Scienza open access e riviste predatorie. Parte I. Il sistema chiuso

L’articolo che leggete è un mio contributo alla Newsletter n. 12  della Società Italiana di Scienza del Suolo. Si tratta della prima parte di un reportage sui predatory journals.

__________________________________________

Oggi la rete internet è alla portata di tutti. Basta pagare un abbonamento flat ad una qualsiasi delle innumerevoli aziende telefoniche del nostro paese per avere un accesso illimitato a siti di ogni tipo, inclusi quelli di carattere scientifico. Tuttavia, chi non fa parte di un ente (pubblico o privato) che ha accesso alle banche dati scientifiche non può scaricare e leggere lavori che non siano di tipo “open access”.

“Open access”. Sembra essere una moda. Anche la valutazione delle università passa attraverso l’esame del numero di pubblicazioni di tipo “open” dei ricercatori che in esse operano. È per questo che tante istituzioni, anche a livello trans-nazionale, invitano i ricercatori a pubblicare su riviste accessibili a tutti. Devo dire che la questione delle pubblicazioni scientifiche accessibili a tutti è un argomento spinoso.

Vediamo perché.

Nel business editoriale scientifico chiuso, gli editori sono gli unici ad attuare una politica di tipo Win1-Win2-Win3-Win4.

La situazione di Win1 si riferisce al fatto che le case editrici fanno pagare al singolo ricercatore il download di un unico articolo da pochi dollari a qualche centinaio. Tuttavia, questo accade quando l’istituzione di appartenenza non ha pagato nessun abbonamento per l’accesso alle riviste di interesse. Nel caso in cui l’istituzione abbia sottoscritto un abbonamento, il singolo dipendente non è costretto a pagare di tasca sua gli articoli che gli servono per tenersi aggiornato. Gli abbonamenti, che in genere sono per pacchetti di riviste che gli enti di ricerca non possono scegliere, costano un occhio della testa. Si parla di decine di migliaia di euro all’anno. Si badi bene: non si possono scegliere le riviste da inserire nei pacchetti. Ma soprattutto, vengono scelti i pacchetti con le riviste più famose e di copertura più ampia possibile. Questo vuol dire che chi si occupa di nicchie di ricerca ha una probabilità molto alta che le riviste che gli interessano non siano comprese nel pacchetto. Questo che sto scrivendo è valido per ogni casa editrice. Quindi considerando che nel panorama scientifico esistono case come la Elsevier, la Springer, la ACS etc., per ognuna di esse bisogna pagare un abbonamento di diverse decine di migliaia di euro. Si fa presto ad arrivare ad un budget di spesa che vola verso le centinaia di migliaia di euro all’anno. Diciamo che non è poco, considerando la crisi permanente in cui versano da anni le casse delle università e degli enti di ricerca italiani.

Ma non è finita. Le case editrici dei sistemi chiusi si trovano anche nella condizione che io definisco di Win-2. In cosa consiste?  Affinché  possa essere pubblicato, uno studio deve essere sottoposto a revisione tra pari. Gli editor-in-chief di ogni rivista chiedono ad esperti di settore di fare la revisione dei lavori. Il punto è che chiedono ai revisori un surplus di lavoro gratuito. Quindi, ognuno di noi si sobbarca l’onere di leggere e commentare nel merito gli studi dei propri colleghi a discapito del poco tempo libero che ognuno di noi ha. E questo gratuitamente. In altre parole, tutti noi prestiamo la nostra competenza professionale alle case editrici senza remunerazione. Perché lo facciamo? La scusa che abbiamo trovato è che il sistema richiede il nostro apporto. Se non lo facessimo, si pubblicherebbe di tutto. Ma mi chiedo: va bene; evitiamo che venga pubblicato di tutto facendo la revisione tra pari. Ma perché gratis? C’è qualcuno che dice che se non fosse gratis, saremmo corruttibili. E su questo avrei qualcosa da ridire considerando gli scandali che stanno venendo fuori nel mondo scientifico in merito ai plagi, alle pubblicazioni con dati inventati e ai cartelli delle citazioni. Ma, per ora, lasciamo perdere questi aspetti. Rimane la domanda: perché lo facciamo? La mia personale opinione è che lo facciamo per avere una parvenza di potere, ovvero per soddisfare il nostro ego ipertrofico che ci fa pensare che siamo i migliori e che più lavori da referare riceviamo, più siamo bravi. Posso dire che ci vuol molto poco a smontare questa convinzione. Basta fare il rapporto tra numero di riviste che nascono ogni giorno e numero di ricercatori. Gioco forza, ognuno di noi è chiamato a fare da revisore ad un certo numero di studi all’anno. Non siamo bravi. Siamo semplicemente troppo pochi rispetto alla quantità di sciocchezze che vengono inviate per la pubblicazione alle riviste scientifiche.

Arriviamo, ora, alla condizione che io definisco di  Win-3. I lavori che vengono inviati alle riviste scientifiche sono finanziati dalle stesse istituzioni che pagano l’abbonamento alle riviste. In altre parole, la mia università paga la mia ricerca attraverso l’erogazione di fondi (minimi e quando sono disponibili) e di stipendio. Io lavoro per la mia università, ma nello stesso tempo lavoro senza remunerazione, attraverso la mia opera di revisore, per le stesse case editrici alle quali invio i miei studi da pubblicare ed ai quali io stesso non posso accedere se la mia università non ha pagato un abbonamento. La cosa è un po’ contorta, se ci pensiamo bene. C’è qualcuno che stampa su carta (oggi potremmo dire pubblica on line) qualcosa che non gli appartiene perché è di proprietà del ricercatore che l’ha pensata e dell’istituzione che paga il ricercatore per pensare. Certo la stampa costa. Costa la carta, costa il personale necessario alla gestione del flusso di lavori in entrata, costa l’elettricità necessaria a sostenere l’organizzazione della casa editrice etc. etc etc. L’unica cosa che non costa è il lavoro di peer review. Ma ne ho già parlato. Sorge una riflessione: se le case editrici di tipo scientifico rientrano in un ambito imprenditoriale, perché non riescono a ricavare introiti dalla pubblicità o dalla vendita al dettaglio dei loro prodotti? In realtà, di pubblicità sulle riviste ce ne è a iosa, quello che manca è la vendita al grande pubblico. Solo alcune riviste di carattere generalista si possono trovare in edicola. Mi riferisco a Science e Nature che molto spesso trovo esposte nelle edicole degli aeroporti. Eppure sarebbe veramente utile, secondo me, vendere al grande pubblico le riviste specialistiche. Pensiamo solo allo sforzo che i più curiosi dovrebbero fare per masticare l’inglese. Si parla tanto del provincialismo degli italiani che non parlano fluentemente l’inglese, ma nessuno ha mai pensato di diffondere al grande pubblico le riviste con contenuti specialistici per incrementare lo sforzo nella lettura dell’inglese. Parliamo tanto dell’analfabetismo di ritorno che porta le persone più impensabili ad essere delle vere e proprie capre in ambito scientifico, e nessuno ha mai pensato che la vendita al dettaglio, al di fuori dei circuiti istituzionali, potrebbe aiutare le persone a ragionare meglio secondo la logica del metodo scientifico. Tutti questi accorgimenti potrebbero forse essere utili per abbassare i costi degli abbonamenti che le istituzioni sono costrette a pagare per leggere gli studi dei propri ricercatori. In ogni caso, io sono un sognatore, non mi intendo di economia e non ho idea se I sogni di cui sto parlando siano realizzabili o meno.

Veniamo ora alla chiusura del cerchio con la condizione Win4 che è un po’ la summa di quanto discusso fino ad ora.  Le case editrici vendono un prodotto che non comprano. La cosa bella è che lo rivendono, a costi maggiorati, agli stessi che gliene fanno dono. Le università pagano i ricercatori per studi che vengono donati alle case editrici. Queste ultime, a loro volta, chiedono agli stessi ricercatori una valutazione gratuita degli studi anzidetti. Infine, ricercatori ed istituzioni devono comprare il prodotto che loro stessi hanno donato. Fa girare la testa, vero?

Come risolvere il problema?

Ne discuto nel prossimo numero della Newsletter.

Note

Articolo apparso nella Newsletter n. 12 della Società Italiana di Scienza del Suolo

Fonte dell’immagine di copertina 

Questo articolo è un aggiornamento ed un approfondimento di quanto scritto qui.

Come funzionano le maschere filtranti

In questi giorni di crisi in cui siamo costretti ad essere chiusi in casa per salvaguardare la salute nostra e di chi ci è caro, ci si annoia, si legge un libro, si gioca al computer, si vede un film, si lavora (i più fortunati come me possono farlo dal computer), si cucina…si fanno, insomma, tutte quelle attività che per i nostri nonni in tempo di guerra  erano “normali”.

In questa situazione di crisi sanitaria capita di vedere di tutto. Quello che colpisce me è il gran numero di persone che fa uso di mascherine anche in situazioni in cui risultano inutili. Quanti di voi hanno visto automobilisti circolare da soli con la mascherina? E quanti sono quelli che portano a spasso il cane indossando la mascherina in zone solitarie dove è facile tenersi a distanze di sicurezza?

Al di là di ogni tipo di considerazione personale in merito all’uso delle mascherine, tutti noi siamo sicuramente venuti a conoscenza delle disposizioni delle autorità sanitarie che raccomandano l’uso delle mascherine solo a persone infette da coronavirus o a coloro che si trovano ad assistere queste persone. Per tutti gli altri le mascherine sono inutili.

Ma ci siamo mai chiesti come funziona una mascherina e perché le autorità danno certi consigli?

Io mi sono chiesto come diavolo funziona una mascherina ed è per questo che scrivo questo post: ho deciso di annoiarvi ancora più di quel che già non siete annoiati cercando di spiegarvi in cosa consiste questo oggetto che viene catalogato sui luoghi di lavoro come “dispositivo di protezione individuale” o “DPI” ed il cui uso è normato dal D.Lgs. 81/08.

Le dimensioni delle polveri sottili

In molti luoghi di lavoro il personale si trova ad operare in presenza di aerosol e polveri sottili. Queste ultime vengono in genere indicate come PMx, dove la x indica le dimensioni delle particelle espresse in μm.

Quando parliamo di aerosol e polveri sottili stiamo intendendo sistemi che, indipendentemente dalla loro composizione chimica, hanno delle dimensioni molto variabili. Se esse sono comprese tra 2 nm e 2 μm stiamo avendo a che fare con sistemi colloidali che rimangono dispersi in aria per effetto delle loro dimensioni. Grazie ad esse, infatti, la forza di gravità non è in grado di prevalere sulle forze dispersive  come, per esempio, la repulsione tra cariche elettriche oppure le interazioni con le molecole di aria. Come conseguenza, le suddette particelle rimangono disperse in aria fino a che non intervengono fattori che consentono alla forza di gravità di predominare e permettere la deposizione al suolo delle stesse.

Le dimensioni delle polveri sottili in parole povere

Per darvi una idea di cosa significhino i numeri scritti sopra, tenete presente che il nm (si legge nanometro) corrisponde ad un miliardesimo di metro, mentre il μm (si legge micrometro) corrisponde ad un milionesimo di metro. Considerando che la lunghezza di un legame chimico, come il legame C-H, è di circa 0.1 nm, ne viene che 2 nm è una dimensione che corrisponde a circa 20 volte la distanza carbonio-idrogeno, mentre 2 μm corrisponde a circa 20000 volte la stessa distanza. Questo non vi dice ancora nulla, vero? In effetti, se uno non ha studiato chimica non si rende conto di quanto sia piccolo un legame chimico. Allora guardiamo la foto di Figura 1. Si tratta di un acaro della polvere le cui dimensioni sono di circa 0.5 mm, ovvero circa 250 volte più grande di 2 μm che rappresenta il limite superiore dell’intervallo dimensionale in cui ricadono le particelle colloidali. La foto di Figura 1 è stata ottenuta al microscopio elettronico. In altre parole, gli acari della polvere non sono visibili ad occhio nudo. Potete, ora, facilmente immaginare che neanche le particelle colloidali lo siano.

Figura 1. Immagine di un acaro della polvere (Fonte)

Mi potreste dire: “ma cosa dici? Non è vero. Io posso vedere le particelle di smog” (queste nell’immaginario comune sono intese come polveri sottili). Mi dispiace informarvi che le particelle che voi vedete a occhio nudo hanno dimensioni molto più elevate di quelle comprese nell’intervallo 2 nm-2 μm (diciamo almeno più di 1000 volte più grandi), mentre le particelle le cui dimensioni ricadono nell’intervallo anzidetto non le potete vedere se non con la microscopia elettronica. Quando le particelle sono così piccole, l’unico effetto visibile è quello che va sotto il nome di “Effetto Tyndall”. In pratica, la luce che “incontra” le particelle colloidali viene dispersa in tutte le direzioni (Figura 2) con la conseguenza che una soluzione appare opaca o l’aria appare “nebulosa”.

Figura 2. Rappresentazione schematica dell’Effetto Tyndall
Ma cosa c’entra questo con le maschere filtranti?

Come vi dicevo, in molti posti di lavoro, il personale entra in contatto con le polveri sottili. Queste sono pericolosissime per noi dal momento che possono innescare tante patologie, prime tra tutte quelle di tipo respiratorio. I datori di lavoro, quindi, sono obbligati a fornire ai propri dipendenti i dispositivi di protezione individuale tra cui le mascherine. Queste sono in grado di filtrare le polveri sottili che sono presenti nell’aria e di impedire che esse vengano inalate. Esistono almeno tre tipologie di maschere filtranti che vengono indicate con le sigle FFP1, FFP2 e FFP3. La sigla “FFP” sta per “Face Filtering Piece” mentre i numeri da 1 a 3 indicano l’efficacia del filtraggio. In particolare, le maschere FFP1 proteggono da polveri atossiche e non fibrogene la cui inalazione non causa lo sviluppo di malattie, ma può, comunque, irritare le vie respiratorie e rappresentare un inquinamento da cattivi odori. Le maschere FFP2 proteggono da polveri, fumo e aerosol solidi e liquidi dannosi per la salute. In questo caso le maschere intercettano anche particelle fibrogene, ovvero sistemi che, a breve termine, causano irritazione delle vie respiratorie, mentre a lungo termine comportano una riduzione dell’elasticità del tessuto polmonare. Le maschere FFP3 proteggono da polveri, fumo e aerosol solidi e liquidi tossici e dannosi per la salute. Queste maschere sono in grado di proteggere da sostanze nocive cancerogene e radioattive.

La protezione assicurata da queste maschere è di tipo fisico. Più spesso è lo strato di materiale filtrante, più efficace è la protezione. Le maschere di tipo FFP1 consentono di “intercettare” particelle più grandi di 5 μm; le maschere FFP2 consentono di “intercettare” particelle di dimensioni maggiori di 2 μm; le maschere di tipo FFP3 sono capaci di “intercettare” particelle di dimensioni  maggiori di 0.6 μm, ovvero particelle di dimensioni circa 1000 volte più piccole dell’acaro in Figura 1. Tuttavia, le particelle colloidali le cui dimensioni sono comprese tra 0.2 nm e 0.6 μm possono ancora arrivare ai nostri polmoni e causare danni.

E virus e batteri?

Come avrete capito, è tutta questione di dimensioni. In genere i batteri hanno dimensioni pari a circa 0.45 μm, mentre i virus dimensioni comprese nell’intervallo 0.020-0.300 μm. Questo significa che nessuna delle mascherine di cui si è discusso finora sarebbe in grado di trattenere sistemi aventi le predette dimensioni. Tuttavia, se virus e batteri “viaggiano” attaccati a particelle colloidali le cui dimensioni sono almeno superiori a 0.6 μm, allora essi possono essere bloccati dalle maschere filtranti di tipo FFP3. In effetti, le case produttrici di mascherine riportano che le maschere di tipo FFP3 vanno bene per proteggere da esposizione a legionella (un batterio largo tra 0.3 e 0.9 μm e lungo tra 1.5 e 5 μm) e virus quali quelli dell’influenza aviaria, dell’influenza A/H1N1, SARS, e tubercolosi. Bisogna comunque tener presente che lo strato filtrante della mascherina tende ad esaurirsi. La maschera perde la sua efficacia e va sostituita. Cosa vuol dire questo? Che le mascherine FFP sono monouso. Se le si usa in città, magari durante una passeggiata, non vi state difendendo da virus e batteri, ma semplicemente dal particolato sospeso dovuto alla contaminazione ambientale.  Quando tornate a casa dovete buttare via la mascherina e sostituirla con un’altra. Se la usate per difendervi da virus e batteri è perché non state facendo una passeggiata in mezzo ai gas di scarico, ma siete operatori sanitari che devono entrare in contatto con le gocce di saliva di pazienti infetti. La maschera, grazie alla sua azione filtrante, impedisce che questi mezzi veicolanti di patogeni finiscano nel nostro organismo. Dopo l’uso, la maschera va comunque buttata via e sostituita.

E le maschere chirurgiche?

Queste non hanno nulla a che vedere con le maschere di tipo FFP. Mentre queste ultime proteggono dall’inalare sistemi tossici, le maschere chirurgiche hanno il compito di impedire che i chirurghi possano contaminare le ferite dei pazienti durante gli interventi chirurgici. Quindi, le maschere chirurgiche servono per difendere il paziente, non il medico.

Mascherina sì, mascherina no?

Alla luce di tutto quanto scritto, ne viene che è meglio tenersi lontani dalle mascherine fai da te: no carta da forno, no assorbenti, no altre robe raffazzonate. Non servono a nulla. L’unico modo per proteggersi da virus e batteri è seguire le istruzioni di chi ne capisce di più, ovvero dell’Istituto Superiore di Sanità.

Altre letture e riferimenti

Se volete conoscere la fonte delle dimensioni dei pori delle maschere filtranti, cliccate qui: https://www.uvex-safety.it/it/know-how/norme-e-direttive/respiratori-filtranti/significato-delle-classi-di-protezione-ffp/ e qui: http://www.antinfortunisticaroberti.it/news-dett.php?id_news=133 

Se volete avere notizie aggiuntive in merito alle caratteristiche delle maschere filtranti, cliccate qui: https://www.lubiservice.it/blog/mascherine-ffp1-ffp2-e-ffp3-differenze-e-consigli

Se volete sapere quali sono i meccanismi di funzionamento di una maschera filtrante, potete accedere a questa interessante serie di diapositive: http://www.ausl.fe.it/azienda/dipartimenti/sanita-pubblica/servizio-prevenzione-sicurezza-ambienti-di-lavoro/materiale-informativo/corso-utilizzo-dpi-per-operatori-dsp-ottobre-2016/faccaili-filtranti-uso-corretto

Se volete conoscere la fonte da cui è presa l’informazione in merito al filtraggio di alcuni  batteri e virus, cliccate qui: https://www.seton.it/dpi-protezione-respiratoria.html

Se volete conoscere la fonte delle dimensioni dei virus, cliccate qui: https://www.chimica-online.it/biologia/virus.htm

Se volete conoscere la fonte delle dimensione del batterio della legionellosi, cliccate qui: http://www.unpisi.it/docs/PUBBLICAZIONI/ARTICOLI/bonucci%20badii%20legionella.pdf

Se volete sapere di più sull’utilità dei DPI, cliccate qui: https://medicalxpress.com/news/2020-03-masks-gloves-dont-coronavirus-experts.html

Fonte dell’immagine di copertina

Ringraziamenti.

Grazie a Paolo Alemanni e Francesca Santagata per avermi aggiornato sulle norme relative alla sicurezza sul lavoro

 

Perché i termini “scienza” e “biodinamica” nella stessa frase sono un ossimoro

Ogni tanto ritorno alla carica con l’agricoltura biodinamica. Ne ho parlato a varie riprese qui, qui, qui, qui, e qui. Mi chiederete voi: ma allora perché parlarne ancora una volta? Semplicemente perché ancora una volta delle Istituzioni pubbliche come un Ministero della Repubblica, una Università pubblica, una Regione ed un Comune hanno concesso il patrocinio per un convegno sulla biodinamica che si terrà a Firenze dal 26 al 29 Febbraio (qui).

Cosa vuol dire patrocinio?

Dalla Treccani on line possiamo leggere che il patrocinio è un “sostegno da parte di un’istituzione“. E quando si concede un sostegno? Quando si condividono i contenuti di una certa attività. Non c’è molto da aggiungere. Se io, Ministro o Rettore o Sindaco o altro rappresentante Istituzionale concedo un patrocinio è perché sono convinto della validità di certe attività e voglio legare la mia Istituzione alle predette attività. Cosa pensare, quindi? È possibile che un Ministero, una Università, una Regione e un Comune, attraverso la concessione del patrocinio, condividano i contenuti del convegno e, più in generale, approvino l’esoterismo alla base dell’agricoltura biodinamica? Secondo me no. Probabilmente, la concessione del patrocinio è avvenuta automaticamente senza che qualcuno si sia veramente reso conto di ciò che concedere il patrocinio ad un convegno del genere avrebbe potuto significare.

Ma non è finita. Al convegno prendono parte anche docenti universitari. Perché lo fanno? Probabilmente sono seguaci di Steiner oppure, più  probabilmente, hanno una falsa idea del significato di libertà di ricerca e di scienza (ne ho parlato qui). Perché falsa? Faccio un esempio banale: non c’è bisogno di chiedere se chi mi legge conosce la differenza tra astronomia ed astrologia. La prima è una scienza, la seconda una favoletta sulla quale si basa la formulazione degli oroscopi. Si tratta della medesima differenza che esiste tra l’agricoltura attuale, basata sull’uso della scienza e delle tecnologie moderne, e la biodinamica, basata sulle idee di una specie di filosofo vissuto agli inizi del ‘900 e, praticamente, sempre uguale a se stessa.

Invocare libertà di scienza e ricerca pretendendo di dare pari dignità scientifica all’agricoltura moderna ed alla biodinamica è lo stesso che attribuire scientificità all’astrologia.

E’ mia opinione che gli accademici che con la loro attività sdoganano la biodinamica come pratica scientifica non facciano un buon servizio alla Scienza. Ovviamente ognuno è libero di fare ciò che vuole della propria dignità scientifica ed ognuno è libero di fare ricerca su qualsiasi cosa sia di proprio gradimento. Ciò che è importante è che non vengano impegnate risorse pubbliche per attività di ricerca che si fondano sull’esoterismo.

Come componente della Rete Informale Scienza e Tecnologie per l’Agricoltura (SETA), sono anche io tra i firmatari della lettera aperta che potete leggere qui sotto cliccando sulle immagini. In questa sede spieghiamo nei dettagli perché l’agricoltura biodinamica non può essere considerata scienza. Le nostre argomentazioni si basano esclusivamente sulla lettura dei disciplinari che devono seguire tutti coloro che vogliono usare il termine “biodinamica” sull’etichetta dei loro prodotti.

Buona lettura.

Fonte dell’immagine di copertina

Pane all’acqua di mare: realtà o fantasia?

di Enrico Bucci e Pellegrino Conte

Vi ricordate il pane fatto con l’acqua di mare?

Qualche tempo fa le principali agenzie di stampa italiane titolarono a nove colonne che ricercatori italiani avevano scoperto che  il pane fatto usando l’acqua di mare, invece che la normale acqua di rubinetto, aveva proprietà salutistiche migliori del pane tradizionale.

Ecco, per esempio, cosa scriveva il Gambero Rosso già nel 2017:

Una nuova ricetta che consente di risparmiare acqua potabile, offrendo un alimento valido anche per chi è obbligato a seguire una dieta povera di sodio: il pane prodotto con l’acqua di mare è l’ultimo, innovativo progetto nato dalla collaborazione dei panificatori associati all’Unipan con Termomar e il Consiglio Nazionale delle Ricerche

mentre l’ANSA nell’Aprile di quest’anno (2019) scriveva:

Arriva il pane all’acqua di mare. E’ senza sale, ma saporito e povero di sodio

a cui faceva seguito il sito de La Cucina Italiana che riportava:

È iposodico e contiene il triplo di magnesio, il quadruplo di iodio, più potassio, ferro e calcio. Adesso viene distribuito anche nei supermercati

Anche il National Geographic ha riportato la notizia scrivendo che:

Lo ha prodotto il CNR, contiene meno sale rispetto a un filone prodotto con acqua dolce, ed è più ricco di iodio, magnesio e potassio

Insomma un tripudio alla genialità italiana che ha confermato il luogo comune secondo cui siamo un “popolo di eroi, di santi, di poeti, di artisti, di navigatori, di colonizzatori, di trasmigratori” e … di scopritori.

Cosa c’è di vero in tutto quello che è stato riportato dalle agenzie di stampa?

Ovviamente i giornalisti non hanno inventato nulla. È vero che un team di ricercatori italiani ha prodotto un tipo di pane usando acqua di mare e lo ha confrontato col pane prodotto in modo tradizionale ottenuto con acqua di rubinetto ed il comune sale da cucina. È anche vero che gli stessi ricercatori hanno posto un accento particolare sulle proprietà salutistiche del pane da essi “inventato” evidenziandone le qualità superiori rispetto al pane che da sempre siamo abituati a mangiare. La loro “invenzione” è stata oggetto di una pubblicazione su International Journal of Food Properties, una rivista della Taylor & Francis con un Impact Factor di 1.845 per il 2017, dal titolo: “Bread chemical and nutritional characteristics as influenced by food grade sea water”. Quello che i tutti i giornalisti e commentatori non sono stati in grado di fare è una valutazione critica dello studio pubblicato, posto che lo abbiano mai letto. Ma possiamo capire. Il loro compito non è fare valutazioni critiche di lavori pubblicati su riviste scientifiche. Sono pagati per riportare la cronaca di ciò che trovano in rete o che viene loro dato in pasto dalle agenzie di stampa degli Enti di Ricerca, come il CNR, che intendono pubblicizzare le proprie attività interne. Un pane salutistico fatto con l’acqua di mare attrae certamente l’attenzione sia verso l’Ente che ha sovvenzionato la ricerca che verso i giornali che riportano la notizia. Ma quanto c’è di vero nel lavoro che si può facilmente scaricare da questo link?

Avvertenze

Da questo momento in poi la lettura può diventare noiosa perché siamo costretti ad entrare in particolari tecnici senza i quali non è possibile rispondere alla domanda che dà il titolo a questo articolo. Naturalmente, è possibile “saltare” direttamente alle conclusioni se non avete voglia di seguire tutti i passi che ci conducono alla constatazione che lo studio pubblicato è superficiale, progettato ed eseguito male e non giustifica affatto l’esaltazione giornalistica di cui abbiamo già riportato. Ma andiamo con ordine.

Una analisi critica

Nella sezione dedicata ai Materiali e Metodi, gli autori scrivono che l’acqua di mare è stata fornita dalla Steralmar srl, una ditta di Bisceglie (in provincia di Barletta-Andria-Trani, BT). Tuttavia, una attenta lettura dell’intero lavoro evidenzia che da nessuna parte gli autori riportano la benché minima analisi chimica dell’acqua che hanno deciso di usare per la produzione del “loro” pane. Non è riportata neanche l’analisi chimica dell’acqua di rubinetto usata per la produzione del pane usato come controllo per il confronto con il pane “innovativo”. Eppure gli autori discutono delle diverse composizioni chimiche delle tipologie di pane che hanno prodotto. Basta leggere le Tabelle 1 e 2 per rendersi conto di quanto essi ritengano rilevanti le differenze in termini chimici tra i pani prodotti. Tutti i ricercatori sanno che quando si cercano differenze tra prodotti ottenuti in modo differente occorre fornire dei validi punti di partenza per poter capire se le differenze che si evidenziano sono dovute ad errori sperimentali o ai “reagenti” che si utilizzano. Ed allora: qual è la concentrazione salina dell’acqua di mare e dell’acqua di rubinetto?  È presente sostanza organica disciolta in entrambe? Ed il loro pH: è lo stesso o è differente?

Il cloruro di sodio

Prendiamo, per esempio, la Tabella 1. Gli autori scrivono che il pane prodotto con acqua di rubinetto (TWB) è stato ottenuto aggiungendo 15 g di cloruro di sodio (quello che nel linguaggio comune è il sale da cucina) a 300 mL di acqua di rubinetto. Nella stessa tabella, non c’è alcuna indicazione sull’ammontare di cloruro di sodio contenuto nei 300 mL di acqua di mare usata per fare il “pane all’acqua di mare” (SWB). Nonostante ciò, gli autori concludono che il pane SWB contiene meno sodio rispetto a quello TWB e ne suggeriscono l’uso nelle diete iposodiche.

Ma per entrare nel merito, proviamo a fare quelli che vengono indicati come “i conti della serva”.

15 g di cloruro di sodio (NaCl) contengono 5.9 g di sodio (diciamo che nel pane TWB ci sono circa 6 g di sodio). L’acqua di mare contiene in media circa 27 g kg-1 di NaCl. Dal momento che la densità media dell’acqua di mare è di circa 1.02 g mL-1 a 4 °C, ne viene che la quantità di cloruro di sodio in 300 mL di acqua di mare corrisponde a 8.3 g. Nei circa otto grammi di cloruro di sodio sono contenuti circa 3 g (3.2 g, per la precisione) di sodio.

In termini percentuali, il contenuto in cloruro sodio per ogni panello non ancora cotto si calcola come:

che per il pane TWB restituisce un contenuto di NaCl pari a 1.6% (ovvero circa 2%), mentre per il pane SWB dà un valore di 0.86% (ovvero un po’ meno dell’1%).

Se, tuttavia, teniamo conto di tutti i possibili sali presenti nell’acqua di mare (la salinità dell’acqua di mare, che NON è dovuta solo al cloruro di sodio – ricordiamo che nel linguaggio chimico, il termine “sale” si riferisce a composti ottenuti per reazione tra un acido e una base – è di circa 35 g kg-1) e che essi non vengono rimossi durante la preparazione del pane, si ottiene che il pane SWB ha un contenuto salino pari a 1.1%.

In base ai contenuti di acqua riportati dagli autori per entrambi i tipi di pane (32.4% e 32.5% per TWB e SWB, rispettivamente), se ne ricava che il contenuto salino per TWB e SWB, come riportato nella Tabella 2 dello studio che stiamo valutando criticamente, non dipende da come il pane viene preparato e cotto, bensì dalla quantità di sale che gli autori decidono scientemente di aggiungere. In altre parole, considerando che l’acqua di mare contiene meno cloruro di sodio di quanto usato per la produzione del pane con la tecnica tradizionale, ne viene che il pane SWB ha meno sodio di quello TWB. Ma gli autori non avrebbero potuto ottenere lo stesso pane tradizionale iposodico aggiungendo meno sale da cucina nel loro preparato di controllo? Per esempio, se avessero preparato un pane tradizionale usando 11 g di cloruro di sodio, invece che i 15 g descritti, avrebbero ottenuto un pane TWB identico, per quanto riguarda il contenuto sodico, a quello SWB. Perché non l’hanno fatto?

Il contenuto di sodio e gli errori analitici

Centriamo la nostra attenzione sui dettagli della Tabella 2. Qui gli autori scrivono che hanno rilevato 1057 e 642 mg di sodio nel pane TWB ed in quello SWB, rispettivamente. Tuttavia, alla luce dei “conti della serva” fatti prima, il contenuto di sodio in TWB avrebbe dovuto essere molto di più (ricordiamo che ci dovrebbero essere circa 6 g, ovvero 6000 mg, di sodio in TWB). Cosa è accaduto? Si è perso cloruro di sodio durante la cottura? Come mai? E come mai gli autori non ritengono che possa essere accaduto lo stesso per il pane SWB? La cosa più grave, tuttavia, a nostro avviso è che gli autori riportano quattro cifre significative per il contenuto di sodio in TWB e tre per quello contenuto in SWB senza alcun accenno di errore sperimentale (per il significato di cifre significative e propagazione dell’errore sperimentale si rimanda al seguente link). Senza l’indicazione dell’errore commesso durante gli esperimenti, 1057 e 642, sebbene possano apparire diversi in termini matematici, sono, in realtà, lo stesso numero.

In realtà, dobbiamo anche ammettere che se guardiamo la Tabella 3, gli autori riportano che il contenuto di sodio in SWB è pari a 6492 mg kg-1 (quattro cifre significative senza errore. Significa che 6492=6500=6400=6300 etc. etc. SIC!) mentre quello in TWB è di 10570 mg kg-1 (cinque cifre significative senza errore. Significa che 10570=10600=10500=10400 etc. etc. SIC!).

Tralasciando per il momento la scorrettezza con cui gli autori riportano i loro risultati ed assumendo che quei valori siano verosimili, ne viene che dalle analisi svolte, il pane ottenuto mediante l’uso di acqua di rubinetto contiene circa 11 g di sodio. Dal momento che i “calcoli della serva” ci dicono che il contenuto di sodio aggiunto in TWB è di circa 6 g, ne viene che circa 5 g di sodio provengono dagli altri ingredienti usati per la produzione del pane.

Andiamo a vedere qual è il contenuto di sodio in SWB. Gli autori dichiarano di aver rilevato circa 7 g di sodio (6492 mg sono appunto 6.5 g ovvero circa 7 g) a fronte dei 3 g di sodio ottenuti dai “calcoli della serva”. La differenza di 4 g è attribuibile ai materiali usati per la panificazione.

La differenza tra sodio aggiunto e sodio trovato in TWB e SWB evidenzia, semmai ce ne fosse stato bisogno, l’importanza nel riportare correttamente gli errori nella valutazione quantitativa dei parametri necessari a distinguere tra prodotti ottenuti usando materiali di partenza identici tranne per l’acqua usata per la panificazione.

Si potrebbe dire: “va bene. In un caso il materiale di partenza fornisce 5 g di sodio, nell’altro 4 g. La differenza di 1 g rientra nell’ambito di un errore sperimentale”.

In realtà non è così.

Gli autori riportano chiaramente che il sodio trovato in TWB è pari a 10570 mg kg-1, ovvero per ogni chilogrammo di pane ci sono 10.570 g di sodio. Dai calcoli sopra riportati, il contenuto di sodio aggiunto è 5.9 g. La differenza è 4.67 g. Nel caso di SWB la differenza tra sodio trovato (6.492 g) e sodio aggiunto (3.2 g) equivale a 3.292 g. Alla luce di quanto finora illustrato ne viene che a parità di materiale (ricordiamo che la differenza tra i pani prodotti è solo nella tipologia di acqua) in un caso il contributo al contenuto di sodio è più alto che nell’altro. Chissà perché in TWB, il contenuto di sodio dovuto al materiale usato per la panificazione è più alto di 1.378 g rispetto a SWB.

Le domande, a questo punto sorgono spontanee: come mai gli autori non hanno fatto una adeguata analisi degli errori sperimentali? Come mai non hanno preparato un pane completamente privo di sale da usare come controllo? Come mai non hanno preparato un pane del tipo TWB con un contenuto più basso di cloruro di sodio da usare come controllo? Come mai non hanno usato acqua di rubinetto proveniente da acquedotti diversi per produrre pane con caratteristiche differenti da confrontare con quello preparato con acqua di mare?

Ancora sull’analisi degli errori

I lettori attenti potrebbero obiettare alle cose che abbiamo scritto che non è vero che gli autori del lavoro non hanno riportato gli errori sperimentali. Lo hanno fatto. Infatti, nella Tabella 3, per esempio, è scritto che il contenuto di sodio in TWB è pari a 10570.000 ± 2.7320 mg kg-1. Insomma, per essere sicuri delle loro conclusioni e per sembrare più scientifici, gli autori hanno riportato un errore con ben quattro cifre decimali e cinque cifre in totale.

La teoria degli errori ci insegna che quando si riporta il valore numerico di una qualsiasi grandezza fisica, il numero di cifre che si possono usare non è quello che viene ottenuto dalla calcolatrice, bensì bisogna fermarsi alla prima cifra contenente l’errore. Facciamo un esempio prendendo proprio quanto scritto dagli autori dello studio sotto esame. Essi hanno scritto che il contenuto di sodio in TWB è  10570.000 ± 2.7320 mg kg-1. Stanno dicendo, in altre parole, che tutte le cifre indicate in grassetto (10570.000) sono affette da errore. In base alla teoria degli errori che tutti quelli che hanno affrontato studi scientifici conoscono (anche gli autori dello studio sotto indagine dovrebbero conoscere la teoria degli errori. Ma evidentemente non è così), il modo corretto per riportare il contenuto di sodio è: 10570 ± 3 mg kg-1. Queste considerazioni si applicano a tutte le cifre riportate in Tabella 3.

I limiti dell’analisi statistica

Gli autori hanno pensato bene di fare un’indagine statistica (Principal Component Analysis, PCA) che hanno riportato nella Figura 1 del loro studio. In questa indagine hanno rilevato che la PCA1 risponde per il 99% dei dati sperimentali.

Tutti quelli che a vario titolo si occupano di scienza ed usano la PCA per spiegare i loro dati sperimentali sanno che una PCA in cui una sola delle componenti ripsonde per il 99% dei dati non ha alcun significato fisico. Affinché una indagine PCA possa avere un significato attendibile è necessario che i dati sperimentali vengano “spalmati” tra almeno due componenti. Infine non c’è alcuna descrizione di come sia stata fatta l’analisi PCA.

Il conflitto di interessi

Last but not least, gli autori alla fine del loro studio affermano di non avere nessun conflitto di interessi. Ma come è possibile se uno di essi lavora proprio per l’azienda che fornisce l’acqua di mare e che non avrebbe alcun interesse a che vengano fuori risultati men che positivi?

Conclusioni

Ci possiamo fidare del lavoro tanto decantato e pubblicizzato dal mondo giornalistico? Alla luce di quanto detto, no. Il lavoro è stato progettato male perché mancano un bel po’ di campioni controllo, i dati sperimentali non sono attendibili e le analisi statistiche sono prive di significato fisico. Questo è uno studio che non avrebbe mai dovuto comparire in letteratura. Purtroppo non è così. I revisori non si sono accorti dei limiti anzidetti ed il lavoro oggi è pubblicato. Esso appartiene, ora, all’intera comunità scientifica che, come abbiamo fatto noi, può scaricarlo e criticarlo nel merito evidenziando la superficialità con cui questo studio è stato, purtroppo, condotto.

Fonte dell’immagine di copertina: Wikimedia Commons

Titolacci e titolini

Viviamo nel villaggio globale, non c’è dubbio.

La facilità con cui si possono avere le connessioni di rete per navigare in quel mare magnum caotico che è internet, promuove la diffusione veloce in ogni parte del globo di ogni tipo di informazione.

La cultura internettiana promuove l’evoluzione del nostro linguaggio e, di conseguenza, anche del nostro modo di pensare ed affrontare i problemi.

Qual è il modo migliore per attirare un utente sulla propria pagina? Bisogna incuriosirlo e fornirgli un’immagine o un titolo che possa spingerlo a cliccare e ad entrare nel sito. Non importa se l’utente leggerà o meno ciò che è scritto. Ancora meno importa se capirà ciò che leggerà. La cosa importante è attirare il click perché ad ogni click corrisponde un introito pubblicitario. Più click, più pubblicità, più soldi. Ecco, infine, la filosofia che predomina in rete. Ogni click è denaro.

Questa filosofia si è impadronita anche della carta stampata. Non che prima dell’avvento della rete non fosse così. La vendita delle copie dei giornali era legata all’abilità dei titolisti di fornire un titolo accattivante alle notizie di rilievo in modo tale che il passante venisse attirato e comprasse il giornale. Potrei dire che non c’è nulla di male in tutto ciò. Il problema è che gli addetti al settore ci dicono che oggi stiamo vivendo nel periodo della cosiddetta post-verità. Con questo termine “qualcuno indica una modalità di comunicare secondo la quale i fatti oggettivi sono meno rilevanti rispetto alle emozioni ed alle convinzioni” [1]. In ambito scientifico, questo significa diffusione di pseudoscienza di cui esempio sono l’omeopatia, l’agroomeopatia, l’agricoltura biodinamica, le sciocchezze che si leggono in merito alla Xylella e così via cantando.

Ma veniamo a noi.

Il 4 Luglio nell’inserto Scienze del quotidiano La Repubblica  appare un articolo dal titolo “E il moscerino cominciò a mangiare bio” con sottotitolo “Studenti di Foligno, come i veri biologi, hanno osservato gli effetti provocati dagli alimenti” (Figura 1).

Figura 1. Titolo dell’articolo apparso nell’inserto Scienze di La Repubblica del 4/07/2019

Fermiamoci al titolo ed al sottotitolo. Se io fossi uno che ha “fede” nell’agricoltura biologica, penserei “Mooooolto interessante. Hanno sicuramente fatto esperimenti per stabilire se i prodotti bio sono “attaccati” dai moscerini ed hanno visto che tra un alimento da agricoltura tradizionale ed uno da agricoltura bio, i moscerini, che fessi non sono, hanno cominciato a mangiare i secondi. Figo! È chiaro che i prodotti bio sono i preferiti anche dagli insetti“.

Ma leggiamo l’articolo (Figura 2)

Figura 2. Articolo che descrive l’esperimento fatto da studenti di Foligno

Gli studenti, provenienti da diversi istituti della cittadina umbra e impegnati in un programma di alternanza scuola-lavoro, […] sentono parlare sempre di “bio” e così si sono chiesti quali fossero gli eventuali effetti di regimi alimentari diversi, basati sul consumo di prodotti derivanti da agricoltura biologica e non“.

E già da questa introduzione si capisce che il titolo (titolaccio o titolino?) non c’entra proprio ma proprio nulla con l’esperienza fatta dagli studenti né con la qualità degli alimenti prodotti seguendo il disciplinare del biologico. In altre parole, gli studenti devono aver utilizzato due popolazioni differenti di moscerini alle quali sono stati somministrati prodotti differenti: da un lato alimenti da agricoltura tradizionale, dall’altro alimenti biologici. Insomma, non è che i moscerini preferiscono i secondi rispetto ai primi. Sono stati costretti a nutrirsi di biologico.

Ma andiamo avanti.

Abbiamo costruito un esperimento, utilizzando moscerini appartenenti a diverse specie di Drosophila, […] che condivide con gli esseri umani il 70 percento del patrimonio genetico. Nel corso dello studio i ragazzi hanno verificato gli effetti di una dieta sulla fertilità“.

Si incomincia a vedere la luce in fondo al tunnel. Gli studenti hanno misurato la numerosità della popolazione dei moscerini appartenenti a diverse specie di Drosophila, quando questa è soggetta a due diversi regimi alimentari: con prodotti da agricoltura tradizionale e con biologico. I moscerini non possono scegliere: o si mangiano quella minestra o si buttano dalla finestra (si diceva quando io ero piccolo).

E ancora

Nel corso dell’esperimento i ragazzi hanno riscontrato una maggiore fertilità dei moscerini alimentati con cibo non bio, osservando però che lo sviluppo di muffe negli alimenti bio potrebbe aver influito sulla deposizione delle uova – a cui il pasto fa anche da “incubatrice” – e la crescita della prole“.

E finalmente siamo giunti al punto cruciale. La popolazione di moscerini costretta ad alimentarsi con prodotti bio si è ridotta di dimensioni. Il motivo? Nella lotta alla sopravvivenza, tutti gli organismi viventi competono per le stesse fonti alimentari. I moscerini, in questo caso, competevano con le muffe che erano in grado di aggredire più velocemente i prodotti bio rispetto a quelli da agricoltura convenzionale. La conseguenza è stata che i moscerini alimentati a bio hanno perso la guerra per la sopravvivenza. Quelli che, invece, erano costretti a mangiare cibo da agricoltura tradizionale erano più fertili perché le muffe non erano efficienti come quelle che si sviluppavano sugli alimenti bio.

A questo punto mi si potrebbe dire: vedi che il biologico è migliore? I prodotti da agricoltura convenzionale sono meno suscettibili di attacco da muffe a causa dei “veleni” che vengono usati. Chi fa questa considerazione è semplicemente uno che non ha capito nulla di quanto scritto fino ad ora e soffre di analfabetismo funzionale. Noi siamo esseri viventi come i moscerini. Questi ultimi hanno perso la guerra contro le muffe. Le muffe che sconfiggono i moscerini sono le stesse che sconfiggono noi. Un alimento aggredito da muffe non è edibile e ci viene sottratto. I composti usati per la lotta alle muffe non sono un rischio per l’essere umano se usati seguendo tutte le indicazioni codificate. Il problema, quindi, non è il composto chimico ma l’essere umano stesso. Se uno fa un uso criminoso di un composto chimico, non è quest’ultimo a dover essere condannato, ma il criminale che lo usa in modo sconsiderato.

Conclusioni

Il titolaccio dell’articolo di La Repubblica lascia intendere qualcosa che non ha nulla a che fare con la realtà sperimentale che è stata messa in atto dai volenterosi studenti di Foligno. Gli studenti sono stati bravissimi; il titolista dell’inserto Scienze di La Repubblica molto meno. Bocciato. Si ripresenti alla prossima sessione!

Riferimenti

[1] A.M. Lorusso (2018) Postverità, Edizioni Laterza

Fonte dell’immagine di copertina

https://www.theatlantic.com/science/archive/2018/02/fruit-fly-drosophila/553967/

Pillole di chimica: il Bitrex

 

Bitrex. Sebbene sia l’anagramma di brexit, non ha nulla a che vedere con la politica. Si tratta del nome commerciale del benzoato di denatonio la cui struttura è riportata nella figura qui sotto e nell’immagine di copertina.

Cos’è il bitrex?

Come si evince dalla struttura, si tratta di un sale di ammonio quaternario. Questo lo rende solubile in acqua. Ma ciò che è più interessante è che esso non è tossico ed ha un sapore estremamente sgradevole. In effetti, sembra che questo sale sia entrato nel Guinness dei primati come la sostanza più amara in assoluto (qui).

La sua scoperta risale al 1958 ad opera dei chimici della T & H Smith, una casa farmaceutica di Edimburgo, che in quel periodo stava studiando la sintesi di nuovi prodotti antidolorifici (qui).

A cosa serve il bitrex?

Quale può essere l’utilità commerciale di un composto così amaro che appena messo sulla lingua fa venir voglia di sputarlo subito via?

Quanti sono i prodotti pericolosi che abbiamo a casa e che possono attirare l’attenzione dei bambini per il loro colore, le confezioni che li contengono o semplicemente perché i bambini sono curiosi per natura e hanno la tendenza a mettere tutto quello che trovano in bocca?

Chi ha bambini sa certamente rispondere: shampoo, medicinali, detersivi per la disinfezione e la pulizia della casa e chi più ne ha più ne metta.

Ebbene, il bitrex è sicuramente uno degli additivi più usati in questi prodotti per renderli di sapore disgustoso ed evitare una loro possibile ingestione accidentale.

Ne volete qualche esempio?

Qui il link al Luma KL un agrofarmaco che viene usato per la lotta a limacce, lumache, chiocciole e gasteropodi che possono infestare gli orti nei quali vengono coltivati asparagi, carciofi, cavolo cappuccio, finocchi, porro e sedano. Potete facilmente individuare la presenza del bitrex, ovvero denatonio benzoato, che viene addizionato proprio per limitare l’ingestione casuale di questo prodotto che può portare a danni epatici e renali molto seri.

Altro esempio?

Quanti di noi hanno genitori o nonni che preparano bevande alcoliche in casa? Magari qualcuno di voi può essere appassionato di limoncello ed ogni anno va al mercato per comprare limoni IGP di Sorrento la cui buccia viene estratta in alcol etilico per ottenere questa bevanda  molto apprezzata nelle regioni del Sud Italia (qui una interessante ricetta per produrlo in casa). E quanti si sono chiesti perché bisogna comprare alcol etilico per uso alimentare, che costa un occhio della testa a causa delle accise che gravano su di esso, e non è possibile, invece, approntare un piccolo distillatore casalingo per purificare l’alcol etilico denaturato che costa pochi centesimi di euro al litro?

Come si denatura l’alcol etilico

L’alcol etilico denaturato, quello che si vende nei supermercati ed è di colore rosso, costa pochi centesimi al litro perché, non potendo essere usato per l’alimentazione, non viene gravato dalle accise che pesano, invece, sull’alcol puro che usiamo in cucina. L’alcol etilico viene denaturato aggiungendo il bitrex, così da produrre un sapore disgustoso, un colorante e tanti altri composti a seconda dell’uso a cui l’alcol etilico è destinato . Per esempio la denaturazione si può ottenere aggiungendo anche canfora, olio di ricino, acetone, kerosene metanolo, aldeidi varie, isopropanolo e benzene.

È possibile distillare l’etanolo denaturato per ottenere quello alimentare?

È vero che si potrebbe distillare la miscela descritta e dal sapore disgustoso per tentare di isolare l’alcol etilico. Tuttavia, ciò che è poco noto ai non chimici è che la distillazione non riesce ad eliminare completamente le sostanze che si aggiungono all’alcol etilico per denaturarlo. Dopo un certo numero di cicli di distillazione si ottiene una miscela che si chiama “azeotropo” nella quale sono ancora presenti gli additivi summenzionati che rendono il prodotto ottenuto per distillazione ancora non adatto all’alimentazione umana. Nel caso della denaturazione dell’etanolo, l’addizione di piccole quantità di acetone è quella che non consente di purificare oltre l’azeotropo.

Chimico amico

Beh, il titolo del paragrafo è fuorviante. Non è detto che tutti i chimici siano simpatici. So di sicuro di essere antipatico almeno ad una persona: a chi ha fatto una recensione su Amazon al mio libro “Frammenti di Chimica” scrivendo che non compra il libro perché non si comprano i libri di chi offende gli ignoranti indicandoli come tali. Questo la dice lunga sull’onestà intellettuale di omeopati, biodinamici e compagnia bella: parlano senza cognizione di causa e senza leggere ciò di cui sentono il bisogno di discutere. Tuttavia, la chimica è amica di tutti. È un corpo di conoscenze che ci permette di comprendere il mondo che ci circonda: come è fatto, perché è fatto così e come funziona.

Ed ora: buon limoncello a tutti!

Fonte: https://ricette.giallozafferano.it/Limoncello.html

 

Il futuro dell’agricoltura non è nel bio

 

Per una volta uso il mio blog per dar voce ad un documento che un certo numero di imprenditori agricoli e colleghi accademici, alcuni dei quali conosco personalmente, ha sottoposto all’attenzione dei nostri rappresentanti nel Parlamento della Repubblica. Si tratta di un documento che evidenzia tutti i limiti della cosiddetta agricoltura biologica, in cui ricade anche quella pratica esoterica che viene indicata come agricoltura biodinamica di cui ho parlato anche qui nelle famose sette domande ai firmatari della lettera aperta sulla libertà della scienza, alle quali Enrico Bucci ed io attendiamo ancora risposta.

Di agricoltura biologica, nel mio piccolo, ho discusso anche io in due documenti (qui e qui), uno dei quali era la lettera della Professoressa Cattaneo in risposta alle farneticazioni scritte da Michele Serra, noto giornalista italiano.

Nel documento inviato ai parlamentari, i firmatari (a cui mi sono appena aggiunto anche io) evidenziano come la migliore pratica agricola sia quella ottenuta dall’integrazione di tutte le migliori tecnologie al momento disponibili. Non voglio fare lo spoiler di questo documento che invito a leggere e firmare qui o cliccando sulla figura sottostante.

 

Scienza e novità – nuove strategie chimiche per l’agricoltura

In questi giorni si leggono tanti soloni discettare di dogmatismo scientifico perché il mondo accademico, almeno una parte consistente di esso, bolla come pseudoscientifiche le elucubrazioni esoteriche di chi cerca di ammantare di scientificità la pratica agricola che va sotto il nome di biodinamica®. Ricordo brevemente che si tratta di una pratica che si basa sulle concezioni filosofiche di Rudolf Steiner, vissuto tra il 1861 ed il 1925, il quale dettò alcune regole per la produzione alimentare che avevano come obiettivo l’equilibrio “spirituale” tra l’uomo e la Terra. Non è questo il momento per evidenziare le sciocchezze di Steiner. Ne ho scritto qualcosa qui e recentemente, assieme ad Enrico Bucci, ne ho parlato anche qui. Voglio, piuttosto, centrare l’attenzione sul fatto che i soliti redivivi Giordano Bruno e Galileo Galilei pensano di essere innovativi e che la scienza ufficiale brutta e cattiva si opponga alle loro novità per motivi economici o di arrivismo carrieristico. Tralasciando queste accuse che qualificano solo chi le fa, è da un po’ di tempo che non racconto di novità in ambito scientifico. Oggi voglio raccontarvi di nuove scoperte che la chimica – sì, proprio quella che produce le tanto vituperate sostanze tossiche (qui, per esempio) – sta facendo per aiutare la produzione agricola.

Chi mi segue sa che qualche volta ho parlato delle grandi scoperte scientifiche. Tra queste bisogna certamente annoverare il processo Haber-Bosch grazie al quale è possibile convertire l’azoto molecolare in ammoniaca.

Vi chiederete: embé?

Da un punto di vista chimico, l’azoto molecolare (N2) è una delle molecole più stabili (ovvero irreattive) che esistano in natura. L’energia di dissociazione della molecola di azoto è di circa 900 kJ mol-1. Ai non chimici questa informazione quantitativa è inutile. Vediamo di trasformarla in qualcosa di più comprensibile.

La reazione del processo Haber-Bosch (che potete trovare descritta qui) è:

N2 + 3H2 = 2NH3

Per ottenere questa conversione attualmente bisogna operare a 500 °C (contro i 600 °C del processo originario) e 150 bar (contro i 300 bar del processo originario). In altre parole, occorre una temperatura particolarmente alta (voi mettereste la mano nel piombo o nel rame fusi? Ecco…neanche io. 500 °C è una temperatura alla quale sia il rame che il piombo sono in fase liquida) ed una pressione altrettanto drastica (150 bar corrispondono approssimativamente alla pressione esercitata dall’acqua quando scendiamo ad una profondità di circa 1500 m).

L’importanza di questa reazione è legata al fatto che l’aria che noi respiriamo è costituita per l’80 % di azoto molecolare che è, quindi, disponibile a basso costo. La conversione Haber-Bosch consente di ottenere ammoniaca dalla quale poter, poi, sintetizzare molecole quali il solfato di ammonio che vengono usate, tra l’altro, per arricchire di azoto disponibile i suoli. Ricordo che l’azoto è un elemento importantissimo non solo per l’uomo, ma anche per le piante – ed in generale per tutti gli esseri viventi. Il motivo è che esso è presente in molecole come DNA e RNA, e nel nostro corredo proteico. Una carenza di azoto porta le piante a condizioni di stress in quanto esse non sono in grado di sintetizzare le predette molecole. Vi renderete conto, quindi, che l’uso di concimi a base di azoto è estremamente importante per conservare la fertilità dei suoli (che è la capacità di un suolo di sostenere la vita) e consentire la produzione alimentare per fornire sostentamento alla popolazione mondiale attualmente ancora in crescita.

Ebbene, fatta questa lunga premessa su un processo chimico oggi molto importante per le sue implicazioni in agricoltura, veniamo alla novità (l’articolo originale è qui. Se non avete possibilità di accesso a JACS, potete leggerne un riassunto qui).

Ricercatori statunitensi si sono messi a studiare in modo sistematico un fenomeno dall’apparente non riproducibilità.

Circa 75 anni fa si osservò che il biossido di titanio (TiO2), un composto inorganico usato come catalizzatore nella chimica verde, come sbiancante nelle vernici e nei dentifrici, nella forma allotropica indicata come rutilo  (Figura 1) riesce a convertire l’azoto molecolare in ammoniaca secondo lo schema riportato più su in condizioni molto blande, ovvero temperatura e pressione ambiente.

Figura 1. Struttura del rutilo (Fonte)

Il fenomeno veniva osservato solo saltuariamente. Tuttavia, nel tempo un certo numero di ricercatori ha condotto studi computazionali dai quali si è evinto che la non ripetibilità della conversione era legata al fatto che centro dell’attenzione nell’ottenimento del biossido di titanio era un prodotto con elevato grado di purezza. Quando tracce di impurezze carboniose erano presenti sulla superficie del catalizzatore, esso funzionava ottimamente a temperatura e pressione ambiente per convertire azoto molecolare in ammoniaca. Nel lavoro su JACS (una delle riviste più autorevoli della American Chemical Society) sono riportate finalmente le prove sperimentali di quanto ottenuto attraverso la computazione.

Qual è la morale di questa storia. I “bufalari” sono usi opporsi alla scienza perché definiscono gli scienziati chiusi nelle loro posizioni dogmatiche. Questi ignoranti ed arroganti neanche si rendono conto che se un fenomeno non viene osservato, non c’è nessun motivo per studiarlo. Quali ipotesi si dovrebbero formulare se il fenomeno semplicemente non esiste? Invece, la conversione di azoto in ammoniaca, sebbene saltuaria, era evidente. Bisognava solo capire quali fossero le condizioni necessarie a rendere ripetibile e riproducibile il fenomeno. Una volta individuate queste condizioni, si è ottenuta la fissazione dell’azoto in modo più conveniente del processo Haber-Bosch. Si tratta ora solo di replicare lo studio in laboratori indipendenti e ingegnerizzate il tutto in modo da produrre fertilizzanti a costo molto più basso dell’attuale.

Altro che le scemenze sulla biodinamica o sulla agro-omeopatia che esistono solo nella testa dei seguaci di queste pseudoscienze.

Fonte dell’immagine di copertinahttp://www.fritegotto.it/News-Due-moli-di-azoto-e-tre-di-idrogeno/

Salute e Società. Tra scienza e pseudoscienza: lo streaming

Il 25 Ottobre 2018, presso il Dipartimento Scienze Agrarie, Alimentari e Forestali dell’Università degli Studi di Palermo, si è concluso il primo CNMP workshop dal titolo “Salute e Società. Tra scienza e pseudoscienza”. Tanti i relatori: il Prof. Dobrilla, il Prof. Fuso, il Dr. De Vincentiis,  il Prof. Cappello, il Prof. Burioni, il Dr. Saia, il Prof. Bonaccorsi, il Dr. Cartabellotta, il Dr. Mercadante, ed io stesso.

In Figura 1 si riporta il programma completo col titolo degli interventi.

Figura 1. Programma dettagliato del Workshop

Obiettivo dell’evento è stato quello di avvicinare il mondo accademico alla società civile per far comprendere in cosa consista il lavoro scientifico e in che modo poter riconoscere le fake news (o bufale, che dir si voglia). Tra i partecipanti oltre a professionisti di ogni settore, anche tantissimi studenti (Figura 3).

Figura 2. Il pubblico di studenti e professionisti intervenuti al Workshop

È stata una grande soddisfazione vedere un numero così elevato di studenti. Questo vuol dire che anche le menti più giovani sono curiose ed hanno voglia di apprendere i meccanismi attraverso cui si possono riconoscere le pseudoscienze così da poter dare esse stesse un contributo attivo alla lotta contro maghi, imbonitori e truffatori.

L’evento è stato condiviso in diretta streaming dalla pagina facebook della C1Vedizioni.

Qui di seguito trovate i filmati caricati sul mio canale YouTube personale delle singole presentazioni. Nello stesso canale potete anche trovare lo streaming completo nel caso aveste voglia e tempo di (ri)vivere tutte le emozioni e gli errori tecnici che, inevitabilmente, accompagnano l’organizzazione di un evento complesso come un Workshop.

Introduzione della Dr.ssa Tocci e intervento del Prof. Giorgio Dobrilla

 Medicina insolita nell’era 2.0

Intervento del Prof. Silvano Fuso

Chimica buona e chimica cattiva

Intervento del Dr. Armando De Vincentiis

Scienza e autoinganni

Intervento del Prof. Roberto Burioni

I vaccini, la scienza e le bugie

Intervento del Prof. Francesco Cappello

Il ruolo dell’anatomia umana nella battaglia contro la pseudoscienza

Intervento del Prof. Gugliemo Bonaccorsi

Prevenire le bufale con l’Health Literacy

Intervento del Dr. Nino Cartabellotta

Miti, presunzioni ed evidenze: un mix di ingredienti e le fake news sono servite!

Intervento del Dr. Sergio Saia

Le bufale scientifiche sul frumento e sui derivati

Intervento del Dr. Francesco Mercadante

Incubatori di devianze. Il linguaggio dei social network tra paradossi, cattiverie e mondi impossibili

Intervento Prof. Pellegrino Conte e conclusioni

La chimica contro le bufale

I patrocini

L’evento ha ricevuto il patrocinio morale dell’Università degli Studi di Palermo (UNIPA), del Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), del Dottorato di Ricerca in Scienze Agrarie, Alimentari e Forestali, della Associazione Italiana Società Scientifiche Agrarie (AISSA), della Società Italiana di Chimica Agraria (SICA), della Associazione Italiana di Ingegneria Agraria (AIIA), della Società Italiana di Pedologia (SiPE), della Società Italiana di Scienza del Suolo (SISS), del CICAP Puglia, della Fondazione GIMBE, della Società Italiana di Biologia Sperimentale (SIBS), dell’associazione dei Biologi Forensi (BIOFOR), dell’Associazione Studentesca Agraria Palermo (ASAP) e Intesa Universitaria (Figura 3).

Figura 3. Loghi delle Società ed Associazioni che hanno dato il patrocinio morale al Workshop “Salute e Società. Tra scienza e pseudoscienza”

 

Il Workshop “Società e Salute: tra scienza e pseudoscienza” sui giornali

Il 25 Ottobre 2018 si è concluso il primo CNMP Workshop dal titolo “Società e Salute. Tra scienza e pseudoscienza”. Obiettivo dell’evento è stata la sollevazione del mondo scientifico contro la diffusione delle pseudoscienze. Spettatori attenti, non solo professionisti di ogni settore, ma anche studenti. Ed è proprio a questi ultimi che il Workshop è dedicato. Bisogna fornire proprio ai più giovani gli strumenti adatti per riconoscere le fake news o bufale che si presentano ovunque: dai siti web alla carta stampata.

Diversi gli interventi tra cui quello del Dr. Nino Cartabellotta presidente dell’Osservatorio GIMBE. La sua lezione è stata oggetto di un articolo su LiveSicilia

Uno dei temi toccati si riassume in queste parole del Dr. Cartabellotta: “Siamo cresciuti nella cultura dell’aneddoto, quello che fa notizia è il sensazionalismo del trattamento straordinario e non i risultati della ricerca media”.

In attesa del montaggio dei filmati relativi ad ogni intervento, si può avere un sunto della lezione del Dr. Cartabellotta al link della redazione di LiveSicilia qui.

 

Share