci familiari diventano “innocui per definizione”, mentre vaccini che hanno salvato milioni di vite vengono descritti come “veleni sperimentali”. Non è prudenza, è ignoranza travestita da saggezza.

Chiariamo una volta per tutte: i vaccini non sono perfetti, ma nessun farmaco lo è. La differenza è che i vaccini non curano soltanto: prevengono, riducono i contagi, salvano intere comunità. Attaccarli con menzogne non è opinione, è irresponsabilità sociale.

In fondo, la chimica e la farmacologia ci dicono una cosa semplice: nessuna sostanza è innocua, nemmeno l’acqua. È il contesto, la dose, l’uso che fanno la differenza. Non capirlo – o, peggio, fingere di non capirlo per ideologia – significa giocare con la salute propria e quella altrui.

Il vero pericolo, oggi, non sono i vaccini. Sono gli antivaccinisti.

Alochimica o Chelichimica? La scienza quotidiana dietro gli aloni delle magliette

Cari lettori vicini e lontani,

vi siete mai chiesti perché si formano gli aloni gialli sotto le ascelle delle maglie chiare? È tutta questione di chimica.

Oltre alla normale igiene personale – uso di acqua e sapone – facciamo molto ricorso a quelli che chiamiamo deodoranti ascellari. In realtà, molti di essi sono deodoranti nel senso che contengono profumi che servono a coprire i cattivi odori che produciamo dopo una giornata intensa. Tuttavia, la maggior parte dei prodotti in commercio contiene anche sostanze chimiche in grado di ridurre la produzione di sudore. In altre parole, sono veri e propri antitraspiranti.

I miei amici biologi e medici mi perdonino se uso un linguaggio un po’ semplificato: il mio obiettivo qui non è fare un trattato, ma spiegare in modo chiaro ciò che accade sotto le nostre ascelle.

Il sudore: un condizionatore naturale

Innanzitutto. diciamo che il sudore ha un ruolo fisiologico molto importante. Per capire meglio, proviamo con un esempio semplice: avete mai bagnato le mani con alcol etilico in estate? Ricorderete la sensazione di fresco che si avverte subito dopo. Perché succede?

L’evaporazione di un liquido – cioè, il passaggio dalla fase liquida a quella gassosa – è un processo che richiede energia. In termini fisici, il sistema assorbe calore dall’ambiente circostante, ovvero la pelle su cui abbiamo messo l’alcol etilico: ecco perché, dopo applicazione di alcol, abbiamo una sensazione di freschezza.

Il sudore funziona allo stesso modo. È composto principalmente da acqua, che evaporando sulla nostra pelle porta via calore e ci aiuta a regolare la temperatura corporea. A questo si aggiungono sali (soprattutto cloruro di sodio), piccole quantità di proteine, lipidi e altre molecole prodotte dal metabolismo.

Da solo, il sudore non ha un odore particolarmente sgradevole. Quell’odore tipico che associamo alle “ascelle sudate” nasce in realtà dall’azione dei batteri che vivono normalmente sulla nostra pelle: essi degradano alcune delle sostanze organiche contenute nel sudore, producendo composti maleodoranti.

Il ruolo dei deodoranti e degli antitraspiranti

Ed eccoci ai deodoranti e agli antitraspiranti. Molti prodotti contengono sali di alluminio (come il cloruro o il cloridrato di alluminio), che riducono la traspirazione formando una sorta di tappo temporaneo nei dotti sudoripari. In questo modo restiamo “asciutti” più a lungo, ma si innescano anche conseguenze meno gradite per i nostri vestiti. Gli aloni gialli, infatti, non derivano semplicemente dal sudore, bensì da una vera e propria orchestra di reazioni chimiche che coinvolgono diversi attori: i sali di alluminio presenti negli antitraspiranti interagiscono con le proteine e i metaboliti azotati del sudore, generando complessi stabili dalle sfumature giallo-brune che si fissano nelle fibre del cotone. Una parte dell’ingiallimento ricorda, in scala ridotta, le reazioni di Maillard, le stesse che fanno dorare pane e biscotti: qui entrano in gioco gli amminoacidi del sudore e i carboidrati della cellulosa del tessuto, catalizzati dal calore corporeo e dalla presenza di metalli. Anche i lipidi e gli acidi grassi secreti dalle ghiandole apocrine danno il loro contributo, andando incontro a processi di ossidazione che producono composti colorati, simili a quelli che rendono irrancidito un olio da cucina. Infine, i residui organici dei deodoranti stessi – fragranze, tensioattivi, polimeri – possono degradarsi e ossidarsi, consolidando l’alone. È, in definitiva, una piccola “reazione chimica da guardaroba”, in cui si intrecciano almeno quattro sistemi: complessi metallo-proteici, reazioni zuccheri-proteine, ossidazioni lipidiche e trasformazioni dei composti organici residui.

Dall’alone al buco: la lenta agonia del cotone

C’è poi un’altra conseguenza meno evidente ma altrettanto fastidiosa: con il tempo le fibre di cellulosa del tessuto, sottoposte a sudore e residui di deodorante, tendono a irrigidirsi e a diventare fragili. Anche qui la chimica ha un ruolo chiave. I sali di alluminio si comportano come veri e propri agenti reticolanti: creano legami incrociati tra le catene della cellulosa, irrigidendo la trama del tessuto. A questo si aggiunge l’effetto dei prodotti di ossidazione del sudore e dei lipidi, che modificano la struttura superficiale delle fibre, rendendole meno elastiche e più inclini a rompersi sotto stress meccanico. È per questo che, oltre agli aloni gialli, le magliette “storiche” finiscono spesso per bucarsi proprio nella zona delle ascelle: le fibre non cedono più in modo elastico, ma si spezzano come se fossero diventate fragili.

Alochimica o chelichimica?

Traendo spunto dall’intervista impossibile a Herr Goethe, potremmo battezzare questo intreccio di reazioni quotidiane con un nome nuovo: Alochimica, la chimica degli aloni, che ci accompagna tanto nel cielo quanto nell’armadio. Il termine deriva dal greco ἅλως, “alone luminoso”, riferito agli astri. In realtà, a voler essere più precisi, dovremmo guardare a κηλίς, che significa “macchia”: da qui il possibile neologismo Chelichimica. In italiano, però, Alochimica suona più evocativo e musicale, mentre Chelichimica è forse più corretto dal punto di vista etimologico sebbene meno immediato. A voi la scelta: quale vi piace di più?

Come prevenire gli aloni (o almeno ridurli)

Alcuni semplici accorgimenti possono limitare il problema:

Conclusione

Dietro un alone giallo c’è molta più chimica di quanto immaginiamo. È la stessa chimica che ci permette di sudare e sopravvivere al caldo, che regola l’equilibrio del nostro corpo e ci difende dallo stress termico. Ma è anche quella che, una volta trasferita sui tessuti insieme ai deodoranti, avvia una catena di reazioni che finisce per lasciare un segno visibile e, a volte, indelebile. Così una semplice maglietta bianca diventa una piccola lavagna su cui si scrivono storie di evaporazione, ossidazione, complessi metallici e fibre irrigidite.

Ecco allora che possiamo parlare, con un pizzico di ironia, di una vera e propria chimica degli aloni domestica: qualcuno la chiamerebbe Alochimica, dal greco ἅλως, “alone luminoso”; altri preferirebbero Chelichimica, da κηλίς, “macchia”. Due nomi diversi per lo stesso intreccio di reazioni quotidiane, che non si manifesta solo nel cielo quando guardiamo il sole o la luna, ma anche nel nostro armadio, tra i vestiti di tutti i giorni. Una scienza silenziosa che ci accompagna ovunque e che, a saperla leggere, trasforma persino un alone giallo sotto l’ascella in un piccolo racconto di meraviglia chimica.

Il fascino segreto dei complotti: tra mitologia e realtà

Chiunque navighi un po’ sui social sa che prima o poi finirà per imbattersi in una teoria del complotto. Le scie chimiche, il 5G, i vaccini, società segrete che tirerebbero i fili del mondo: racconti affascinanti che spesso viaggiano più veloci delle notizie verificate. A volte fanno sorridere, altre volte mettono i brividi. Ma il punto interessante è un altro: perché sembrano così attraenti? E perché, nonostante viviamo nell’epoca della massima disponibilità di informazioni, hanno tanto successo?

Che cos’è una teoria del complotto

Una teoria del complotto non è semplicemente un sospetto o un dubbio legittimo. È un racconto strutturato, che propone una spiegazione alternativa di eventi complessi attribuendone la responsabilità a un gruppo ristretto e potente che agirebbe nell’ombra. In sé, l’idea di complotto non è assurda: la storia è piena di trame segrete e accordi illeciti che hanno avuto un impatto reale. Basti pensare al Watergate negli Stati Uniti o a Tangentopoli in Italia, episodi che hanno mostrato come politici e imprenditori possano effettivamente cospirare per i propri interessi.

La differenza fondamentale tra un complotto reale e una teoria complottista sta nelle prove. Nel primo caso disponiamo di documenti, testimonianze, indagini giornalistiche e processi che permettono di ricostruire i fatti. Nel secondo, invece, le “prove” sono spesso vaghe: interpretazioni arbitrarie o coincidenze cucite insieme in un’unica trama.

Come si è visto, nella nostra lingua il termine complotto viene usato in entrambi i sensi, generando ambiguità. Una distinzione più chiara sarebbe parlare di cospirazione quando ci riferiamo a eventi storici reali e documentati, e riservare l’espressione teoria del complotto ai racconti speculativi privi di fondamento.

Indipendentemente dal lessico scelto, resta il fatto che il fascino delle teorie complottiste non nasce dalla loro solidità logica, ma dalla loro capacità di trasformare frammenti sparsi in storie suggestive e coinvolgenti.

Psicologia dei complotti: perché ci crediamo

Molti studiosi hanno mostrato come le teorie del complotto facciano leva su meccanismi profondi della nostra mente. Uno dei più radicati è la tendenza a riconoscere schemi anche dove non ci sono: è ciò che lo psicologo Michael Shermer ha chiamato patternicity. Collegare eventi casuali in una trama coerente ci dà l’impressione di capire meglio il mondo, anche quando in realtà stiamo solo costruendo connessioni inesistenti.

A questo si aggiunge il cosiddetto confirmation bias, il pregiudizio di conferma: una volta che abbiamo un’idea in testa, siamo portati a cercare solo le informazioni che la confermano, scartando quelle che la contraddicono. È un meccanismo che funziona inconsciamente e che rende molto difficile cambiare opinione. E non riguarda solo le persone comuni: anche scienziati illustri vi sono caduti. Linus Pauling, due volte premio Nobel, rimase convinto per decenni che la vitamina C fosse una sorta di rimedio universale, nonostante le evidenze contrarie. Luc Montagnier, scopritore del virus HIV, ha sposato in tarda carriera teorie prive di fondamento come la “memoria dell’acqua”. Perfino James Watson, co-scopritore del DNA, ha difeso posizioni discutibili sull’intelligenza e la genetica. Sono esempi che mostrano come il fascino delle proprie idee possa resistere ai dati più solidi.

Non bisogna poi dimenticare un altro aspetto fondamentale: le teorie del complotto rispondono a un bisogno psicologico di controllo. Eventi grandi e imprevedibili – come una pandemia o una crisi economica – possono generare ansia e senso di impotenza. Pensare che ci sia qualcuno “dietro le quinte” che orchestra tutto può sembrare paradossalmente più rassicurante che accettare la realtà caotica e complessa. Infine, c’è il fascino della narrazione: un complotto è, in fondo, una storia. Ha i suoi eroi, i suoi nemici, i suoi colpi di scena. E spesso, dal punto di vista narrativo, è molto più attraente della verità semplice e disordinata.

Quando sapere poco sembra sapere tanto

Un altro ingrediente che contribuisce al successo dei complotti è quello che gli psicologi David Dunning e Justin Kruger hanno descritto ormai più di vent’anni fa: il cosiddetto effetto Dunning-Kruger. Si tratta della tendenza, molto diffusa, delle persone con competenze limitate a sopravvalutare le proprie conoscenze. Chi conosce poco un argomento non ha gli strumenti per valutare la propria ignoranza e finisce per sentirsi molto più competente di quanto sia.

Sui social media questo fenomeno è evidente: chi non ha una formazione scientifica solida può mostrarsi estremamente sicuro di “aver capito” meccanismi complessi che, in realtà, studiosi con anni di esperienza trattano con cautela. È la paradossale sicurezza di chi sa poco, contrapposta al dubbio metodico di chi sa di più.

Accanto a questo, esiste un problema culturale più ampio: il cosiddetto analfabetismo di ritorno. Non significa non saper leggere o scrivere, ma non essere in grado di comprendere testi complessi, grafici, numeri, concetti logici. È un fenomeno documentato anche nei Paesi sviluppati: molte persone diplomate o laureate hanno difficoltà a interpretare correttamente un articolo scientifico o un’informazione statistica. Questo rende più facile affidarsi a slogan semplici, a video emozionali o a frasi ad effetto che non richiedono uno sforzo di analisi.

Quando la sovrastima di sé si unisce alla scarsa comprensione dei contenuti complessi, il terreno è fertile per i complotti. Una spiegazione semplice, anche se sbagliata, risulta più convincente di una realtà intricata che richiede studio e pazienza per essere compresa.

Il megafono dei social media

I social media non hanno inventato i complotti, ma li hanno resi virali come mai prima d’ora. Gli algoritmi che regolano la visibilità dei contenuti tendono a premiare ciò che suscita emozioni forti: indignazione, paura, rabbia. E poche cose funzionano meglio di una buona teoria del complotto.

Così, una voce marginale può crescere rapidamente fino a diventare un fenomeno di massa. Le comunità online che si formano intorno a queste narrazioni funzionano come camere dell’eco: chi ne fa parte trova continuamente conferme, rafforzando la propria convinzione e allontanandosi progressivamente da fonti alternative. L’effetto è quello di una polarizzazione crescente, dove chi prova a introdurre dubbi o dati correttivi viene percepito come un nemico o un ingenuo “complice del sistema”.

Quando il complotto diventa pericoloso

Le teorie del complotto non sono soltanto curiosità folkloristiche della rete: possono avere conseguenze molto concrete e spesso gravi. Un esempio evidente lo abbiamo vissuto durante la pandemia di COVID-19: la diffusione di narrazioni false sui vaccini o sull’origine del virus ha alimentato paure irrazionali, rallentato le campagne di prevenzione e, in alcuni casi, messo a rischio la salute pubblica. Ma non si tratta solo di medicina.

I complotti possono minare la fiducia nelle istituzioni democratiche, spingere le persone a rifiutare dati scientifici fondamentali – come quelli sul cambiamento climatico – e perfino fomentare conflitti sociali. Non mancano esempi in cui comunità online complottiste hanno alimentato forme di odio, radicalizzazione e violenza. In fondo, ogni complotto funziona un po’ come una lente distorta: divide il mondo in “noi” e “loro”, i pochi illuminati contro i tanti manipolati, creando una frattura che si allarga nella società reale.

La pericolosità sociale delle teorie del complotto sta proprio qui: non solo diffondono disinformazione, ma indeboliscono il tessuto di fiducia reciproca su cui si reggono le comunità. Il movimento QAnon, ad esempio, ha eroso la fiducia nelle istituzioni democratiche fino a culminare nell’assalto al Campidoglio; le false narrazioni sul cambiamento climatico hanno rallentato le politiche di mitigazione globale; durante l’epidemia di Ebola in Africa occidentale, i complotti sulla presunta origine artificiale del virus portarono a diffidenza e ostilità verso le squadre mediche. Senza fiducia, diventa molto più difficile collaborare, prendere decisioni condivise, affrontare sfide collettive.

Un problema epistemologico: critica o sfiducia?

A questo punto, il discorso si sposta su un piano più profondo: quello epistemologico, cioè del modo in cui costruiamo e valutiamo la conoscenza. Qui il pensiero di Evandro Agazzi, filosofo della scienza che ha riflettuto molto sul rapporto tra razionalità e verità, può essere illuminante. Agazzi distingue tra razionalità critica e sfiducia generalizzata.

La razionalità critica è l’atteggiamento che dovrebbe guidare ogni scienziato: dubitare, verificare, controllare le fonti. È un esercizio sano, indispensabile, che permette di correggere errori e migliorare le nostre conoscenze. La sfiducia generalizzata, invece, è un atteggiamento diverso: non è un dubbio metodico, ma un rifiuto sistematico di qualunque autorità o dato ufficiale. È l’idea che tutto ciò che viene dalle istituzioni, dagli esperti, dai ricercatori sia per definizione falso o manipolato.

La differenza è sottile, ma decisiva. La scienza vive della prima, mentre le teorie complottiste prosperano sulla seconda. In altre parole, non è lo spirito critico a generare complotti, ma la sua caricatura: una sfiducia cieca che porta a credere solo a ciò che si adatta al proprio pregiudizio.

Conclusione: la verità è meno spettacolare, ma più solida

Ridicolizzare chi crede ai complotti è una tentazione comprensibile, ma spesso controproducente. Le persone finiscono per sentirsi attaccate e si rifugiano ancora di più nelle proprie convinzioni. È più utile capire i meccanismi che portano a credere in certe narrazioni e proporre alternative: una buona educazione al pensiero critico, la capacità di distinguere tra scetticismo sano e sfiducia totale, la diffusione di una cultura scientifica accessibile ma rigorosa.

La verità, ammettiamolo, non avrà mai il fascino di un grande intrigo segreto: non promette trame lineari né colpi di scena spettacolari. È frammentaria, complessa, a volte persino noiosa. Ma ha un vantaggio che nessun complotto inventato può vantare: resiste al tempo. L’ombra seducente dei complotti svanisce alla luce dei fatti, e alla lunga, è sempre quella luce a illuminare la strada.

Dal lisenkoismo ai “fatti alternativi”: un monito per l’Italia

Introduzione

Mi accingo a scrivere questo articolo prendendo spunto da un recente pezzo del mio amico e collega Enrico Bucci, pubblicato su Il Foglio e disponibile anche sul suo blog al seguente link: Contro il populismo sanitario.

Ad Enrico va il merito di aver messo a fuoco con grande chiarezza un nodo cruciale del dibattito contemporaneo: l’uso distorto di parole come libertà e pluralismo per giustificare la presenza, nei tavoli scientifici, di opinioni che nulla hanno a che vedere con la solidità delle prove.

Partendo dalle sue riflessioni, vorrei proporre un parallelismo storico che ci aiuta a comprendere meglio la posta in gioco, ma che al tempo stesso mostra come noi italiani non abbiamo mai fatto buon uso delle lezioni che la storia ci consegna.

Non è un caso, del resto, se oggi viviamo in una realtà che, a mio avviso, ricorda la fine dell’Impero Romano e preannuncia gli anni più bui dell’alto medioevo. Pur disponendo di una tecnologia senza precedenti e di possibilità di conoscenza mai così ampie, siamo circondati da ignoranza bieca e da un populismo slogan-based che erode secoli di evoluzione culturale.

Il parallelismo di cui voglio discutere ci porta indietro di quasi un secolo, nell’Unione Sovietica di Stalin, quando un agronomo di nome Trofim Denisovič Lysenko riuscì a piegare la scienza alle esigenze della politica, con conseguenze drammatiche.

Chi era Lysenko

Trofim Denisovič Lysenko nacque in Ucraina nel 1898, in un’epoca in cui la genetica mendeliana stava già gettando basi solide in Europa e negli Stati Uniti, aprendo una nuova stagione di scoperte che avrebbe cambiato per sempre la biologia. Mentre il mondo avanzava verso la modernità scientifica, egli imboccò una via diversa: più comoda per la retorica del potere che per la verità sperimentale.

Convinto che i caratteri acquisiti dalle piante durante la loro vita – come l’adattamento al freddo – potessero essere trasmessi alle generazioni successive, Lysenko resuscitava sotto nuove vesti un lamarckismo ormai screditato. Non era innovazione, ma regressione: una costruzione ideologica spacciata per scienza, utile a chi voleva piegare la natura alla volontà politica.

La sua pratica più celebre, la cosiddetta vernalizzazione, prometteva raccolti miracolosi. “Educando” i semi al gelo, sosteneva, li si sarebbe resi più fertili e produttivi. Una favola travestita da metodo, priva di fondamento sperimentale, che però parlava il linguaggio dei sogni collettivi e delle promesse facili: quello stesso linguaggio che i regimi totalitari e i populismi di ogni epoca amano usare per sedurre le masse e zittire la scienza.

L’appoggio di Stalin

Il destino di Lysenko cambiò radicalmente nel 1935, quando presentò le sue teorie davanti al vertice del regime. In quell’occasione, Stalin lo incoraggiò pubblicamente con un secco ma inequivocabile: «Bravo, compagno Lysenko!». Quelle parole, apparentemente banali, furono in realtà una sentenza: da quel momento, la sua ascesa divenne inarrestabile.

Non contavano più le prove, non contavano i dati, non contava la comunità scientifica internazionale: ciò che contava era la fedeltà ideologica. Lysenko incarnava perfettamente il messaggio che Stalin voleva trasmettere al popolo: la natura, come l’uomo sovietico, era malleabile, poteva essere piegata e trasformata a piacere dal potere politico.

In un Paese dove il dissenso significava prigione o morte, l’agronomo ucraino divenne il simbolo della “scienza ufficiale”, il vessillo di una biologia che non cercava la verità, ma l’approvazione del dittatore. La fedeltà alla linea sostituiva la fedeltà ai fatti: e da quel momento, in URSS, non era più la scienza a guidare la politica, ma la politica a decidere che cosa fosse scienza.

Il crimine contro la ragione

Il prezzo di questa deriva fu immenso, pagato non solo dalla comunità scientifica ma da milioni di cittadini sovietici.

La genetica mendeliana venne bandita come “scienza borghese” e i libri che la insegnavano finirono al macero. Le cattedre universitarie furono svuotate, i laboratori costretti ad abbandonare ricerche rigorose per piegarsi alle direttive di regime. In un colpo solo, l’Unione Sovietica si amputò di decenni di progresso scientifico.

Gli scienziati che osavano resistere pagarono un prezzo terribile. Il caso più emblematico fu quello di Nikolaj Vavilov, uno dei più grandi genetisti del XX secolo, che aveva dedicato la vita a raccogliere semi da ogni angolo del pianeta per assicurare all’umanità la sicurezza alimentare. Arrestato, processato come “nemico del popolo” e internato in un gulag, morì di stenti nel 1943. La sua fine è il simbolo di una scienza libera sacrificata sull’altare della fedeltà ideologica.

Le pratiche agricole di Lysenko, prive di fondamento, furono applicate su larga scala e condannarono intere regioni alla fame. Le promesse di raccolti miracolosi si infransero nella realtà dei campi sterili, e carestie devastanti falciarono milioni di vite.

Così, nel nome di un dogma politico, la verità fu soffocata, la scienza ridotta a propaganda e la popolazione trasformata in vittima sacrificale. Il lisenkoismo non fu soltanto un errore scientifico: fu un crimine storico contro la ragione e contro il popolo.

Le ombre di casa nostra

Il fascismo italiano

E non è necessario guardare soltanto a Mosca per cogliere questo meccanismo. Anche l’Italia fascista impose il suo controllo alle università attraverso il giuramento di fedeltà al regime. Solo dodici professori ebbero il coraggio di rifiutare: un numero esiguo, che mostra quanto fragile diventi la libertà accademica quando il potere politico pretende obbedienza invece di pensiero critico.

Il fascismo non si fermò lì: con il Manifesto della razza, firmato da accademici italiani compiacenti, la scienza fu ridotta a strumento di propaganda, piegata a giustificare l’ideologia razzista del regime. È un precedente che dovrebbe farci rabbrividire, perché dimostra che anche nel nostro Paese la comunità scientifica può essere sedotta, intimidita o resa complice.

L’Italia di oggi

E oggi? Il controllo non passa più attraverso giuramenti di fedeltà o manifesti infami, ma attraverso nuove forme di ingerenza: la burocratizzazione estrema, la trasformazione dell’università in un apparato amministrativo svuotato di senso critico, e persino la proposta – inquietante – di introdurre i servizi segreti all’interno degli atenei (Servizi segreti nelle università: i rischi del ddl sicurezza; Ricerca pubblica, servizi segreti: il ddl sicurezza e l’università). Cambiano le forme, ma la logica resta la stessa: soffocare la libertà del sapere sotto il peso del controllo politico.

Pluralismo o propaganda?

Oggi nessuno rischia più il gulag, ma il meccanismo che vediamo riproporsi ha la stessa logica corrosiva.

Ieri, in Unione Sovietica, l’accesso al dibattito scientifico era subordinato alla fedeltà ideologica al regime.
Oggi, in Italia e in altre democrazie occidentali, il rischio è che l’accesso ai tavoli scientifici sia garantito non dalla forza delle prove ma dalla forza delle pressioni politiche e mediatiche, camuffate sotto la parola rassicurante di pluralismo.

Qui sta l’inganno: confondere due piani radicalmente diversi.

  • Il pluralismo politico è un pilastro della democrazia: rappresenta valori, interessi, visioni del mondo.
  • Il pluralismo scientifico invece non è questione di sensibilità o di opinioni: è confronto tra ipotesi sottoposte allo stesso vaglio, alla stessa verifica, alla stessa brutalità dei fatti.

Se i due piani vengono confusi, allora ogni opinione – per quanto priva di fondamento – reclama pari dignità. È così che la pseudoscienza trova la sua sedia accanto alla scienza: l’omeopatia diventa “alternativa terapeutica”, la biodinamica “agricoltura innovativa”, il no-vax “voce da ascoltare”. È il falso equilibrio, l’illusione che esista sempre una “controparte” legittima anche quando le prove hanno già da tempo pronunciato il loro verdetto.

Ecco il punto: quando la politica impone la par condicio delle opinioni in campo scientifico, non difende la democrazia, ma la tradisce. Toglie ai cittadini la bussola della conoscenza verificata e li abbandona in balìa delle narrazioni. È la stessa logica che portò Lysenko al trionfo: non contavano i dati, contava il gradimento del potere.

Oggi, in un’Italia soffocata da slogan e da populismi che si travestono di democrazia mentre erodono la cultura, questo monito pesa come un macigno. La lezione di Lysenko ci dice che non esiste compromesso tra scienza e ideologia: o la scienza resta fedele al metodo e ai fatti, o smette di essere scienza e diventa propaganda.

Conclusione

La vicenda di Lysenko non è un reperto da manuale di storia della scienza: è un monito vivo, che parla a noi, oggi. Ci ricorda che ogni volta che la politica pretende di piegare la scienza a logiche di consenso, ogni volta che si invoca il “pluralismo” per spalancare le porte a tesi già smentite, ogni volta che l’evidenza viene relativizzata in nome della rappresentanza, non stiamo ampliando la democrazia: stiamo segando il ramo su cui essa stessa si regge.

La scienza non è perfetta, ma è l’unico strumento che l’umanità abbia costruito per distinguere il vero dal falso in campo naturale. Se la sostituiamo con il gioco delle opinioni, ci ritroveremo non in una società più libera, ma in una società più fragile, più manipolabile, più esposta all’arbitrio dei potenti di turno.

Ecco perché il parallelismo con il lisenkoismo non è un eccesso retorico, ma un allarme. Allora furono milioni le vittime della fame; oggi rischiamo vittime diverse, più silenziose ma non meno gravi: la salute pubblica, l’ambiente, la fiducia stessa nelle istituzioni.

La domanda che dobbiamo porci, senza ipocrisie, è semplice:
vogliamo una scienza libera che guidi la politica, o una politica che fabbrica la sua scienza di comodo?

La storia ci ha già mostrato cosa accade quando si sceglie la seconda strada. Ignorarlo, oggi, sarebbe un crimine non meno grave di quello commesso ieri. Oggi l’Italia deve scegliere se vuole una scienza libera o un nuovo lisenkoismo democratico

 

«I really believe deeply in science; it is my life and the purpose of my life. I do not hesitate to give my life even for the smallest bit of science.»
– Nikolai Vavilov, parole attribuite a Vavilov durante la prigionia

Così parlò Bellavite: quando la retorica si traveste da scienza

Introduzione

Di recente Paolo Bellavite, professore associato presso l’Università di Verona, in pensione dal 2017 e noto per le sue posizioni critiche verso le vaccinazioni e per la promozione dell’omeopatia, ha pubblicato un post sui social (Figura 1) in cui denuncia presunte “censure” e un rifiuto del confronto scientifico da parte delle istituzioni sanitarie. Il pretesto è lo scioglimento del comitato NITAG (National Immunization Technical Advisory Group) da parte del Ministero della Salute.

Il NITAG fornisce indicazioni basate su prove per le strategie vaccinali a livello nazionale, valutando costantemente rischi e benefici in relazione a età, condizioni di salute e contesto epidemiologico. Di questo tema ho già parlato in un mio precedente articolo (Nomine e cortocircuiti: quando l’antiscienza entra nei comitati scientifici).

Al di là della cronaca, però, il post di Bellavite si rivela soprattutto un insieme di slogan e artifici retorici non supportati da evidenze scientifiche solide, costruito sui più classici argomenti cari ai critici delle vaccinazioni. Ed è proprio qui che torna utile un altro parallelismo: le stesse strategie comunicative – indipendentemente dal campo, che si tratti di vaccini o di agricoltura – le ritroviamo nell’universo della “scienza alternativa”. Ne ho dato esempio in un altro articolo, Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci.

I toni retorici possono apparire convincenti a chi non ha dimestichezza con il metodo scientifico ma non reggono alla prova dei fatti. Proviamo dunque a smontare, punto per punto, le argomentazioni dell’ex professore Paolo Bellavite.

Figura 1. Screenshot dalla pagina facebook del Dr. Bellavite.

Il mito della “censura”

Uno degli argomenti più frequenti nella retorica tipica dei critici dei vaccini è l’idea che la comunità scientifica “censuri” le voci “fuori dal coro” per paura o per difendere interessi di un qualche tipo.

Per rafforzare questa immagine, viene spesso evocata la vicenda di Ignác Semmelweis, il medico che nell’Ottocento intuì l’importanza dell’igiene delle mani per ridurre la febbre puerperale. Il paragone, però, è fuorviante. Semmelweis non fu osteggiato perché considerato “eretico” ma perché il contesto scientifico dell’epoca non disponeva ancora degli strumenti teorici e sperimentali necessari a comprendere e verificare le sue osservazioni. La teoria dei germi non era stata ancora formulata e l’idea che “qualcosa di invisibile” potesse trasmettere la malattia appariva inconcepibile. Nonostante ciò, i dati raccolti da Semmelweis erano solidi e difficilmente confutabili: nelle cliniche in cui introdusse il lavaggio delle mani la mortalità scese in maniera drastica. Quei numeri, alla lunga, hanno avuto la meglio.

Oggi, il confronto scientifico avviene tramite peer-review, conferenze specialistiche e comitati di valutazione sistematica delle evidenze (ne ho parlato qualche tempo fa in un articolo semiserio dal titolo Fortuna o bravura? osservazioni inusuali sul metodo scientifico). In definitiva, la scienza non mette a tacere: filtra. Ogni idea può essere proposta e discussa, ma per sopravvivere deve poggiare su dati riproducibili, verificabili e coerenti con l’insieme delle conoscenze disponibili. In mancanza di queste condizioni, non viene esclusa per censura, bensì perché non regge al vaglio delle prove.

Trasformare questo processo di selezione in un racconto di “persecuzione” significa confondere il metodo scientifico con un tribunale ideologico, quando in realtà è solo il meccanismo che permette alla conoscenza di avanzare.

La falsa richiesta di “prove definitive”

Un espediente retorico molto diffuso tra chi vuole mettere in discussione i vaccini è quello di pretendere “prove definitive” – come se esistesse una singola evidenza in grado di dimostrare in modo assoluto l’utilità di un vaccino. La verità è che nessuna terapia medica è vantaggiosa sempre e comunque, ma le raccomandazioni vaccinali si basano su analisi robuste e ben documentate di rapporto rischio/beneficio.
Ecco alcuni esempi concreti e supportati da fonti autorevoli:

Chiedere quindi una singola prova assoluta significa distogliere l’attenzione da un ampio corpus di evidenze solide e riproducibili, e puntare invece su un vuoto nella narrazione che non corrisponde alla realtà scientifica.

“I bambini vaccinati non sono più sani”

Alcuni insinuano che non esistano prove che i bambini vaccinati siano “più sani” o addirittura suggeriscono l’opposto. Ma qui il trucco retorico sta nella vaghezza del concetto di “salute” che può essere interpretato in molti modi.
I dati concreti parlano chiaro: i bambini vaccinati hanno un rischio nettamente ridotto di contrarre malattie infettive gravi e le evidenze epidemiologiche mostrano riduzioni significative della mortalità, delle complicanze e degli accessi ospedalieri.

Questi dati si legano strettamente al paragrafo precedente in cui si evidenziava che vaccinare i bambini – come con il caso del vaccino anti-COVID e la prevenzione del morbillo – non solo limita le infezioni specifiche, ma contribuisce a migliorare la salute complessiva della popolazione infantile.

La retorica dei “vaccini meno tossici”

Un argomento ricorrente tra chi mette in dubbio le vaccinazioni è l’appello a “vaccini meno tossici, monovalenti e senza alluminio”. In realtà, gli adiuvanti a base di alluminio – utilizzati da oltre 90 anni per potenziare la risposta immunitaria – sono presenti in quantità molto inferiori a quelle assunte quotidianamente con l’alimentazione: tra 7 e 117 mg nei primi 6 mesi di vita, a seconda dell’alimentazione, mentre un singolo vaccino ne contiene tra 0.125 e 0.85 mg. In particolare, numerosi studi e monitoraggi hanno evidenziato che, sebbene possano causare arrossamento, dolore o un piccolo nodulo nel sito di iniezione, non esistono evidenze di tossicità grave o effetti duraturi legati ai sali di alluminio. Anche la Fondazione Veronesi conferma: non c’è motivo di dubitare della sicurezza degli adiuvanti, che hanno superato con successo gli studi di sicurezza.

Va, inoltre, sottolineato che proporre vaccini monovalenti (cioè che proteggono da una sola malattia) in alternativa a quelli combinati riduce l’efficacia complessiva delle campagne vaccinali. Le formulazioni polivalenti (come l’esavalente) permettono di proteggere contemporaneamente da più malattie con meno somministrazioni, semplificando i calendari vaccinali e migliorando la copertura.

Questo si traduce in una maggiore efficienza delle campagne, minori costi logistici e un impatto complessivo più forte sulla salute pubblica. Lo confermano anche diversi studi su riviste di settore. Per esempio, un trial pubblicato su Lancet ha documentato un’efficacia del 94.9 % contro la varicella e fino al 99.5 % contro altre forme virali moderate o severe, mentre una meta-analisi del 2015 ha evidenziato che le formulazioni combinate mantengono un profilo di sicurezza e immunogenicità paragonabile, ma più efficiente rispetto alle somministrazioni separate. Infine, in un recente studio caso-controllo, il vaccino Priorix‑Tetra (MMRV) ha mostrato un’efficacia dell’88‑93 % contro la varicella dopo una sola o due dosi, e del 96 % contro le ospedalizzazioni.

Come ogni farmaco, i vaccini possono avere effetti collaterali, ma sono rari e attentamente monitorati tramite sistemi di farmacovigilanza che possono intervenire tempestivamente in caso di sospetti. Definire i vaccini “tossici” senza distinguere fra effetti lievi e transitori (come febbre o gonfiore locale) e eventi gravi, ma estremamente rari, è un artificio retorico che induce confusione. In realtà, i benefici delle vaccinazioni – prevenire malattie gravi, complicanze e morti – superano di gran lunga i rischi, grazie anche a un sistema di sicurezza ben strutturato.

Le “analisi pre-vaccinali”

Uno dei cavalli di battaglia dei critici dei vaccini è l’utilizzo di analisi pre‑vaccinali – come test genetici, tipizzazione HLA o dosaggi di anticorpi – per valutare il rischio individuale o l’immunità naturale. A prima vista può sembrare una precauzione intelligente ma in realtà è un’idea infondata e controproducente. Gli eventi avversi gravi legati alle vaccinazioni sono estremamente rari e non correlabili a marcatori genetici o immunologici conosciuti. Al momento non esistono esami in grado di prevedere in anticipo chi potrebbe sviluppare una reazione avversa significativa.

Studi su varianti genetiche e reazioni avverse da vaccino (come studi su polimorfismi MTHFR o antigeni HLA) hanno dimostrato che l’uso di questi test non è scientificamente rilevante, né affidabile per prevenire eventi avversi.
La Federazione Nazionale degli Ordini dei Medici ha ribadito con forza che:
«La richiesta di esami diagnostici da eseguire di routine prima della vaccinazione non ha alcuna giustificazione scientifica».
In altre parole, valutare il rischio da vaccinazione è responsabilità del medico curante, basata su anamnesi e valutazioni cliniche, non su test di laboratorio preliminari.

Nel suo magazine di divulgazione, la Fondazione Veronesi – attraverso l’esperto Pier Luigi Lopalco – risponde chiaramente alla domanda “Esistono test pre‑vaccinali per valutare possibili effetti collaterali?”, la risposta è netta: non esistono.

L’introduzione obbligatoria di esami prevaccinali renderebbe logisticamente impossibili le campagne, ostacolando la copertura diffusa necessaria per l’immunità di gregge. Le vaccinazioni funzionano proprio perché applicate su larga scala, creando uno scudo comunitario che riduce la circolazione dei patogeni.

L’inversione retorica: “noi siamo la vera scienza”

Un tratto distintivo della comunicazione di chi contesta le vaccinazioni è la pretesa di incarnare la “vera scienza”, accusando al tempo stesso le istituzioni di rifiutare il confronto. È un vero rovesciamento di prospettiva: si imputa alla comunità scientifica un atteggiamento dogmatico, mentre ci si propone come gli unici detentori delle “vere prove”. In pratica, si pretende di cambiare le regole del gioco scientifico, così che affermazioni prive di fondamento possano essere messe sullo stesso piano delle evidenze prodotte e validate dall’intera comunità. È come voler riscrivere le regole del Monopoli per far sì che a vincere non sia chi accumula dati e dimostrazioni, ma chi urla di più o pesca la carta giusta al momento opportuno.

La realtà è un’altra: il confronto scientifico non si svolge sui social o nei talk show, ma nelle riviste peer-reviewed, nei congressi specialistici e nei comitati di valutazione delle evidenze. Ed è in questi contesti che certe tesi non trovano spazio, non per censura, ma per una ragione molto più semplice: mancano dati solidi che le sostengano.

Conclusione: la scienza contro gli slogan

Il caso Bellavite mostra come il linguaggio della scienza possa essere piegato e trasformato in uno strumento di retorica ideologica: un lessico apparentemente tecnico usato non per chiarire ma per confondere; non per spiegare ma per insinuare dubbi e paure privi di basi reali.

I vaccini rimangono uno dei più grandi successi della medicina moderna. Hanno ridotto o eliminato malattie che per secoli hanno decimato intere popolazioni. Certo, come ogni atto medico comportano rischi, ma il rapporto rischi/benefici è da decenni valutato e aggiornato con metodi rigorosi ed è incontrovertibile: il beneficio collettivo e individuale supera enormemente i rari effetti collaterali.

In politica, come nei discorsi attraverso cui si criticano le vaccinazioni, accade spesso che a prevalere siano slogan facili e interpretazioni personali. Il dibattito si trasforma così in un’arena di opinioni precostituite, dove il volume della voce sembra contare più della solidità delle prove. Ma la scienza non funziona in questo modo: non si piega alle opinioni, non segue le mode e non obbedisce agli slogan. È un processo collettivo, autocorrettivo e guidato dai dati, che avanza proprio perché seleziona ciò che resiste alla verifica e scarta ciò che non regge all’evidenza.

Chi tenta di manipolare questo processo dimentica un punto essenziale: la verità scientifica non appartiene a chi urla più forte, ma a chi misura, dimostra e sottopone i risultati al vaglio della comunità. È questo meccanismo che, tra errori e correzioni, consente alla scienza di progredire e di migliorare la vita di tutti.

Nota a margine dell’articolo

Sono perfettamente consapevole che questo scritto non convincerà chi è già persuaso che i vaccini siano dannosi o chi si rifugia dietro un malinteso concetto di “libertà di vaccinazione”. Desidero però ricordare ai miei quattro lettori che l’Art. 32 della nostra Costituzione recita:

“La Repubblica tutela la salute come fondamentale diritto dell’individuo e interesse della collettività, e garantisce cure gratuite agli indigenti. Nessuno può essere obbligato a un determinato trattamento sanitario se non per disposizione di legge. La legge non può in nessun caso violare i limiti imposti dal rispetto della persona umana”.

La Corte Costituzionale, interpretando questo articolo, ha più volte ribadito che la salute pubblica può prevalere su quella individuale. Già con la sentenza n. 307/1990 e la n. 218/1994 ha chiarito che l’obbligo vaccinale è compatibile con la Costituzione se proporzionato e giustificato dall’interesse collettivo. La sentenza n. 282/2002, pur riguardando i trattamenti sanitari obbligatori in ambito psichiatrico, ribadisce il principio generale: un trattamento sanitario può essere imposto per legge, purché rispettoso della dignità della persona. Infine, la più recente sentenza n. 5/2018 ha confermato la piena discrezionalità del legislatore nell’introdurre obblighi vaccinali a tutela della salute pubblica.

Il mio intento non è convincere chi non vuole ascoltare, ma offrire strumenti a chi esita, a chi è spaventato. La paura è umana, comprensibile, ma non ha fondamento: i dati dimostrano che vaccinarsi significa proteggere sé stessi e, soprattutto, la comunità di cui facciamo parte. È questo il senso profondo dell’art. 32: la salute non è mai solo un fatto privato, ma un bene comune.

Biodinamica e scienza: smontare i miti non è mai facile

Negli ultimi anni la biodinamica è tornata con forza nel dibattito pubblico, presentata come un’agricoltura “più naturale”, capace di riconnettere l’uomo con la terra attraverso antichi rituali e influssi cosmici. Ma quando si scava nei lavori scientifici che dovrebbero darle credibilità, il castello crolla.

In un precedente articolo, Agricoltura biodinamica e scienza: il dialogo continua… con i soliti equivoci, avevo già mostrato come l’apparente incontro tra ricerca e pratiche steineriane sia in realtà un dialogo ingannevole. Oggi raccolgo e sintetizzo delle analisi critiche di studi pubblicati su riviste scientifiche, spesso citati a sostegno della biodinamica. Il risultato è un quadro chiaro: tanta tecnologia, poca scienza, e un mare di suggestioni travestite da rigore.

Il mito del Preparato 500

Al centro della biodinamica c’è il Preparato 500, letame fermentato in corna di vacca, elevato a elisir magico. Uno studio del 2013 su Journal of Microbiology and Biotechnology ha tentato di dargli dignità scientifica. Il risultato? Una sequenza di prove deboli: assenza di controlli, attività biologiche senza legame con benefici concreti, repliche non documentate.

Gli stessi autori, del resto, offrono materiale sufficiente per smontare ogni pretesa di scientificità. Non hanno inserito veri controlli: “Different commercial samples of BD Preparation 500… were studied” (p. 645). In pratica, hanno confrontato solo diversi lotti dello stesso preparato, senza mai verificare se i risultati differissero da un letame ordinario.

Le attività enzimatiche riportate sono descritte come promettenti, ma senza legame con effetti pratici: “Preparation 500 displays high specific levels of activity… A high alkaline phosphatase activity indicates its potential” (p. 648). Potenziale, non prova.

Una volta estratto dalle corna, il Preparato viene applicato in campo dopo diluizioni omeopatiche: 200 grammi in decine di litri d’acqua per ettaro. Gli autori non si limitano a descriverne le caratteristiche microbiologiche e chimiche, ma cercano anche di giustificare questa pratica con un ragionamento per analogia: “…they will already be delivered at a 10¹⁰ M concentration… well within their expected windows of biological activity (p. 649). Ma si tratta di pura speculazione: nessuna prova sperimentale mostra che quelle diluizioni abbiano davvero un effetto.

Il linguaggio stesso tradisce l’incertezza. Ovunque compaiono formule ipotetiche: “could possibly contribute” (p. 648), “may account for the biostimulations” (p. 649), “it cannot be excluded that it might act” (p. 650). Non dimostrazioni, ma tentativi di rivestire di retorica ciò che rimane un rituale agronomico.

Qui la scienza si ferma e subentra il wishful thinking. Non c’è alcun dato che dimostri l’efficacia di quelle diluizioni: è una speculazione posticcia, un tentativo di dare un’aura scientifica a un rituale. In sostanza, la giustificazione proposta non è ricerca: è retorica. Nessun esperimento serio ha mai mostrato che spruzzare tracce infinitesimali di letame fermentato possa produrre effetti concreti su un sistema agricolo complesso.

Corna, letame e spettrometri: la scienza usata per dare lustro al mito

Nel paragrafo precedente è stato introdotto il Preparato 500, gioia degli attivisti della biodinamica. Ebbene, esso è stato analizzato mediante risonanza magnetica nucleare (NMR) e gas-cromatografia con pirolisi (pyrolysis-TMAH-GC-MS) in un lavoro pubblicato su Environmental Science and Pollution Research nel 2012. Questo studio si presenta come la “prima caratterizzazione molecolare” del Preparato 500: una vetrina tecnologica impressionante, che tuttavia poggia su fondamenta fragilissime. Una sfilata di strumenti sofisticati al servizio non della conoscenza, ma della legittimazione di un mito. Vediamo perché.

Gli autori hanno analizzato tre lotti di Preparato 500 (“three samples of horn manure… were collected from different European farms”, p. 2558). Tutto qui. Nessun confronto con compost ordinario o letame tradizionale. Senza un vero controllo, attribuire “peculiarità biodinamiche” diventa arbitrario: come distinguere l’effetto del corno interrato da quello della normale fermentazione del letame?

Le analisi rivelano componenti come lignina, carboidrati, lipidi vegetali e marcatori microbici. Gli stessi autori ammettono che “the chemical composition of HM was consistent with that of natural organic materials” (p. 2564). In altre parole, il Preparato 500 non mostra alcuna unicità sorprendente: è esattamente ciò che ci si aspetta da una biomassa organica parzialmente decomposta.

Il paper suggerisce che la presenza di frazioni labili e lignina parzialmente decomposta possa conferire al Preparato 500 una particolare bioattività: “HM was characterized by a relatively high content of labile compounds that might account for its claimed biostimulant properties” (p. 2565). Ma questa è pura congettura: nessun dato in campo supporta l’idea che tali caratteristiche abbiano effetti agronomici specifici.

Le conclusioni parlano di “a higher bioactivity with respect to mature composts” (p. 2565). Ma il solo risultato tangibile è che il Preparato 500 risulta meno stabilizzato e più ricco di composti facilmente degradabili rispetto a un compost maturo. Un’osservazione banale, trasformata in presunta “prova” di efficacia biodinamica.

In altre parole, il lavoro appena analizzato non dimostra alcuna unicità del Preparato 500. Mostra soltanto che un letame lasciato fermentare in condizioni anossiche dentro un corno ha una composizione chimica simile a quella di altri ammendanti poco maturi. L’uso di strumenti spettroscopici di alto livello serve più a conferire prestigio alla pratica biodinamica che a produrre nuova conoscenza. È un’operazione di maquillage scientifico: dati corretti, ma interpretazione piegata all’ideologia.

Strumenti sofisticati, interpretazioni esoteriche

In uno studio apparso su Chemical and Biological Technologies in Agriculture, gli autori hanno applicato tecniche avanzatissime – MRI (risonanza magnetica per immagini) per la struttura interna delle bacche e HR-MAS NMR per il metaboloma – a uve Fiano e Pallagrello trattate con il celebre Preparato 500. Dal punto di vista tecnico nulla da eccepire: “MRI and HR-MAS NMR provided detailed information on berry structure and metabolite profiles” (p. 3).

Il problema nasce subito dopo. Gli autori collegano direttamente i risultati“a significant decrease in sugars and an increase in total phenolics and antioxidant activity in biodynamically treated grapes” (p. 5) – all’applicazione del Preparato 500. Ma senza un adeguato controllo placebo questo salto logico è insostenibile: come distinguere l’effetto della “pozione biodinamica” da quello di fattori molto più concreti e plausibili come microclima, esposizione solare, variabilità del suolo o semplici disomogeneità nell’irrigazione?

Gli stessi autori ammettono che la variabilità ambientale è enorme: “soil heterogeneity and microclimatic differences strongly influenced metabolite composition” (p. 6). Eppure, attribuiscono al trattamento biodinamico differenze che potrebbero essere spiegate benissimo da questi fattori.

Ecco il nodo: la biodinamica viene trattata come variabile determinante quando, in realtà, manca la dimostrazione del nesso causale. Si confonde la correlazione con la causa, sostituendo la fatica della verifica sperimentale con il fascino della narrazione esoterica. In altre parole, strumenti scientifici tra i più potenti oggi disponibili vengono usati correttamente per produrre dati robusti, ma poi piegati a interpretazioni che appartengono più al mito che alla scienza. È come se un telescopio di ultima generazione fosse puntato verso il cielo non per studiare le galassie, ma per cercare gli influssi astrali di cui parlano gli oroscopi.

Quando i numeri non tornano

Tra i lavori più citati a sostegno della biodinamica c’è l’articolo di Zaller e Köpke pubblicato su Biology and Fertility of Soils nel 2004, che confronta letame compostato tradizionale e letame compostato con “preparati” biodinamici in un esperimento pluriennale. Sulla carta, il disegno sperimentale sembra solido: rotazioni colturali, repliche, parametri chimici e biologici del suolo.

Ma basta entrare nei dettagli per accorgersi delle crepe. Innanzitutto, gli autori parlano di quattro trattamenti, ma l’unico vero confronto rilevante – biodinamico vs tradizionale – è reso ambiguo dal fatto che manca un controllo cruciale: il letame senza alcuna applicazione (no FYM) è incluso, ma non permette di distinguere se le differenze dipendano dalle preparazioni biodinamiche o, banalmente, dalla sostanza organica. In altre parole, non è possibile stabilire se l’“effetto” sia biodinamico o semplicemente concimante.

In secondo luogo, molte delle differenze riportate sono minime, al limite della significatività statistica, e oscillano addirittura in direzioni opposte tra i diversi strati di suolo (es. la respirazione microbica più bassa con tutti i preparati a 0–10 cm, ma più alta col solo Achillea a 10–20 cm: Fig. 1). Questo non è un segnale di coerenza biologica, ma di rumore sperimentale.

E poi ci sono le rese: tabella 3 mostra chiaramente che le differenze tra preparati e non-preparati non sono mai significative. In pratica, dopo nove anni di sperimentazione, la produttività dei sistemi resta identica, indipendentemente dall’uso o meno dei preparati.

Il colpo finale arriva dall’interpretazione: gli autori ammettono che “how those very low-dose preparations can affect soil processes is still not clear” (p. 228), ma subito dopo ipotizzano meccanismi fumosi come “microbial efficiency” o “stress reduction” senza fornire prove solide. Non sorprende che l’articolo sia diventato un riferimento per i sostenitori della biodinamica: fornisce grafici, tabelle e un lessico tecnico, ma dietro la facciata la sostanza è debole.

In sintesi, questo lavoro non dimostra affatto l’efficacia dei preparati biodinamici: mostra soltanto che il letame fa bene al suolo, una banalità agronomica travestita da scoperta.

Mappatura, non validazione

Giusto per concludere questa breve revisione critica di qualche lavoro sulla biodinamica, prendo in considerazione una review pubblicata su Organic Agriculture che ha analizzato 68 studi sull’agricoltura biodinamica. Gli autori segnalano effetti positivi su suolo e biodiversità, soprattutto in aree temperate, sostenendo che “most studies reported improvements in soil quality parameters, biodiversity, and crop quality under biodynamic management” (p. 3).

Il problema è che si tratta di una rassegna descrittiva, non critica. Gli stessi autori ammettono che “we did not perform a formal quality assessment of the included studies” (p. 2). In altre parole, nessuna valutazione della robustezza metodologica, della significatività statistica o della replicabilità dei risultati. Non hanno fatto, insomma, quello che ho fatto io con le critiche riportate nei paragrafi precedenti.

Non solo: la review mette nello stesso calderone pratiche agricole consolidate (rotazioni, compost, minore uso di chimica) e l’uso dei preparati biodinamici, facendo apparire i benefici come frutto della biodinamica tout court. Un artificio retorico che sposta l’attenzione dall’agronomia alla magia.

Il risultato è esattamente quello che Enrico Bucci definì su Il Foglio una “eterna review”: un elenco di lavori, non una loro valutazione critica. Utile come catalogo, ma totalmente inutile come prova di validazione scientifica. Insomma, un inventario ordinato, non una prova di efficacia: la scienza qui rimane alla porta, mentre la retorica magica occupa la scena.

La fatica della demistificazione scientifica

Arrivati a questo punto, vale la pena sottolineare un aspetto che spesso sfugge a chi guarda la scienza dall’esterno. Smontare lavori che si travestono da scienza non è un passatempo da tastiera né un esercizio da poltrona. È un percorso lungo, faticoso e a tratti logorante. Perché?

Per prima cosa bisogna leggere gli articoli nella loro interezza, riga dopo riga, spesso decifrando un linguaggio tecnico volutamente denso. Poi serve una conoscenza approfondita delle metodologie: saper distinguere un NMR da una cromatografia, sapere cosa può misurare davvero un test enzimatico e cosa invece viene gonfiato nell’interpretazione. Infine, è indispensabile una robusta esperienza nella progettazione sperimentale: senza questa non ci si accorge dei bias nascosti, dei controlli mancanti, delle conclusioni che vanno ben oltre i dati.

E tutto ciò richiede tempo, pazienza e un certo spirito combattivo.  La scienza procede per tentativi ed errori. Un lavoro pubblicato non necessariamente è validoLa pubblicazione è solo il primo gradino. La vera prova arriva dopo, quando la comunità scientifica lo sottopone a un esame collettivo, minuzioso, implacabile: esperti che “fanno le pulci” a ogni cifra, a ogni tabella, a ogni esperimento. Se il lavoro è solido, resiste e diventa pietra miliare. Se è fragile, si sgretola in fretta e viene dimenticato.

Ecco perché la demistificazione è così importante e così dura: perché si combatte con armi scientifiche contro narrazioni che usano il fascino del mito. E i lavori sulla biodinamica, quando passano sotto questo setaccio, puntualmente crollano.

Conclusione: un fallimento annunciato

Il quadro che emerge è inequivocabile. Studi ben confezionati ma concettualmente vuoti, prove senza controlli, numeri sbagliati, review che confondono agronomia con magia. Tutto ciò che funziona nelle aziende biodinamiche non è esclusivo della biodinamica: è semplice agronomia, già consolidata nel biologico e perfezionata nell’integrato.

Il resto – corna interrate, cicli cosmici, preparati miracolosi – non resiste alla prova della scienza. La biodinamica cerca da oltre un secolo legittimazione, ma ogni volta che la ricerca prova a verificarla seriamente, la sua fragilità diventa evidente. Non è agricoltura del futuro, ma un mito che il tempo ha già smentito.

A questo punto, un lettore non addetto potrebbe chiedersi: “Ma se è così fragile, come mai questi studi vengono pubblicati? Possibile che i revisori non se ne accorgano? E come faccio io, dall’esterno, a non fidarmi di ciò che appare su riviste qualificate, persino con un buon Impact Factor?”

La risposta è meno misteriosa di quanto sembri. Come ho già scritto nel paragrafo precedente, la pubblicazione è solo il primo passo: significa che un articolo ha superato un filtro minimo di qualità, non che sia una verità scolpita nel marmo. La peer review non è un tribunale infallibile: è fatta da esseri umani, spesso con tempi stretti e competenze specifiche. Alcuni errori sfuggono, altre volte ci si concentra più sulla tecnica che sulla sostanza. Succede che un lavoro ben scritto e infarcito di strumentazioni sofisticate riesca a passare, anche se le conclusioni sono deboli.

La differenza la fa il tempo e la comunità scientifica. È il vaglio collettivo, fatto di discussioni, repliche, critiche, tentativi di replica sperimentale, che separa ciò che rimane da ciò che evapora. Ed è un processo lento e faticoso, che richiede esperienza, attenzione e anche una certa dose di ostinazione.

Ecco perché non basta fidarsi di un titolo altisonante o di una rivista con un buon IF. Bisogna guardare dentro i lavori, leggerli, pesarli, verificarli. Lo facciamo noi scienziati, ed è una parte del nostro mestiere che non fa notizia, ma è essenziale: distinguere i dati solidi dai castelli di carta.

E ogni volta che la biodinamica entra in questo setaccio, il risultato è lo stesso: crolla.

Le interviste impossibili: incontriamo Michael Faraday

Lasciata Parigi, dove ho avuto l’onore di dialogare con Antoine Lavoisier, faccio rotta verso l’Inghilterra. È il 1831 — almeno, così mi piace pensare — e la bruma londinese avvolge i sobborghi di Newington Butts. Qui, in una piccola casa modesta, mi attende Michael Faraday: chimico, fisico, autodidatta, uomo dalla curiosità inesauribile. Dai suoi esperimenti nascono concetti e scoperte che hanno plasmato la chimico-fisica moderna: l’elettromagnetismo, le leggi dell’elettrolisi, l’introduzione di termini come “anodo” e “catodo”, e quell’inimitabile ciclo di lezioni che raccolse in The Chemical History of a Candle. Un uomo che, pur privo di studi matematici formali, ha saputo leggere nel linguaggio segreto della natura e tradurlo in esperimenti chiari e affascinanti.

— Buongiorno, Professor Faraday. Sono onorato che lei abbia voluto incontrarmi.
— Buongiorno a lei, e benvenuto a Londra. Sono lieto di parlare con chi mostra curiosità per la scienza, perché la curiosità è la fiamma che accende ogni scoperta.

— Professor Faraday, il suo nome è legato a scoperte epocali in campi diversi. Partiamo dall’elettrochimica: come nacquero le sue famose leggi dell’elettrolisi?
— Tutto è cominciato facendo esperimenti, con tanta pazienza e un po’ di ostinazione. L’elettrolisi, per dirla semplice, è quando si fa passare corrente elettrica in un liquido — come una soluzione salina — e agli elettrodi avvengono reazioni chimiche: si formano gas, si depositano metalli, o si liberano altre sostanze. Mi resi conto che la quantità di sostanza prodotta non era mai a caso: più elettricità facevo passare, più materia ottenevo. Questo è il cuore della mia prima legge. Poi, cambiando sostanza — oro, rame, idrogeno, ossigeno… — vidi che, se facevo passare sempre la stessa “dose” di elettricità, ottenevo quantità diverse di materiale, ma sempre in proporzione a un valore caratteristico di quella sostanza, il cosiddetto “peso equivalente”. In fondo, quelle regole erano già lì, scritte nella natura: io ho solo avuto la pazienza di osservarle e metterle nero su bianco.

— Questo è quanto hanno affermato, tra le righe, anche il Professor Boyle e Monsieur Lavoisier che, immagino, lei conosca.
— Eccome se li conosco! Boyle, con il suo modo rigoroso di sperimentare, ha aperto la strada a tutti noi: era convinto che le leggi della natura fossero lì da scoprire, non da inventare. E Lavoisier… be’, lui ha saputo dare un ordine e un linguaggio alla chimica. Ha dimostrato che nulla si crea e nulla si distrugge, e che il compito dello scienziato è trovare il filo che lega ogni trasformazione. Io ho solo continuato quel lavoro, seguendo il filo della corrente elettrica.

— Quindi, lei ha seguito le orme di monsieur Lavoisier, dimostrando in modo indipendente che aveva ragione.
— Direi piuttosto che ho camminato su un sentiero che lui aveva già tracciato, ma guardando dettagli che, ai suoi tempi, erano nascosti. Lavoisier aveva ragione nel dire che la materia si conserva e che le reazioni seguono leggi precise. Io ho potuto vedere quelle stesse leggi in azione nei processi elettrici, e mostrarne il funzionamento quantitativo. In un certo senso, la mia elettrochimica è stata la prova sperimentale di un’idea che lui aveva reso universale.

— E come ha detto monsieur Lavoisier, la scienza è un gioco corale…
— …esattamente. Non c’è un singolo musicista che possa suonare tutta la sinfonia da solo. Ognuno aggiunge una nota, un tema, un’armonia. Boyle ha messo le fondamenta del metodo sperimentale, Lavoisier ha dato ordine e linguaggio alla chimica, e io ho avuto la fortuna di inserirvi l’elettricità come nuova voce. La scienza avanza così: un’idea ispira un’altra, un esperimento ne provoca cento nuovi. È un lavoro che attraversa generazioni, senza gelosie — o almeno, così dovrebbe essere.

— E in questo coro, lei ha introdotto un tema che ha cambiato per sempre la fisica: l’induzione elettromagnetica.
— Fu una delle mie scoperte più care. E nacque da una domanda molto semplice: se una corrente elettrica può generare un campo magnetico, come aveva mostrato Oersted, non sarà possibile anche il contrario? Mi misi al banco di lavoro con fili di rame, bobine, magneti e molta pazienza. Scoprii che muovendo un magnete vicino a un circuito, o variando il campo magnetico che lo attraversa, in quel circuito compare una corrente. Una corrente “indotta”. Non serviva contatto diretto: il cambiamento del campo era sufficiente.

— Un principio che oggi è alla base dei generatori e dei trasformatori elettrici…
— All’epoca non pensavo certo alle centrali elettriche: vedevo solo un nuovo modo in cui natura e movimento dialogano. Ma la bellezza della scienza è che ciò che nasce da curiosità pura, un giorno, può cambiare il mondo.

— Questa è l’idea della ricerca di base, un tipo di ricerca che, come avrà sicuramente saputo, oggi viene ritenuta inutile. Oggi, nella stesura dei progetti per ottenere finanziamenti, occorre anche descrivere i risultati attesi e le possibili applicazioni…
— Ah, capisco. Ma vede, la ricerca di base è come seminare in un terreno fertile: non si può sempre sapere in anticipo quale frutto crescerà, né quando. Se nel 1831 mi avessero chiesto quali applicazioni pratiche avrei tratto dall’induzione elettromagnetica, avrei potuto solo dire: “Ancora non lo so, ma è un fenomeno reale e va compreso”. Eppure, da quella curiosità oggi nascono la produzione e la distribuzione dell’elettricità. La scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.

— Bellissimo ciò che ha detto… la scienza che cerca soltanto risultati immediati rischia di accontentarsi di frutti già noti, rinunciando a scoprire nuove specie di alberi.
— E glielo posso raccontare con un piccolo episodio personale. Quando iniziai a parlare dei miei esperimenti sull’elettricità, alcuni colleghi mi chiesero: “Ma a cosa serve tutto questo? Cosa produrrà di utile?” Io risposi semplicemente: “Non lo so ancora… ma quando lo scoprirò, sarà più utile di qualsiasi risposta affrettata”. Ridono ancora, quando lo racconto, perché nessuno allora poteva immaginare che quei giochi con fili e magneti un giorno avrebbero illuminato case, fabbriche e città intere. La curiosità pura è stata il mio unico motore. Non ho mai pensato che l’utilità pratica dovesse precedere la comprensione; credo fermamente che le leggi della natura si rivelino meglio a chi le osserva con meraviglia e senza fretta.

— È davvero straordinario come la curiosità pura abbia portato a scoperte così rivoluzionarie… eppure, lei non si è fermato all’elettricità: ha anche esplorato la luce.
— Sì, e anche qui è stata la stessa curiosità a guidarmi. Nel 1845, mentre studiavo l’influenza dei campi magnetici sulla materia, mi venne in mente di verificare se la luce potesse essere influenzata da un campo magnetico. Preparai un esperimento semplice: un raggio di luce che passava attraverso una sostanza trasparente immersa in un campo magnetico. Con grande stupore, notai che il piano di polarizzazione della luce ruotava leggermente.

— Questo è ciò che oggi chiamiamo effetto Faraday
— È il primo esempio noto di interazione tra luce e magnetismo, e dimostrò che la luce e il magnetismo non sono fenomeni separati, ma legati da un principio comune. All’epoca non conoscevo l’equazione di Maxwell — che sarebbe arrivata solo qualche decennio dopo — ma intuivo che elettricità, magnetismo e luce fossero fili di uno stesso tessuto. Il mio compito era solo tirare uno di quei fili per vedere come vibrava l’intero intreccio.

— Professor Faraday, lei ha dimostrato di saper fare scoperte enormi senza una formazione matematica formale. Come ci è riuscito?
— Non ho mai considerato la matematica un ostacolo insormontabile, ma uno strumento che, se necessario, avrei potuto imparare. La mia forza era nel laboratorio, nell’osservazione meticolosa, nell’immaginare esperimenti semplici che potessero dare risposte chiare. Credevo — e credo ancora — che il pensiero sperimentale sia universale: se la natura ti mostra un fenomeno, puoi comprenderlo anche senza formule complesse, purché tu abbia pazienza, rigore e umiltà.

— A proposito di umiltà, lei ha spesso rifiutato titoli e onori…
— Sì, perché il vero riconoscimento per uno scienziato non è una medaglia, ma vedere che le sue scoperte entrano a far parte della vita di tutti. Ho sempre pensato che la scienza debba restare al servizio dell’uomo, non dell’ego dello scienziato.

— …che non è esattamente quello che accade oggi, quando molti di noi — me compreso — provano un certo piacere a stare sotto i riflettori. E glielo confesso: quando lo dico ai colleghi, vengo anche preso per pazzo.
— Forse perché oggi la visibilità non porta solo applausi, ma anche finanziamenti. E questi, lo so bene, possono arrivare da ogni direzione, compresa quella di chi vende illusioni ben confezionate: omeopatia, biodinamica e altre amenità. Ai miei tempi, la fama non apriva così facilmente le casse di mecenati o aziende; e comunque, il rischio di piegare la scienza a interessi di parte era sempre in agguato. Il punto è ricordare che il palcoscenico passa, mentre la verità scientifica resta — e che oggi, troppo spesso, la dignità e l’autorevolezza scientifica vengono barattate per un piatto di lenticchie.

— Professor Faraday, molti la ricordano anche per le sue celebri Christmas Lectures alla Royal Institution. Come nacque l’idea de La storia chimica di una candela?
— Ogni anno, a Natale, tenevo delle lezioni per i ragazzi. Volevo offrire loro un’esperienza che fosse insieme semplice e affascinante. Scelsi la candela perché è un oggetto comune, familiare a tutti, ma dietro la sua fiamma si nasconde un mondo di fenomeni fisici e chimici.

— Qual era il suo obiettivo nel parlare di una cosa così quotidiana?
— Dimostrare che la scienza non è confinata nei laboratori: è dappertutto. Una candela, accendendosi, mette in scena combustione, convezione, cambiamenti di stato, reazioni chimiche complesse. Volevo che i giovani capissero che anche un gesto banale può essere una porta verso grandi scoperte.

— Qual è il primo segreto che una candela rivela?
— Che la fiamma non è materia, ma energia in azione. La cera, riscaldata, diventa liquida, poi gassosa; il gas brucia liberando calore e luce. È un ciclo continuo di trasformazioni: solido, liquido, gas, e di nuovo energia.

— Lei parlava spesso di osservare prima di spiegare. Come lo applicò in queste lezioni?
Invitavo i ragazzi a guardare: il colore della fiamma, il fumo che si sprigiona quando si spegne la candela, la forma della goccia di cera che si scioglie. Solo dopo passavamo a spiegare il perché di ciò che avevano visto. La curiosità nasce dall’osservazione diretta.

— In fondo, è un po’ la stessa filosofia della sua ricerca…
Sia che studi l’elettromagnetismo, sia che guardi una candela, l’approccio è lo stesso: osservare con attenzione, porre domande, non dare nulla per scontato.

— Cosa pensa che La chimica di una candela possa insegnare ancora oggi?
— Che la scienza è nelle mani di chi sa guardare. Non importa se il laboratorio è una stanza piena di strumenti o il tavolo di cucina: ciò che conta è la capacità di meravigliarsi e di cercare risposte.

— Sa che queste sue parole potrebbero essere usate oggi, nella mia epoca, da complottisti di ogni risma? Gente che si riempie la bocca di “pensiero indipendente”, “Galilei era uno contro tutti” e così via cantando…
— Oh, conosco bene il rischio. Ma vede, c’è una differenza sostanziale: il vero pensiero indipendente nasce dallo studio rigoroso e dall’osservazione onesta della realtà; quello dei complottisti nasce spesso dal rifiuto pregiudiziale delle prove. Galilei non era “uno contro tutti” perché amava contraddire: era uno che portava dati, misure, esperimenti ripetibili. Se oggi qualcuno brandisce il suo nome per giustificare opinioni infondate, sta confondendo la curiosità con l’arroganza e il metodo scientifico con la chiacchiera da taverna. E guardi che lo stesso vale per una candela. Posso raccontare che la fiamma è alimentata da minuscole fate luminose che ballano nell’aria: suona poetico, e qualcuno potrebbe pure crederci. Ma basta un semplice esperimento per dimostrare che la luce e il calore vengono dalla combustione di vapori di cera. La scienza non è negare la fantasia — è verificarla.

— Professor Faraday, se dovesse riassumere in poche parole il senso del suo lavoro, cosa direbbe?
— Direi che ho passato la vita a inseguire scintille: alcune erano letterali, altre metaforiche. Ma ogni scintilla, se seguita con attenzione, può accendere una fiamma di conoscenza.

Mentre lascio la sua casa, il cielo di Londra è ancora avvolto nella bruma, ma nella mia mente resta accesa una piccola luce: quella di una candela che, sotto lo sguardo paziente di Michael Faraday, si trasforma da semplice oggetto quotidiano in una lezione eterna di curiosità, rigore e meraviglia.

Mi avvio verso il prossimo appuntamento impossibile. Lì, tra fili di rame e campi invisibili, scopriremo che la scienza può unire fenomeni che sembravano mondi separati, guidata dalla stessa curiosità che accende una fiamma e illumina una mente.

Note Bibliografiche

W.H. Brock (2016) The History of Chemistry. A Very Short Introduction. Oxford University Press

L.  Cerruti (2019) Bella e potente. La chimica dagli inizi del Novecento ai giorni nostri. Editori Riuniti

Michael Faraday (1845) Experimental Researches in Electricity. Philosophical Transactions of the Royal Society

Michael Faraday (1866) Storia Chimica di una candela. Editori della Biblioteca Utile

T.H. Levere (2001) Transforming Matter. A History of Chemistry from Alchemy to the Buckyball. Johns Hopkins University Press

Maggio, R. Zingales (2023) Appunti di un Corso di Storia della Chimica.Edises

Nomine e cortocircuiti: quando l’antiscienza entra nei comitati scientifici

È di queste ore la notizia che il ministro della salute, Orazio Schillaci, ha nominato nel Gruppo Tecnico Consultivo Nazionale sulle Vaccinazioni (NITAG) due tecnici, Paolo Bellavite ed Eugenio Serravalle, dalle posizioni, in più occasioni espresse pubblicamente, in contrasto con quanto riportato nella letteratura scientifica più accreditata (quest’ultima può essere rappresentata dagli articoli riportati qui, qui, qui e qui).

Che cos’è il NITAG?

Dal sito del Ministero della Salute apprendiamo che: Il NITAG è un Organo indipendente col compito di supportare, dietro specifica richiesta e su problematiche specifiche, il Ministero della Salute nella formulazione di raccomandazioni “evidence-based” sulle questioni relative alle vaccinazioni e alle politiche vaccinali, raccogliendo, analizzando e valutando prove scientifiche.

In altre parole, si tratta di un comitato scientifico che, sulla base di prove scientifiche inoppugnabili, consente al Ministero della Salute e, quindi, al Governo di prendere decisioni importantissime in merito a problematiche relative alla salute pubblica.

Chi è Paolo Bellavite

Bellavite è un medico che fino a qualche anno fa ha ricoperto il ruolo di Professore Associato in Patologia Generale presso l’Università di Verona. Le sue posizioni in merito ai vaccini sono riportate sia in interviste che nei libri che ha scritto e pubblicato. In particolare, egli dice di non essere contrario ai vaccini in quanto tali, ma critica duramente quella che definisce una “ideologia vaccinista”. A suo avviso, la narrazione dominante che presenta i vaccini come soluzione unica e infallibile si configura come un dogma che soffoca il dibattito scientifico e il pensiero critico. “Non ha nulla a che fare con la scienza”, ha affermato in un’intervista, parlando di un clima in cui “l’odio vaccinale è la tomba della medicina”.

Autore del libro “Vaccini sì, obblighi no”, Bellavite contesta soprattutto l’obbligatorietà della vaccinazione, sostenendo che il consenso informato debba restare alla base di ogni trattamento sanitario. Il professore ha anche espresso dubbi sull’efficacia a lungo termine dei vaccini anti-Covid e sulla loro capacità di limitare la diffusione del virus, ricordando che “i vaccinati possono infettarsi e trasmettere il virus, a volte anche più dei non vaccinati”.

Dal punto di vista immunologico, Bellavite mette in guardia contro le possibili conseguenze di una stimolazione eccessiva del sistema immunitario attraverso dosi ripetute. E sull’aspetto etico sottolinea: “Siamo ancora nella fase sperimentale. Ha ragione chi ha paura”.

Naturalmente, egli è anche un forte sostenitore della pratica omeopatica. Infatti, Paolo Bellavite sostiene che l’omeopatia non sia una moda passeggera, ma l’espressione di un profondo cambiamento culturale e scientifico che mette in discussione i limiti dell’attuale paradigma medico meccanicistico e molecolare. Questo approccio tradizionale, pur avendo ottenuto importanti risultati, non ha saputo affrontare efficacemente la complessità biologica e clinica, spesso riducendo la medicina a una frammentazione iperspecialistica. L’omeopatia, al contrario, propone una visione sistemica del paziente, centrata sull’individualità, sulla totalità dei sintomi e sulla stimolazione dei processi endogeni di guarigione, concetti che si allineano con la scienza della complessità. Bellavite rivendica per l’omeopatia una dignità scientifica, sostenendo che essa possa essere studiata con metodi sperimentali avanzati e integrata razionalmente nella medicina moderna. Si oppone con forza a ciò che definisce una campagna denigratoria nei confronti dell’omeopatia da parte dei media e di alcuni esponenti del mondo accademico, accusandoli di diffondere affermazioni false senza consentire un contraddittorio serio e competente. Pur riconoscendo il valore di farmaci convenzionali e vaccini in determinate circostanze, Bellavite li considera soluzioni alternative da adottare solo dopo aver tentato approcci più naturali e fisiologici, come omeopatia, fitoterapia, agopuntura, corretta alimentazione e igiene. In questa visione, l’omeopatia non è solo una medicina possibile, ma una medicina vera e prioritaria, da contrapporre a un uso troppo disinvolto e sintomatico della farmacologia convenzionale.

Chi è Eugenio Serravalle

Serravalle è laureato in Medicina e Chirurgia e specializzato in Pediatria Preventiva, Puericultura e Patologia Neonatale. Egli ha più volte preso posizione contro la vaccinazione di massa dei bambini, soprattutto in relazione al Covid-19. Secondo lui, l’infezione da SARS-CoV-2 non rappresenta un’emergenza sanitaria tra i più piccoli e i potenziali rischi della vaccinazione superano i benefici. “Tutti gli studi scientifici affermano che non vi è alcuna emergenza Covid tra i bambini”, ha dichiarato in un’intervista.

Serravalle contesta anche l’efficacia dei vaccini nel prevenire il contagio, soprattutto con l’avvento delle varianti come Omicron. Secondo la sua analisi, in alcuni casi i vaccinati si infettano più dei non vaccinati e l’immunità acquisita naturalmente sarebbe più duratura. Per questo, a suo dire, non sussistono i presupposti per raggiungere l’immunità di gregge né per giustificare obblighi o pressioni vaccinali.

Oltre ad essere un medico, Eugenio Serravalle risulta diplomato in Omeopatia Classica presso la Scuola Omeopatica di Livorno e svolge attività didattica come professore presso l’Accademia di Omeopatia Classica Hahnemanniana di Firenze.

Come Bellavite, quindi, anche Serravalle è un forte sostenitore dell’omeopatia.

In un articolo intitolato “Il Dr. Eugenio Serravalle risponde a Maurizio Crozza sull’Omeopatia”, Serravalle replica alle battute ironiche del comico Crozza sostenendo con fermezza l’efficacia e la correttezza della pratica omeopatica. Scrive:

“Abbiamo una regolare laurea in medicina… e se abbiamo adottato la terapia omeopatica è perché, evidentemente, ne abbiamo sperimentato l’efficacia.”

“Non si può essere venditori di fumo quando si curano pazienti… e tra questi pazienti sono numerosi i bambini e gli animali che non sono influenzabili dall’effetto placebo.”

Con questa risposta, Serravalle rigetta la critica secondo cui l’omeopatia sarebbe solo “fumo” o priva di efficacia, affermando invece di aver osservato personalmente risultati tangibili, anche in soggetti difficilmente influenzabili da placebo.

Quando i conti non tornano

A leggere le dichiarazioni dei due nominati, si potrebbe pensare di essere davanti a voci “fuori dal coro” che invitano alla cautela. Ma basta andare oltre la superficie per capire che non si tratta di sano scetticismo scientifico: siamo, piuttosto, di fronte a posizioni che, alla luce delle evidenze scientifiche disponibili, risultano in contrasto con il consenso della comunità scientifica. Ed è qui che inizia il vero problema.

Il punto centrale è che un organismo tecnico chiamato a esprimere pareri qualificati in materia di salute pubblica deve basarsi su conoscenze aggiornate e scientificamente inoppugnabili. Non può diventare il ricettacolo di discussioni inutili fatte in nome di una presunta “pluralità di opinioni”. Il concetto di democrazia politica è completamente diverso  – e molto lontano – da quello di democrazia scientifica. In una democrazia politica è legittimo avere opinioni diverse su come affrontare un problema di gestione della res publica. In ambito tecnico-scientifico, invece, un’opinione non qualificata non ha lo stesso peso di quella di chi possiede competenze specifiche e fondate sull’evidenza.

Ecco perché, per esempio, ci fu la levata di scudi del mondo accademico agrario quando si paventò l’ingresso di esponenti della biodinamica in tavoli tecnici per l’assegnazione di fondi all’agricoltura.

A mio avviso, il Ministro ha preso decisioni discutibili, in nome di una pluralità di opinioni che, in ambito scientifico, non ha alcun senso. Sta ora tentando di mettere delle pezze a questa scelta, dimenticando che anche lui è un medico e ha responsabilità che vanno ben oltre la sua funzione politica.

Se mai un responsabile istituzionale si trovasse nella condizione di dover cedere a compromessi, la scelta più coerente con la difesa della scienza sarebbe quella di rassegnare le dimissioni. Servirebbe, come nel caso della biodinamica, una sollevazione compatta del mondo scientifico e medico. Nel frattempo, nel mio piccolo, continuo a far sentire la mia voce e auspico che tutti gli organismi professionali – dagli ordini alle società scientifiche – facciano sentire la loro, in difesa della medicina basata sulle prove e della salute pubblica.

Il cortocircuito dell’antiscienza

Le posizioni di Paolo Bellavite ed Eugenio Serravalle non sono semplicemente “opinioni alternative” in un dibattito tra pari. Non si tratta di ricercatori che presentano dati nuovi, pronti a essere vagliati e discussi dalla comunità scientifica: qui non c’è nessun dato nuovo. C’è, piuttosto, un riciclo di tesi contestate e smentite dalla letteratura scientifica, che riaffiorano come vecchie erbacce tra le crepe del discorso pubblico.

Con l’omeopatia il copione lo conosciamo bene: una pratica nata oltre due secoli fa, costruita su concetti come “similia similibus curentur” e “dinamizzazione”, mai dimostrati in modo riproducibile. Nei miei articoli – dalla presunta memoria dell’acqua (link) alle più recenti fantasie agronomiche (link) – ho mostrato come la letteratura scientifica di qualità non abbia mai trovato un effetto dell’omeopatia superiore al placebo. Chi la difende, spesso, non lo fa su basi sperimentali, ma su convinzioni personali, esperienze aneddotiche o richiami a un presunto “cambiamento di paradigma” che non trova riscontro in alcun dato.

Sul fronte dei vaccini, il meccanismo è simile: si selezionano singoli studi, si estrapolano dati fuori contesto, si enfatizzano le incertezze inevitabili di ogni processo scientifico per far passare l’idea che “non sappiamo abbastanza” o che “i rischi superano i benefici”. Nei miei pezzi – da antivaccinisti ed immunità di gregge a vaccini e corretta informazione scientifica – ho spiegato come l’evidenza accumulata su milioni di dosi mostri una riduzione netta di ospedalizzazioni e decessi.

Quando Bellavite parla di “fase sperimentale” per i vaccini anti-Covid, non sta facendo un’osservazione prudente: formula un’affermazione che non trova riscontro nei dati scientifici, perché quei vaccini hanno completato tutte le fasi di sperimentazione necessarie per l’autorizzazione. Quando Serravalle afferma che “i vaccinati si infettano più dei non vaccinati”, non menziona i dati che mostrano come, pur con una protezione dall’infezione che diminuisce nel tempo, la vaccinazione resti una barriera fondamentale contro le forme patologiche gravi e le loro complicanze.

La contraddizione diventa lampante quando entrambi propongono l’omeopatia come alternativa o complemento “prioritario” alla farmacologia. Il mandato del NITAG è basato sull’evidence-based medicine, e l’omeopatia non rientra in alcuna linea guida internazionale sul trattamento o la prevenzione di malattie infettive. È paragonabile, per incoerenza, a nominare un negazionista del cambiamento climatico in un comitato per la transizione ecologica: il risultato è solo quello di minare la credibilità dell’organo stesso.

Il problema, però, non è solo tecnico. È culturale. Dare spazio istituzionale a posizioni non supportate da dati scientifici significa legittimare un messaggio pericoloso: che le evidenze scientifiche siano opinioni e che la sanità pubblica possa essere guidata da convinzioni personali. È il cortocircuito dell’antiscienza: quando la politica apre la porta a teorie già confutate, la fiducia nelle istituzioni si sgretola e i cittadini restano più esposti a bufale e disinformazione. Come ho scritto altrove  – qui e qui – quando la pseudoscienza entra dalla porta principale, la salute pubblica rischia di uscire dalla finestra.

Quando l’impossibile è solo improbabile: la cosmochimica ci insegna a essere umili

Recentemente Nature Communications ha pubblicato un articolo che ha fatto il giro del web: la scoperta di una molecola ritenuta “impossibile” secondo la chimica classica. Si tratta del methanetetrol, con formula C(OH)₄, cioè un atomo di carbonio legato a quattro gruppi ossidrilici. Se avete familiarità con la chimica organica, vi sarà già scattato un campanello d’allarme.

Un carbonio, quattro ossidrili

In chimica organica, anche due gruppi -OH sullo stesso carbonio (dioli germinali) sono instabili: tendono a disidratarsi spontaneamente, formando un carbonile più stabile. Con quattro ossidrili, il carbonio è sottoposto a forte repulsione elettronica e alta reattività: la molecola è intrinsecamente instabile nelle condizioni terrestri.

Ma lo spazio è tutta un’altra storia

L’esperimento condotto da Joshua H. Marks e colleghi ha simulato condizioni interstellari:

  • temperatura di circa 10 K (~ –263 °C);
  • pressione ultra-bassa (10⁻¹⁰ atm);
  • esposizione a radiazione energetica, simile a quella dei raggi cosmici.

In queste condizioni la molecola non riceve abbastanza energia per reagire o disidratarsi. Resta quindi “congelata” in uno stato metastabile, come se fosse bloccata nel tempo.

Instabile ≠ impossibile

Il methanetetrol non è “impossibile”: è semplicemente troppo instabile per durare a lungo alle condizioni ambientali della Terra. Ma nel vuoto cosmico, dove le collisioni tra molecole sono rarissime e la temperatura è prossima allo zero assoluto, anche le molecole più reattive possono esistere per tempi lunghissimi.

Un esempio quotidiano: l’acqua sovraraffreddata

Un buon esempio di metastabilità è l’acqua sovraraffreddata: se si raffredda dell’acqua molto pura lentamente e senza disturbarla, può restare liquida anche sotto gli 0 °C. Basta però un urto o l’aggiunta di un cristallo di ghiaccio perché si congeli all’istante, liberando calore.

Il methanetetrol nello spazio si comporta allo stesso modo: esiste in uno stato “delicato”, che può durare milioni di anni solo finché non interviene qualcosa a modificarlo.

Un’eredità cosmica

È importante ricordare che le molecole presenti oggi sulla Terra — comprese quelle che hanno contribuito all’origine della vita — sono in parte eredi di queste molecole “cosmiche”. Nei primi miliardi di anni, comete, meteoriti e polveri interstellari hanno portato sulla Terra materiali formatisi in ambienti estremi, spesso metastabili.

Queste molecole, una volta inglobate nel giovane pianeta, si sono trasformate: alcune sono sopravvissute, altre si sono degradate, altre ancora hanno reagito dando origine a sistemi sempre più complessi. La chimica della vita, in questo senso, è figlia della chimica dello spazio, anche se si è evoluta in condizioni molto diverse.

Anche la Terra ha i suoi estremi

Non dobbiamo però pensare che condizioni “impossibili” esistano solo nello spazio. Anche sulla Terra troviamo ambienti estremi in cui si manifestano forme di chimica — e persino di biologia — del tutto inattese.

  • Nelle saline di Trapani, ad esempio, vivono microrganismi capaci di resistere a concentrazioni di sale che ucciderebbero qualsiasi cellula “normale”.
  • Nei pressi delle bocche vulcaniche sottomarine, dove temperature e pressioni sono altissime, esistono comunità microbiche che metabolizzano zolfo e metalli.
  • In ambienti acidi, alcalini, radioattivi o privi di ossigeno, prosperano organismi estremofili che mettono in crisi i nostri criteri su cosa è “compatibile con la vita”.

Anche qui la natura ci insegna che la stabilità è relativa: ciò che sembra impossibile in una condizione può essere perfettamente normale in un’altra.

Uno sguardo all’origine della complessità

L’interesse principale di questa scoperta non è nella molecola in sé, ma nei meccanismi di formazione. L’esperimento ha mostrato che partendo da semplici ghiacci di CO₂ e H₂O si possono generare:

I calcoli teorici confermano che, se c’è sufficiente CO₂ nello spazio, il methanetetrol potrebbe già esistere là fuori — congelato nei ghiacci cosmici, in attesa di una nuova reazione.

Conclusione

La chimica nello spazio non viola le regole: le applica in modo diverso. Il methanetetrol ci ricorda che non possiamo giudicare la plausibilità di una molecola solo dalle condizioni terrestri. E ci insegna una lezione ancora più importante:
la chimica, come la vita, nasce dove trova spazio per esistere — anche se quel luogo è a 10 Kelvin, nel vuoto cosmico o in una salina siciliana.

Clima e pseudoscienza: anatomia di una discussione

Qualche giorno fa ho pubblicato il terzo e, speravo, ultimo articolo di un reportage sui cambiamenti climatici. In questo articolo, intitolato I cambiamenti climatici? Sì, siamo noi i responsabili, ho discusso delle prove oggettive – corredate da riferimenti puntuali – che hanno portato l’intera comunità scientifica alla conclusione che i responsabili di quanto sta accadendo attualmente sulla superficie terrestre, ovvero l’aumento delle temperature globali e la conseguente alterazione degli ecosistemi, siamo noi esseri umani.

In quel testo ho cercato di mostrare, in modo accessibile ma rigoroso, perché la tesi dell’origine antropica dell’attuale riscaldamento globale non sia più un’ipotesi, ma una conclusione supportata da una mole imponente di dati.

Ho parlato del ruolo dei gas serra, in particolare della CO₂ prodotta dalla combustione di combustibili fossili, la cui impronta isotopica è ben riconoscibile in atmosfera. Ho discusso anche delle fonti indipendenti che confermano il trend in atto – dalle carote glaciali agli anelli degli alberi, dai sedimenti oceanici alle misurazioni satellitari – e delle ragioni per cui né l’attività solare né le eruzioni vulcaniche possono spiegare ciò che osserviamo oggi.

Infine, ho evidenziato come la rapidità del riscaldamento attuale – oltre un grado in appena un secolo – sia senza precedenti nella storia recente del pianeta, e come l’intero corpo scientifico internazionale, sintetizzato nei report dell’IPCC, abbia ormai raggiunto un consenso solido e ben documentato su questo punto.

Non è necessario riproporre qui tutti i riferimenti bibliografici: si trovano nell’articolo appena riassunto (qui il link).

Eppure, eccomi di nuovo a scrivere sull’apporto antropico all’effetto serra. Non per aggiungere nuove evidenze, ma per riflettere sul modo estremamente fallace – e sempre più diffuso – di ragionare dei negazionisti del cambiamento climatico. Non si tratta, in questo caso, di negazionisti tout court: anche loro, ormai, devono riconoscere l’evidenza dell’aumento delle temperature globali. Si tratta piuttosto dei negazionisti dell’origine antropica, coloro che rifiutano di accettare che la causa principale del riscaldamento sia l’attività umana.

In un gruppo Facebook che aiuto a gestire – Bufale e dintorni gruppo – sono comparsi i primi commenti al mio post con cui pubblicizzavo l’articolo (potete farvene un’idea a questo link).
Poiché si tratta di un gruppo privato – quindi i post non sono visibili pubblicamente – e considerando che non tutti hanno un account Facebook attivo, riporto di seguito gli screenshot della discussione.

La Figura 1 riporta la condivisione dalla mia pagina Facebook “Rino Conte”.

Figura 1. Screenshot relativo alla condivisione del mio articolo sull’effetto antropico nei cambiamenti climatici. Questo thread ha dato la stura a una discussione con un negazionista di tale effetto.

La Figura 2 riporta (spero in modo leggibile, altrimenti è necessario da parte dei volenterosi scaricare l’immagine ed effettuarne uno zoom) la discussione in corso tra me ed il negazionista dell’effetto antropico sul clima.

Figura 2. Discussione in corso tra me ed il negazionista dell’effetto antropico sul clima.

E proprio mentre sto scrivendo questo articolo la discussione continua (Figura 3).

Figura 3. Proseguimento della discussione mentre scrivo questo articolo.

Come si evince dagli screenshot, il tutto ha inizio dall’inserimento di un link a un articolo giornalistico in cui si riporta un filmato che mostra il comportamento di certi ghiacciai negli ultimi 800 000 anni. Questo filmato è tratto da un lavoro scientifico dal titolo “Modelling last glacial cycle ice dynamics in the Alps” pubblicato nel 2018 sulla rivista The Cryosphere della European Geoscience Union, associazione per la quale anche io ho organizzato in passato dei miniconvegni nell’ambito delle attività congressuali più generali che si fanno ogni anno a Vienna in Austria (per esempio, uno è qui).

Chi ha condiviso questo studio nella discussione lo ha fatto con l’intento – più o meno esplicito – di suggerire che, dal momento che i ghiacciai alpini si sono espansi e ritirati ciclicamente nel passato, il cambiamento climatico attuale potrebbe essere semplicemente parte di una lunga variabilità naturale. È un’inferenza del tutto errata, che nasce da un fraintendimento delle finalità e dei contenuti del lavoro scientifico citato.

Infatti, lo studio in questione (Seguinot et al., 2018) non parla di cambiamenti climatici attuali né tantomeno ne discute le cause. Si tratta di un lavoro di modellizzazione numerica della dinamica glaciale delle Alpi durante l’ultimo ciclo glaciale (da 120.000 a 0 anni fa), che ha lo scopo di testare la coerenza tra ricostruzioni geologiche e simulazioni del comportamento dei ghiacciai su scala millenaria. Non c’è nel testo alcuna analisi delle cause del riscaldamento moderno, né alcun confronto con l’evoluzione recente del clima terrestre.

Quello che il mio interlocutore ha fatto è un tipico esempio di bias di conferma: ha estrapolato da un articolo tecnico una conclusione che non c’è, perché questa coincide con la propria convinzione preesistente. È un meccanismo comune tra i cosiddetti “negazionisti soft” – persone che, pur riconoscendo che il clima sta cambiando, rifiutano l’idea che l’essere umano ne sia il principale responsabile.

La dinamica della discussione su Facebook lo conferma: ogni volta che si porta un dato, una misura, una ricostruzione paleoclimatica, l’interlocutore non contesta la validità della fonte, ma sposta il piano, relativizza, introduce “dubbi” storici o filosofici. E infine si rifugia nel mito del “Galileo solitario”, come se ogni minoranza fosse destinata a diventare verità solo perché è minoranza. Ma Galileo non aveva ragione perché era solo: aveva ragione perché aveva i dati e un metodo.

Ecco il punto: il problema non è tanto avere un’opinione diversa, quanto non saper distinguere tra opinione personale e conoscenza scientifica. E non è un caso che questo tipo di retorica si ritrovi spesso in altri ambiti della disinformazione scientifica: chi si sente “eretico” rispetto al sapere ufficiale tende a sopravvalutare le proprie intuizioni e a sottovalutare il lavoro, faticoso e rigoroso, di chi fa scienza sul serio.

Discutere con chi rifiuta le conclusioni della scienza può essere faticoso, ma è anche necessario. Non per convincere chi ha già deciso di non ascoltare, ma per fornire strumenti a chi legge in silenzio, a chi cerca chiarezza in mezzo al rumore. La scienza non ha bisogno di essere difesa come un dogma: si difende da sé, con i dati, con la trasparenza dei metodi, con la disponibilità al confronto critico. Ma proprio per questo va protetta dalle distorsioni, dalle semplificazioni, e soprattutto dal relativismo delle opinioni travestite da verità.
Il cambiamento climatico attuale è un fenomeno reale, misurabile e in larga parte causato dalle attività umane. Continuare a negarlo non è esercizio di pensiero critico, ma una forma di resistenza ideologica che rischia di ritardare l’unica cosa che oggi dovremmo fare: affrontare il problema con serietà, competenza e senso di responsabilità.

EDIT

Mentre mi accingevo a pubblicare questo articolo, il mio interlocutore ha pubblicato un’ultima risposta che ho deciso di riportare integralmente per completezza. Qui sotto trovate anche la mia replica con cui ho deciso di concludere la discussione pubblica.

Interlocutore:

Pellegrino

  1. Lei stesso parla di “stime solide”; che sono appunto stime, non misurazioni dirette.
  2. “Sappiamo perché”, è un’altra forzatura. In realtà abbiamo delle interpretazioni plausibili per molte di esse, ma ciò non equivale a una certezza assoluta. Anche nelle osservazioni attuali, ci si imbatte in anomalie impreviste, tipo l’impatto dello scioglimento del permafrost, temperature previste che poi non si sono verificate… E parliamo di osservazioni dirette; figuriamoci sulle “stime” di fenomeni non osservati direttamente. Per non parlare dell’infinito dibattito su quanto influiscano o meno le macchie solari…

Stesso discorso sul fatto che le oscillazioni in passato non avvenissero in decenni, trascurando che non possiamo sapere se gli strumenti che abbiamo a disposizione siano davvero affidabili con tale precisione. Mancando l’osservazione diretta, non possiamo verificarlo.

Dire che “potrebbero esserci state” significa semplicemente dire che il modello generale è ancora soddisfatto; per dimostrare l’anomalia bisogna dimostrare che davvero non ci siano precedenti. È un discorso di presunzione d’innocenza: per dare la colpa all’uomo bisogna dimostrarla; il “ragionevole dubbio” è a favore dell’imputato. Foss’anche solo per mancanza di prove.

  1. Il moto dei pianeti era noto da sempre (“planities” significa appunto “errante”), ma lui (anzi, Copernico) fornì solo un modello di calcolo semplificato. Infatti, a dirla tutta, il sole non è affatto al centro dell’universo ma si muove pure lui… In questo ha ragione l’insegnante del prof. Barbero che diceva che il card. Bellarmino era più moderno di Galileo.
  2. A “negazionista” si potrebbe contrapporre “fideista”, ovvero uno che sposa senz’altro ciò che dice la maggioranza stigmatizzando il dubbio. Ma io continio a ricordare che la stessa comunità scientifica oggi certa del riscaldamento globale appena quarant’anni fa era ugualmente certa dell’imminenza di un’era glaciale. Un cambio di rotta di 180 gradi in meno di mezzo secolo, e si dovrebbe prendere per oro colato anche l’attribuzione di responsabilità? Anche a fronte di numerose previsioni rivelatesi poi errate?
  3. Su un punto, concordo senz’altro: sulla separazione netta tra dissertazione scientifica e azione concreta (e non potrei dire diversamente, dato che come ho già detto opero nella Protezione Civile).

Il punto certo è che vi sia in atto un cambiamento climatico che attualmente va verso un aumento delle temperature, che il problema è serio e che la cosa va affrontata. Ridurre il più possibile (e possibilmente azzerare) l’impatto antropico non ha controindicazioni, e quindi va benissimo farlo; e infatti ne sono da sempre un convinto sostenitore.

A mio modesto parere, non servirà a granché, perché se Madre Natura ha deciso che è tempo di un nuovo Eocene, Eocene sarà; che ci piaccia o no.

Quindi, oltre ad azzerare le emissioni, miglioriamo l’efficienza dei condizionatori, perché ne avremo comunque bisogno. Tutto qui.

Io:
grazie per aver chiarito ulteriormente il suo punto di vista. Le rispondo un’ultima volta, per chi ci legge e non per la soddisfazione di “avere l’ultima parola”, che non mi interessa.

Sì, le proxy sono stime, ma sono stime calibrate, validate e incrociate da molte fonti indipendenti. Nessun climatologo confonde una proxy con una misura diretta, ma la scienza lavora ogni giorno per rendere sempre più affidabili quelle stime. E il fatto che convergano tutte sul medesimo trend dà forza alla ricostruzione. Questo è il normale funzionamento della scienza, non una debolezza.

Nessuno pretende certezze assolute, né le scienze naturali le promettono. Lei invece sembra richiedere una prova “oltre ogni dubbio”, come se fossimo in un’aula di tribunale. Ma la scienza si basa sulla probabilità, sul peso delle evidenze, sulla capacità predittiva dei modelli. Oggi, la quantità di prove che puntano all’origine antropica del riscaldamento è così ampia da rendere l’ipotesi alternativa – quella esclusivamente naturale – altamente improbabile. Ed è su questo che si fondano le politiche, non sull’attesa della perfezione epistemologica.

Il paragone con Galileo e Bellarmino è affascinante ma fuori luogo. Galileo non aveva solo un modello “più semplice”: aveva anche l’evidenza delle fasi di Venere e delle lune di Giove. Il suo valore non sta nel ribellarsi alla maggioranza, ma nell’aver offerto dati e osservazioni migliori. Lei invece continua a proporre “dubbi” senza portare nessun dato nuovo, solo generalizzazioni.

La comunità scientifica non era “certa” dell’era glaciale negli anni ’70. Questa è una leggenda urbana, smentita dai dati storici: all’epoca la maggior parte degli articoli già indicava un riscaldamento, non un raffreddamento. Se guarda i paper dell’epoca, lo vede chiaramente.

Quanto agli errori previsionali: il fatto che un modello venga corretto o raffinato è normale in ogni scienza. Non è un fallimento, è progresso. Non confondiamo fallibilità con inattendibilità.

Mi fa piacere leggere che riconosce l’urgenza del problema e sostiene l’azione per ridurre le emissioni. Su questo ci troviamo d’accordo. Tuttavia, dire “tanto non servirà a nulla” è una rinuncia mascherata da fatalismo. La scienza climatica non dice che siamo condannati, ma che abbiamo una finestra temporale per ridurre gli impatti futuri. La differenza tra +1,5 °C e +4 °C non è affatto irrilevante. E anche se non possiamo evitare ogni effetto, possiamo evitare quelli peggiori. Questa è responsabilità, non fideismo.

Chiudo qui il mio intervento, perché i fatti, i dati e il consenso scientifico sono pubblici e verificabili. Il resto è opinione personale – legittima – ma non equiparabile alla conoscenza prodotta dalla scienza.

Nota finale: ho riportato per esteso questo scambio non per dare visibilità a una posizione pseudoscientifica, ma per mostrare, in modo documentato, come ragiona chi nega l’origine antropica del cambiamento climatico, e perché queste argomentazioni non reggano al vaglio della scienza.

Share