C’è nessunooooooo? Giocare con i numeri

Quando ero più giovane andava per la maggiore una simpatica pubblicità sulla particella di sodio. Ve la ricordate?

Era simpatica, in effetti.

Il sodio in acqua

Il sodio è un elemento del primo gruppo della tavola periodica che ha la caratteristica di reagire violentemente con l’acqua in una reazione di ossido-riduzione che porta alla formazione dello ione Na+.

Ma non è di questo che voglio parlavi.

Il sodio e la salute umana

Che lo ione sodio sia coinvolto nei problemi cardiovascolari è ben acclarato nella letteratura medica. Di conseguenza, quando un individuo è affetto da ipertensione, il medico può consigliare l’uso di acque adatte alle diete iposodiche.

In base al D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011, possono essere definite acque adatte alle diete povere di sodio tutte quelle in cui il contenuto dello ione Na+ è ≤ 20 mg L-1. L’ho scritto anche nel mio libro “Frammenti di Chimica. Come smascherare falsi miti e leggende“, dove riporto  che se anche le acque hanno un contenuto di sodio ≥ 20 mg L-1 sono comunque potabili. L’unico inconveniente è che possono avere un sapore non necessariamente gradito.

Lo stesso D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011 citato poco fa, prende in considerazione la possibilità che un’acqua potabile possa avere un elevato contenuto di ione sodio. Infatti viene riportato che quando un’acqua ha un contenuto di sodio ≥ 200 mg L-1 essa deve essere obbligatoriamente indicata come “acqua sodica”.  Come riportato nell’Enciclopedia Medica, le acque sodiche “sono indicate in stati di carenze specifiche”.

Consigli del Ministero della Salute

Se andiamo sul sito internet del Ministero della Salute (qui), leggiamo che “l’Organizzazione Mondiale della Sanità (OMS) raccomanda un consumo massimo di 5 grammi al giorno di sale, corrispondenti a circa 2 grammi al giorno di sodio“. Questo vuol dire che dobbiamo limitare il consumo di sodio nell’alimentazione giornaliera utilizzando una corretta pratica alimentare. Si parla di ione sodio, non dell’elemento metallico che dà l’esplosione a contatto con l’acqua che avete visto nel secondo filmato di quest’articolo.

In che modo tenere sotto controllo l’assunzione di ione sodio? È lo stesso Ministero della Salute a suggerircelo:

  • Leggiamo attentamente l’etichetta nutrizionale per scegliere, in ciascuna categoria, i prodotti a minore contenuto di sale e cercare i prodotti a basso contenuto di sale, cioè inferiore a 0.3 grammi per 100 g (corrispondenti a 0.12 g di sodio)
  • Riduciamo l’uso di sale aggiunto in cucina, preferendo comunque, ove necessario, minime quantità di sale iodato.
  • Limitiamo l’uso di altri condimenti contenenti sodio (dadi da brodo, maionese, salse, ecc.) e utilizziamo in alternativa spezie, erbe aromatiche, succo di limone o aceto per insaporire ed esaltare il sapore dei cibi.
  • Non portiamo in tavola sale o salse salate, in modo che non si acquisisca l’abitudine di aggiungere sale sui cibi, soprattutto tra i più giovani della famiglia.
  • Riduciamo il consumo di alimenti trasformati ricchi di sale (snack salati, patatine in sacchetto, alcuni salumi e formaggi, cibi in scatola).
  • Scoliamo e risciacquiamo verdure e legumi in scatola, prima di consumarli.
  • Evitiamo l’aggiunta di sale nelle pappe dei bambini, almeno per il primo anno di vita.
Giocare con i numeri

Ritorniamo ai consigli dell’OMS.  Dobbiamo scegliere quegli alimenti che  contengano meno di  1200 mg kg-1 di sodio.

A questo punto quelli di voi che leggono solo distrattamente mi daranno del pazzo: da dove è venuto fuori questo numero così elevato? È scritto sopra: 0.12 g di sodio per 100 g di sale corrispondono a 1200 mg di sodio ogni chilogrammo (cioè 1000 g) di sale; è molto semplice fare i calcoli per cui non offendo la vostra intelligenza proponendoveli.

In parole povere mi sono messo a giocare coi numeri. Questo vezzo di giocare coi numeri per dare l’impressione che qualcosa sia diverso da quello che effettivamente è, è tipico di quanti, per lavoro, impostano le campagne pubblicitarie di tanti prodotti alimentari come le acque destinate al consumo umano introdotte col filmato sulla particella di sodio inserito all’inizio di questo articolo.

Ne volete un esempio? Eccovi la foto dell’etichetta dell’acqua che ho preso oggi a pranzo

Figura 1. Etichetta di una nota acqua minerale. Si noti il modo in cui viene espressa la concentrazione di sodio

È perfettamente evidenziato che la quantità di sodio è < 0.0005 %. Un numero spaventosamente piccolo, vero? Uno che legge distrattamente pensa: “WOW, praticamente non c’è sodio. Deve essere particolarmente adatta per gli ipertesi”. Ma guardando con attenzione, poco più su nell’etichetta è scritto che il contenuto di sodio è 4.1 mg L-1. Alla luce del D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011 questa è un’acqua adatta per diete iposodiche.

Ma, adesso, dite la verità: 0.0005 non dà l’impressione di essere di gran lunga più piccolo di 4.1?

In realtà sono esattamente la stessa cosa. Sono state usate due unità di misura differenti per indicare lo stesso valore numerico (in realtà il valore percentuale è approssimato, ma non è importante ai fini della discussione). La legge impone di indicare il contenuto di sodio in mg L-1 ; l’azienda di imbottigliamento ha scelto di riportare, evidenziandolo a bella posta, anche il contenuto percentuale cosicché il consumatore distratto possa essere portato a pensare che la quantità di sodio sia molto più bassa di quella che effettivamente è. Si tratta di un escamotage che fa leva sulle sensazioni che nascono in noi quando leggiamo i numeri.

Conclusioni

Giocare con i numeri per suscitare sensazioni in modo da indirizzare le scelte dei consumatori è cosa molto comune. Non è una cosa grave. Non bisogna, tuttavia, farsi trarre in inganno. Le scelte, soprattutto alimentari, vanno fatte con oculatezza e sapendo ciò che si fa.

Fonte dell’immagine di copertina: https://commons.wikimedia.org/wiki/Water#/media/File:Water_Impact_0.jpg

La chimica del pulito

Vi siete mai chiesti come mai per lavare qualcosa bisogna usare il sapone e, preferibilmente, acqua calda? È tutta questione di chimica fisica.

Più volte ho scritto in merito all’acqua ed alle sue proprietà. Per esempio, qui e qui potete leggere in merito alle proprietà dei legami a idrogeno, qui in merito al ruolo dei legami a idrogeno nell’innalzamento ebullioscopico, qui trovate il significato di pH e la sua dipendenza dalla temperatura.

La chimica dei saponi

Il funzionamento dei saponi è molto semplice e lo ho già descritto qui, quando ho parlato di acqua micellare. In sintesi, un sapone è fatto da molecole anfifiliche, ovvero che hanno caratteristiche sia idrofiliche che idrofobiche. In particolare, le molecole si arrangiano in modo tale da permettere che le teste idrofiliche, rimanendo a contatto con l’acqua, isolino dall’acqua le code idrofobiche che non hanno con essa una buona affinità (Figura 1).

Figura 1. Struttura di una micella. Le teste idrofiliche formano una “pellicola” che separa le code idrofobiche dal contatto con l’acqua (Fonte)

La natura delle micelle è tale da “indebolire” i legami a idrogeno dell’acqua con la conseguenza che si riduce la tensione superficiale del liquido stesso (Figura 2).

Figura 2. La tensione superficiale permette alle zanzare di “camminare” sull’acqua (Fonte)

La riduzione della tensione superficiale consente alle molecole di acqua di penetrare meglio all’interno dei pori dei tessuti degli abiti o della pelle (in generale di tutti i sistemi porosi) così da permettere alle micelle del sapone di interagire meglio con lo sporco.

Quando ciò accade, le micelle “inglobano” lo sporco nella parte idrofobica mentre le teste polari a contatto con l’acqua fanno in modo che lo sporco venga trascinato via dall’acqua stessa (Figura 3).

Figura 3. Funzionamento dei saponi. I punti rossi sono le teste idofiliche, i bastoncini gialli sono le code idrofobiche (Fonte)
Cosa c’entra la temperatura?

Ormai anche le pietre sanno che l’acqua è una molecola polare. La polarità dell’acqua è dovuta alla distribuzione degli elettroni all’interno della stessa molecola. Essa è tale che il centro delle cariche negative è preferenzialmente localizzato sull’ossigeno, mentre quello delle cariche positive sugli atomi di idrogeno (Figura 4).

Figura 4. Distribuzione della densità elettronica nella molecola di acqua (Fonte)

Alla polarità della molecola di acqua, in genere, si attribuisce la “responsabilità” dei legami a idrogeno summenzionati. La polarità dell’acqua è legata anche a quella che si chiama costante dielettrica. La costante dielettrica è una misura della capacità delle molecole di un mezzo (in questo caso l’acqua) di allineare il proprio dipolo elettrico secondo le linee di forza di un campo elettrico applicato (Figura 5).

Figura 5. Orientamento del dipolo acqua all’interno di un campo elettrico. Il centro delle cariche positive del dipolo si orienta verso il polo negativo mentre quello delle cariche negative si orienta verso il polo positivo (Fonte)

Più elevata è la costante dielettrica, più facilmente le molecole si allineano al campo elettrico applicato.

Da un punto di vista sperimentale, la costante dielettrica dell’acqua riduce di circa 80 volte la forza con cui interagiscono gli ioni presenti in un composto chimico. È per questo motivo che i sali tendono a sciogliersi bene in acqua.

Il valore della costante dielettrica è anche una misura della tensione superficiale del sistema liquido per cui esso è misurato. Più elevato è il valore di questa costante, maggiore è la tensione superficiale del liquido.

La Figura 6 mostra come varia il valore della costante dielettrica dell’acqua al variare della temperatura. In parole povere, l’aumento della temperatura comporta una diminuzione della costante dielettrica, ovvero una diminuzione della polarità dell’acqua ed una riduzione della sua tensione superficiale.

Figura 6. Variazione della costante dielettrica relativa dell’acqua con la temperatura

Come già spiegato nel paragrafo precedente, la riduzione della tensione superficiale permette all’acqua di “interagire” meglio con la superficie dei mezzi porosi (per esempio la pelle o un tessuto di un abito).

Conclusioni

L’uso combinato dei saponi e dell’alta temperatura permette una drastica riduzione della tensione superficiale dell’acqua aumentandone la capacità pulente. L’aumento della temperatura consente anche di sterilizzare gli “oggetti” che vengono lavati. La sterilizzazione, naturalmente, ha luogo solo se i microorganismi che contaminano gli oggetti non sono termofili, ovvero in grado di resistere alle classiche temperature usate negli elettrodomestici di casa (gli organismi termofili sono in grado di resistere anche a temperature di 80-90 °C).

Simpatico, vero, l’effetto della temperatura sulle proprietà dell’acqua?

 

Per saperne di più

Fonte dell’immagine di copertina

”Acqua che squilli, acqua che brilli, dacci l’ossigeno senza rovelli”, ovvero sul perché l’acqua ricca di ossigeno è una bufala

Sì, lo so. Come poeta non sono un granché. Niente al confronto con D’Annunzio che scriveva:

Acqua di monte,
acqua di fonte,
acqua piovana,
acqua sovrana,
acqua che odo,
acqua che lodo,
acqua che squilli,
acqua che brilli,
acqua che canti e piangi,
acqua che ridi e muggi.
Tu sei la vita
e sempre sempre fuggi.

(“Acqua” di G. D’Annunzio)

Ma se io sono una scarpa come poeta, ci sono persone che possono essere considerate delle vere e proprie ciabatte in ambito scientifico ed in particolare nel settore chimico.

In questi giorni sto intervenendo su una pagina facebook di una ditta che produce acqua arricchita di ossigeno. Addirittura nella loro pagina internet affermano di solubilizzare fino al 3000 % di ossigeno rispetto alle normali acque da tavola. Ad onor del vero, sembra che le acque ricche di ossigeno siano di moda attualmente. Basta andare in Google e digitare “acqua ricca di ossigeno” perché vengano trovate pagine internet di aziende che mettono in vendita questa acqua ritenuta più salutare della normale acqua da rubinetto, sia che l’ossigeno sia presente in modo “naturale”, sia che questo vi sia stato aggiunto.

Ma perché si sente l’esigenza di porre l’accento sul contenuto di ossigeno disciolto nelle acque?

Il BOD ed Il COD

Da un punto di vista squisitamente chimico spiego ai miei studenti (insegno sia ”Chimica del Suolo“ che ”Recupero di aree degradate”) che il contenuto di ossigeno disciolto nell’acqua è un parametro molto importante per la qualità (in termini positivi) di questo comparto ambientale. Infatti, anche gli organismi marini hanno bisogno di ossigeno per sopravvivere, esattamente come noi organismi terrestri. La differenza è che mentre noi siamo adatti a vivere in un fluido gassoso, ovvero l’aria fatta da circa il 79% di azoto molecolare, il 20% di ossigeno molecolare e l’1% di altri gas come l’anidride carbonica e l’argon, gli organismi marini sono adatti a vivere in un  liquido, cioè l’acqua, da cui riescono ad estrarre l’ossigeno che occorre per i loro processi metabolici.

In termini fisiologici, l’ossigeno di cui abbisognano le nostre cellule viene “catturato” dai polmoni, “legato” all’emoglobina e trasportato dove serve (Figura 1).

Figura 1. Schema della respirazione polmonare (Fonte)

La stragrande maggioranza degli organismi marini è dotata, invece, di branchie (Figura 2).

Figura 2. Meccanismo di funzionamento delle branchie (Fonte)

L’acqua passa attraverso le branchie venendo a contatto con delle sottilissime membrane al di là delle quali si trova il sangue. L’ossigeno disciolto nell’acqua diffonde attraverso queste sottilissime membrane per diffondere nel sangue povero di ossigeno.
I diversi meccanismi con cui gli organismi terrestri e quelli marini assorbono l’ossigeno per la realizzazione dei propri processi metabolici, fanno in modo che noi non possiamo sopravvivere in acqua, né gli organismi marini possono sopravvivere al di fuori dell’acqua (mi scuso con i miei lettori biologi se non sono stato troppo corretto nella descrizione dei processi di assunzione dell’ossigeno).

Fatta questa premessa semplicistica, due dei parametri che i chimici usano per valutare la qualità di un’acqua riferita alla sua capacità di sostenere la vita marina sono il Biochemical Oxygen Demand (o BOD) ed il Chemical Oxygen Demand (anche indicato come COD).

Il “BOD” è una misura della quantità di ossigeno che i microorganismi presenti nelle acque usano per la decomposizione aerobica della sostanza organica. Più elevato è il BOD, meno ossigeno è disponibile per il sostentamento della vita degli organismi marini (per es. i pesci).

Il “COD” è una misura della quantità di ossigeno richiesta per l’ossidazione della sostanza organica presente nelle acque sia per effetto di reazioni di natura microbiologica che di reazioni in cui non sono coinvolti i microorganismi. Come per il BOD, più elevato è il valore del COD, meno ossigeno è disponibile per il sostentamento della vita acquatica.

L’ossigeno disciolto riguarda gli organismi terrestri?

Da quanto appena scritto, si capisce che la quantità di ossigeno molecolare disciolto in acqua è importante per la vita acquatica. Ma cosa c’entriamo noi? Perchè l’ossigeno disciolto dovrebbe riguardarci? Una risposta la si trova in rete cercando nei vari siti di aziende produttrici di acqua ad alto contenuto di ossigeno:

  1. l’ossigeno disciolto migliora le prestazioni lavorative
  2. l’ossigeno disciolto favorisce la digestione
  3. l’ossigeno disciolto esalta il gusto delle pietanze
  4. l’ossigeno disciolto aumenta la resistenza fisica

etc etc etc

Insomma, come si legge, sembra che l’ossigeno disciolto nelle acque che beviamo sia come l’olio di serpente, ovvero una panacea per tutti i mali. Peccato che non avendo branchie come i pesci, l’ossigeno disciolto nell’acqua a noi non serva assolutamente a nulla.  In altre parole, le acque cosiddette ricche di ossigeno non sono altro che acque potabili in grado di toglierci la sete e mantenerci idratati esattamente come tutte le acque potabili di questo mondo, incluse quelle dal rubinetto.

Quanto ossigeno può essere disciolto in acqua?

Chi studia la chimica, anche al livello di scuola superiore, sa benissimo che esiste una relazione diretta tra pressione parziale di un gas, temperatura e solubilità del gas in un liquido.

La Figura 3 mostra l’andamento della solubilità dell’ossigeno molecolare in acqua deionizzata.

Figura 3. Solubilità dell’ossigeno molecolare in acqua deionizzata (Fonte)

Le tre curve indicano la quantità di ossigeno disciolto in acqua deionizzata a tre pressioni differenti: 1 atm (curva blu), 2 atm (curva rossa) e 4 atm (curva gialla). Per spiegare la traslazione delle curve (ovvero perché quella gialla è più in alto e quella blu più in basso) immaginate di dover spingere sott’acqua dei palloncini gonfi di aria. Se ne volete spingere uno solo, dovete applicare una certa forza; per spingerne due, dovete applicare una forza maggiore; questa forza aumenta all’aumentare del numero di palloncini che intendete spingere sotto il pelo dell’acqua.

La Figura 4 mostra la solubiità dell’ossigeno molecolare in un’acqua contenente dei sali.

Figura 4. Solubilità dell’ossigeno molecolare in acqua salata (Fonte)

La posizione delle curve è identica a quella mostrata in Figura 3 (curva gialla in alto, curva blu in basso). Tuttavia, salta subito agli occhi che l’ammontare di ossigeno disciolto nelle stesse condizioni della Figura 3, è inferiore.  Perché? La solubilità di un gas in acqua (o in un liquido qualsiasi) non dipende solo da temperatura e pressione, ma anche dalla presenza di soluti disciolti.

Come ho già avuto modo di scrivere (qui), il processo di solubilizzazione di un soluto in un solvente può essere considerato come una vera e propria reazione chimica in tre stadi:

  1. soluto-soluto → 2 soluto
  2. solvente-solvente → 2 solvente
  3. soluto + solvente → soluto-solvente

in cui l’ultimo stadio descrive la formazione di interazioni tra il soluto ed il solvente. Più affini sono soluto e solvente, maggiore è la solubilità del primo nel secondo. Non discuto in questa sede delle condizioni di saturazione per cui non è possibile sciogliere un soluto in un solvente oltre una certa quantità.

Nel caso dell’ossigeno in acqua deionizzata, tutte le molecole di acqua sono “a disposizione” per l’interazione con l’ossigeno che si scioglie nel solvente. Se, però, nel solvente è già presente un soluto, lo schema di solubilizzazione a tre stadi precedentemente descritto, si arrichisce di due ulteriori stadi:

  1. soluto1-soluto1 → 2 soluto1
  2. soluto2-soluto2 → 2 soluto2
  3. solvente-solvente → 2 solvente
  4. soluto1 + solvente → soluto1-solvente
  5. soluto2 + solvente → soluto2-solvente

Se il secondo soluto corrisponde all’ossigeno molecolare in fase gassosa, lo stadio 2 appena descritto non deve essere preso in considerazione. Quello che accade è che l’ossigeno molecolare in forma di gas compete con il soluto1 disciolto per le interazioni col solvente. Poichè l’affinità tra acqua e sale è maggiore che tra acqua e ossigeno gas,  ne viene che quando l’ossigeno viene “spinto” nell’acqua salata, la quantità di ossigeno gas in grado di sciogliersi (secondo lo schema descritto) è inferiore a quella in grado di sciogliersi in acqua deionizzata.

In definitiva, più basso è il contenuto salino di un’acqua, più elevata è la quantità di ossigeno che si può sciogliere; più alta è la pressione esercitata sulla superficie del liquido, maggiore è la quantità di ossigeno disciolto; a parità di contenuto salino e di pressione, più bassa è la temperatura del sistema e maggiore è la quantità di ossigeno che si può sciogliere.

Conclusioni

Possiamo sciogliere tutto l’ossigeno che ci pare in un litro di acqua adottando gli accorgimenti descritti nella parte finale del paragrafo precedente, tuttavia questo ossigeno non ci serve perché non abbiamo le branchie come gli organismi marini; in ogni caso, una volta che non sono rispettate le condizioni atte a garantire la massima solubilizzazione del gas in acqua, valgono le condizioni di equilibrio alla temperatura ed alla pressione di esercizio. In altre parole, quando apriamo una bottiglia di acqua arricchita di ossigeno alla pressione atmosferica ed alle temperature di questi giorni (oltre i 30 °C) ci dobbiamo aspettare una effervescenza dovuta  alla fuoriuscita del gas per raggiungere le condizioni di equilibrio a quei valori di temperatura e pressione. Il prodotto che si beve è né più né meno che acqua potabile (e ci mancherebbe) con tutte le caratteristiche tipiche di un’acqua qualsiasi venduta al supermercato o presa al rubinetto di casa.

Fonte dell’immagine di copertina

 

 

 

Acqua azzurra, acqua chiara, acqua alcalina

Ebbene sì. Mi son trovato in una pizzeria del Nord Italia. Una di quelle pizzerie che vanno per la maggiore, un po’ chic (in realtà lo era, ora è una pizzeria come tante altre) e tanto bio. Non è che io mi faccia infinocchiare dalla storia del bio. So perfettamente che è solo marketing: quelli che pensano che i prodotti bio siano migliori a livello nutrizionale sono tanti ed hanno soldi; ma allora perché non dar loro quello che vogliono e far transitare i soldi dalle loro tasche a quelle dei venditori di fumo?

Ma andiamo con ordine.

Pizzeria del Nord Italia; tutto bio; famosa per fare pizze molto buone. Mi accomodo e mi viene fornito un menu. E cosa ti leggo? Guardate un po’ qui (Figura 1)

Figura 1. Dettaglio del menu in una pizzeria del Nord Italia in cui si evidenzia la possibilità di avere acqua a basso residuo fisso ed alcalina

Ora, passi per i succhi di frutta e le bevande con un po’ di succo e tanta anidride carbonica, ma come è possibile mettere tra le bibite “bio” anche l’acqua naturale e l’acqua frizzante? Esiste un’acqua non bio, forse? E la cosa più simpatica è che per attirare i gonzi (onestamente non so se quelli che lavorano lì credano veramente a queste scemenze) l’acqua naturale (che regalano loro; ma come sono generosi!) è alcalinizzata.
Sì, avete letto bene. Nelle mie peripezie ho finalmente trovato un locale che fornisce agli avventori acqua alcalinizzata. Potevo non assaggiarla? Ma certo che l’ho presa, tanto più che era regalata; non volevo offendere nessuno rifiutando un cotanto regalo.

cos’è l’acqua alcalina e ionizzata a basso residuo fisso?

Partiamo dal fatto che l’acqua chimicamente pura viene usata solo in laboratorio. È quella che noi chiamiamo acqua iperpura. Vuol dire che oltre alle molecole H2O non contiene niente altro o, se c’è qualcosa, questo non è rilevabile con le tecniche analitiche di cui disponiamo. Questa acqua da laboratorio non è potabile. E sapete perché? Perché quando la ingeriamo viene a contatto con le pareti cellulari delle nostre cellule. Nella parte interna delle cellule c’è una soluzione acquosa in cui c’è di tutto: dalle sostanze organiche disciolte ai sali minerali. La membrana cellulare quindi si trova circondata da un lato da una soluzione molto concentrata di soluti di natura differente, dall’altro da acqua che contiene soluti a concentrazioni analiticamente non rilevabili. Sapete cosa accade? Accade che l’acqua che sta fuori, quella da laboratorio, tende a penetrare attraverso la membrana cellulare per diluire la concentrazione dei soluti presenti nella soluzione all’interno della cellula. Il processo si chiama osmosi (Figura 2).

Figura 2. Rappresentazione schematica dell’osmosi (Fonte)

Il processo osmotico consiste, quindi, nella diluizione della soluzione più concentrata da parte di quella meno concentrata. Il passaggio del solvente attraverso la membrana termina quando le concentrazioni da entrambi i lati della membrana sono uguali. C’è un “ma”. La differenza di concentrazione tra la zona interna e quella esterna alla cellula, genera una differenza di potenziale osmotico così elevata che la membrana cellulare si rompe. Occorre, cioè, quella che si chiama lisi cellulare. In termini più umani come possiamo trasporre in immagini più immediate quello che ho scritto? L’acqua iperpura che abbiamo ingerito è a diluizione infinita (significa che non c’è nulla dentro, ovvero, nel linguaggio scientifico, non è possibile determinare la presenza di soluti). Questo vuol dire che il processo osmotico descritto sopra continua fino a quando anche la soluzione all’interno della cellula diventa infinitamente diluita. In altre parole, l’acqua continua a passare all’interno della cellula gonfiandola. La cellula si può gonfiare fino a un certo punto come un palloncino. Dopo un certo limite scoppia. Ora capite che se ingeriamo l’acqua iperpura che usiamo in laboratorio rischiamo la morte per lisi cellulare.
L’acqua che noi beviamo, in realtà, non è iperpura, ma contiene delle sostanze disciolte in quantità variabile in funzione della sorgente dell’acqua stessa. Il residuo fisso di cui si parla in Figura 1 non è altro che la quantità di materiale inorganico che è presente nell’acqua e che si rileva per differenza in peso dopo aver sottoposto una quantità nota di acqua ad un trattamento termico in stufa a 180 °C. Il residuo fisso non è un problema in termini di potabilità. Anzi, la sua presenza ci consente di dire che l’acqua che beviamo è sicura perché non innesca i processi descritti sopra. Ricordo che la potabilità dell’acqua non è solo chimica ma anche biologica; un’acqua chimicamente potabile potrebbe non esserlo microbiologicamente. Questo vuol dire che sto facendo un discorso non completo perché mi sto concentrando solo sulla composizione in termini chimici dell’acqua e non sulla presenza o meno di microorganismi.

Il residuo fisso è nocivo per la salute?

”Ma manco pe gniente” come direbbero in un improbabile dialetto. Tutto quello che leggete in merito ai danni sulla salute del residuo fisso sono sciocchezze messe in giro da gente che, molto probabilmente, non ha alcuna conoscenza chimica o, se ne ha, essa è abbastanza scarsa. Basta leggere, per esempio, il sito della Fondazione Veronesi o quello delle acque minerali italiane. In questo ultimo sito potete leggere che esistono delle acque con elevatissimo residuo fisso che vanno assunte sotto controllo medico. Alla luce di quanto ho spiegato sopra, si può capire perché. Se la concentrazione salina è troppo alta, la membrana cellulare si trova all’interfaccia di una soluzione poco concentrata, quella interna alla cellula, ed una molto concentrata, all’esterno della cellula. Il passaggio dell’acqua attraverso la membrana in base al meccanismo osmotico descritto, avviene dall’interno all’esterno della cellula. La conseguenza è ancora una volta la lisi cellulare ed il rischio di morte. Avete capito perché non possiamo bere l’acqua di mare? In definitiva le acque potabili che noi utilizziamo hanno un residuo fisso variabile in funzione della sorgente da cui preleviamo l’acqua. Se il residuo fisso è entro i limiti dei 1500 mg/L non ci sono problemi di sòrta (qui per i limiti del residuo fisso).

E l’acqua ionizzata alcalina?

Vi ricordate questa scena del film “Amici miei”?

Ecco. Si tratta di una supercazzola.

Uno ione è una qualsiasi specie chimica che ha una carica elettrica positiva (e si chiama catione) o negativa (e si chiama anione). Esistono anche specie chimiche che, pur essendo elettricamente neutre – ovvero non sono né cationi né anioni, sono comunque caratterizzate dalla presenza di cariche. Si tratta degli zwitterioni in cui il numero di cariche elettriche positive eguaglia quello delle cariche elettriche negative col risultato finale di non essere soggetti all’azione di un campo elettrico applicato. Quindi che vuol dire acqua ionizzata? Assolutamente nulla. A meno che questi chimici della domenica non intendano riferirsi all’equilibrio di dissociazione dell’acqua che è:

ed intendano dire che le specie a destra dell’equilibrio descritto siano acqua ionizzata. In realtà questi chimici improvvisati non sanno che  quello descritto è un processo di equilibrio che risponde a tutta una serie di parametri di cui ho già discusso tempo fa (qui). Il problema è che oggi va di moda l’acqua alcalinizzata. Banalmente è un’acqua il cui pH è > 7. Questo perché fin dalle scuole elementari viene insegnato che quando il pH < 7 l’acqua è acida, quando pH > 7 l’acqua è basica o alcalina, quando pH=7 l’acqua è neutra. Poiché ho già scritto in merito, non mi ripeto, ma vi invito ad andare a questo link per informazioni dettagliate. Basti solo ricordare che il valore del pH, tra le altre cose, dipende anche dalla temperatura e che non è possibile separare gli ioni H+ da quelli OH- come vogliono farci credere nella Figura 3.

Figura 3. Meccanismo secondo cui sarebbe possibile separare gli ioni H+ da quelli OH- (Fonte)
Perché l’acqua alcalinizzata dovrebbe far bene?

Semplicemente perché un giorno un medico, della cui professionalità dubito fortemente, fece una “scoperta” epocale: le zone limitrofe a tessuti tumorali avevano un pH acido per cui il contrasto del tumore può essere realizzato alcalinizzando il nostro organismo. Avete capito la scemenza? Un medico…cioè uno che avrebbe dovuto studiare la chimica, la biochimica e la fisiologia animale che afferma che è possibile combattere I tumori alcalinizzando i nostri tessuti. Questo bel tipo (taccio nomi e siti web perché non voglio offrire visibilità a questo pseudo scienziato) neanche sa cosa sia un sistema tampone e come lui tutti quegli altri ignoranti che propongono diete alcaline e rimedi alcalini.

Cosa c’è di vero nella relazione tumori-acidità?

Già da tempo è noto che le zone limitrofe di tessuti tumorali sono caratterizzati da un valore di pH acido (un lavoro di riferimento lo trovate qui). Il perché lo potete trovare in un lavoro del 2013 pubblicato su Cancer Cell Journal (qui). I ricercatori giapponesi, responsabili dello studio citato, hanno compreso che l’acidificazione dei tessuti tumorali è dovuta alla secrezione di acido lattico da un processo che si chiama glicolisi anaerobica, oltre che alla CO2 prodotta nella via dei pentoso fosfati. Non sto qui a descrivere i dettagli del lavoro, basti comprendere che questa secrezione non è la causa, ma la conseguenza del tumore. Tuttavia, l’acidificazione sembra inneschi un meccanismo a cascata in base al quale si velocizza la produzione di metastasi (mi scuso con i miei lettori medici se ho usato i termini sbagliati). Capite, ora, che non basta alcalinizzare il nostro organismo per curare I tumori. Prima di tutto perché i nostri tessuti sono dei veri e propri tamponi, quindi rispondono a piccole variazioni di pH in modo da ritornare alle condizioni fisiologiche; in secondo luogo perché anche se fossimo in grado di alterare il pH dei tessuti in modo da neutralizzare l’acido lattico e la CO2 responsabili del microambiente acido intorno alle cellule tumorali, non si risolverebbe la causa che ha innescato quelle alterazioni metaboliche, di cui secrezioni di acido lattico e incremento di CO2 sono la conseguenza. È come voler riparare la perdita di acqua da una tubazione eliminando l’acqua che esce, senza tappare il buco.

Conclusioni

Andate a mangiare la pizza dove vi pare. Quella che ho mangiato io era buonissima. Sappiate però che se vi propongono cose strane, vi vogliono solo prendere soldi senza alcun motivo reale se non un loro personale arricchimento economico. L’arricchimento economico nel caso del locale dove ho mangiato non è certo legato al fatto che mi hanno regalato acqua ionizzata alcalinizzata, ma alla reputazione che guadagnano se questo regalo è fatto a persone ricettive del messaggio naturistico. Queste persone arricchiscono il locale col passaparola. Non è una cosa grave, per carità, l’importante è la consapevolezza di andare in un posto in cui i prezzi sono di un certo tipo perché seguono una moda che di scientifico non ha assolutamente nulla.

Buona pizza a tutti

Fonte dell’immagine di copertina

Omeopatia e fantasia. Parte V. Aggiornamenti

Sta girando in rete una notizia in merito ad uno studio denominato EPI3 che secondo gli amici dell’omeopatia avrebbe prodotto le prove definitive sulla validità di questa pratica risalente al XIX secolo e basata su teorie metafisiche oggi non più  valide, considerando lo sviluppo che la chimica, la biologia e, non ultima, la medicina hanno avuto negli ultimi 150 anni.

Ho già avuto modo di parlare dell’omeopatia in più articoli su questo blog. Li potete trovare a questo link in ordine inverso di apparizione temporale.

I principi dell’omeopatia

In breve, nel 1810, Hahnemann pubblica il suo “Organon of medicine” nel quale pone le basi teoriche dell’omeopatia:

  1. il simile cura il simile
  2. più alta è la diluizione, più efficace risulta il rimedio omeopatico
  3. l’efficienza del rimedio omeopatico raggiunge il suo massimo non solo con la diluizione, ma anche con la succussione, ovvero una agitazione meccanica operata in modo sistematico con un movimento verticale (dall’alto verso il basso) e sbattendo il recipiente contenete il rimedio su una tavoletta rivestita di pelle morbida o crine di cavallo
  4. le malattie sono il risultato di alterazioni delle condizioni psico-fisiche soggettive del paziente per cui i rimedi non hanno tutti la stessa efficacia per la stessa tipologia di malattia in pazienti differenti
  5. la cura omeopatica non sopprime la malattia, ma la espelle

I principi omeopatici si basano sul concetto di vis vitalis, ovvero di una forza metafisica che permeerebbe tutti gli esseri viventi ed i sistemi riconducibili al mondo dei viventi. La vis vitalis era ritenuta assente in tutti i sistemi riconducibili al mondo dei non viventi o dell’inanimato. Questa teoria, introdotta da Berzelius – uno dei padri fondatori della chimica moderna – è stata definitivamente accantonata nel 1828, quando Whöler riuscì a convertire l’isocianato di ammonio – una sostanza inorganica che come tale appartiene ai sistemi non viventi – in urea – una sostanza tipica del mondo dei viventi.

Nel momento di massima espansione della teoria della vis vitalis, quando ancora non si conosceva il risultato del lavoro di Avogadro apparso nel 1811, Hahnemann elaborò il suo codice in base al quale un qualsiasi sistema organico poteva essere soggetto a diluizione infinita senza perdita alcuna di efficacia biologica. Infatti, il processo di diluizione, associato a quello di succussione, “estraeva” la vis vitalis dal sistema organico – ovvero riconducibile al mondo dei viventi – e la trasferiva al solvente. In definitiva, non era importante la presenza del principio attivo per la cura delle patologie – come anche la farmacologia dell’epoca riteneva – ma bastava la sola presenza della vis vitalis “estratta” dal principio attivo per allontanare le perturbazioni della vis vitalis dall’organismo vivente.

Da quanto detto, potete facilmente rendervi conto che la teoria omeopatica di Hahnemann poteva avere un senso nel XIX secolo quando il mondo chimico/biologico/medico, ancora in fasce, era affiancato dal mondo magico i cui esponenti potevano essere considerati a tutti gli effetti maghi, fattucchiere e stregoni (qui).

Lo sviluppo della moderna chimica, di cui potete trovare espressione nei libri della foto di Figura 1, ci consente di dire, semmai ce ne fosse bisogno, che le teorie di Hahnemann – a cui dobbiamo essere comunque grati per l’apporto dato allo sviluppo delle conoscenze umane – sono basate sul nulla.

Figura 1. Nella mia collezione di libri di chimica ce ne sono alcuni che sono i capisaldi della materia. Vanno studiati con attenzione se uno decide di intraprendere il percorso chimico come professionista
Un invito

Prima di entrare nel merito del progetto EPI3 voglio suggerire a naturopati, pseudo-chimici (sono i chimici passati al lato oscuro della scienza), pseudo-medici (sono tutti quelli che, sebbene laureati in medicina, prestano le loro conoscenze alla pseudo-medicina/pseudo-scienza) e a tutti gli amici dell’omeopatia, di ristudiare o di studiare ex-novo i testi riportati nell’immagine di Figura 1 (o anche simili) prima di addentrarsi in critiche di ogni tipo nei commenti di questo blog. Commenti spazzatura in cui non si entra nel merito, ma si applicano pedissequamente le fallacie logiche che potete trovare qui, non saranno neanche minimamente presi in considerazione se non per esporre l’autore al pubblico ludibrio scientifico.

Il progetto EPI3

Ed entriamo ora nel merito. Scrivevo poco più su che gira in rete la notizia di un mega studio, durato alcuni anni e che ha consentito la pubblicazione di ben undici lavori scientifici, che confermerebbe la validità dei trattamenti omeopatici per alcune patologie quali ansia, depressione, disturbi del sonno, infezioni del tratto respiratorio superiore e dolori muscolo-scheletrici. Il link alla notizia è qui. Naturalmente, come ogni buon giornalista NON dovrebbe fare, in calce all’articolo non si riporta alcun riferimento degli undici lavori pubblicati. Tuttavia, c’è un link ad un sito in francese (qui) che riporta una bibliografia di dodici lavori. Tra questi i primi undici sono relativi al progetto EPI3. Ecco la lista degli undici lavori:

  1. Rossignol et al., Who seeks primary care for musculoskeletal disorders (MSDs) with physicians prescribing homeopathy and other complementary medicine ? Results form the EPI3-LASER survey in France. BMC Musculoskeletal Disorders, 2011, 12:21 doi:10.1186/1471-2474-12-21 ; 1-6.
  2. Rossignol et al., Benchmarking clinical management of spinal and non-spinal disorders using quality of life. Results from the EPI3-LASER survey in primary care. European Spine Journal, 2011, doi:10.1007/s00586-011-1780-z ; 1-7.
  3. Grimaldi-Bensouda et al., EPI3-LA-SER group. Benchmarking the burden of 100 diseases. Results of a nationwide representative survey within general practices. BMJ Open, 2011, 1:e000215. doi:10.1136/bmjopen-2011-0002 ; 1-11.
  4. Grimaldi-Bensouda et al., EPI3-LA-SER group. Who seeks primary care for sleep, anxiety and depressive disorders from physicians prescribing homeopathic and other complementary medicine? Results from the EPI3 population survey. BMJ Open, 2012, 2(6): e001498. doi: 10.1136/bmjopen-2012-001498. ; 1-10.
  5. Lert et al., EPI3-LA-SER Group. Characteristics of patients consulting their regular primary care physician according to their prescribing preferences for homeopathy and complementary medicine. Homeopathy, 2014, 103(1) ; 51-57.
  6. Rossignol et al., EPI3-LA-SER group. Impact of physician preferences for homeopathic or conventional medicines on patients with musculoskeletal disorders. Results from the EPI3-MSD cohort. Pharmacoepidemiology and Drug Safety, 2012, 21(10) : 1093-1101. doi:10.1002/pds. 3316 ; 1-9.
  7. Grimaldi-Bensouda et al., EPI3-LA-SER Group. Utilization of psychotropic drugs by patients consulting for sleeping disorders in homeopathic and conventional primary care settings: the EPI3 cohort study. Homeopathy. 2015 Jul;104(3):170-5.
  8. Grimaldi-Bensouda et al., Management of upper respiratory tract infections by different medical practices, including homeopathy, and consumption of antibiotics in primary care: the EPI3 cohort study in France 2007-2008. PLoS ONE, 2014, 9(3) doi: 10.1371/journal.pone.0089990. eCollection 2014 ; 6 p.
  9. Danno et al., Physician practicing preference for conventional or homeopathic medicines in elderly subjects with musculoskeletal disorders in the EPI3-MSD cohort. Clinical Epidemiology, 2014, 6 ; 333-341.
  10. Colas et al.,  Economic impact of homeopathic practice in general medicine in France. Health Econ Rev. 2015 Dec;5(1):55. doi:10.1186/s13561-015-0055-5.
  11. Grimaldi-Bensouda et al., EPI3-LA-SER group. Homeopathic medical practice for anxiety and depression in primary care: the EPI3 cohort study. BMC Complement Altern Med. 2016 May 4;16(1):125. doi:10.1186/s12906-016-1104-2.

La lista riportata è copia-incollata dal sito in francese. Ho evidenziato il termine EPI3 contenuto nel titolo delle pubblicazioni ed ho inserito – per consentire una più facile consultazione – il link ai lavori quando disponibili.

Le riviste

I lavori sono stati pubblicati nelle seguenti riviste di settore:

BMC Musculoskeletal disorders (Impact factor 1.739; n. lavori pubblicati: 1)

European Spine Journal (Impact factor non noto; n. di lavori pubblicati: 1)

BMJ open (Impact factor 2.369; n. di lavori pubblicati: 2)

Homeopathy (Impact factor 1.160; n. di lavori pubblicati: 2)

PDS Pharmacoepidemiology & Drug Safety (Impact factor 2.552; n. di lavori pubblicati: 1)

PlosOne (Impact factor 2.806; n. di lavori pubblicati: 1)

Clinical Epidemiology (Impact factor 7.056; n. di lavori pubblicati: 1)

Health Economics Review (Impact factor non noto; n. di lavori pubblicati: 1)

BMC Complementary Alternative (Impact factor non noto; n. di lavori pubblicati: 1)

Come si evidenzia dalla tabella appena letta, 3 riviste non sono indicizzate, ovvero non hanno impact factor. Una sola ha un impact factor abbastanza alto (si tratta di Clinical Epidemiology), tutte le  altre non vanno oltre un impact factor di 3. Non sono esperto di riviste del settore medico per cui non posso dire nulla in merito alla qualità delle riviste anzidette. Conosco solo PlosOne, rivista di carattere generalista, di cui pensavo molto meglio. Ed infatti, andando a spulciare la storia dell’impact factor di questa rivista, risulta che essa aveva nel 2015 un impact factor di 4.411. In altre parole, dal 2015 al 2016 l’impatto di questa rivista è sceso di ben 1.605 punti. E’ molto. Vuol dire che i lavori pubblicati nei tre anni precedenti al 2016 non sono stati citati quanto quelli nei tre anni precedenti al 2015. Come mai? Questo non lo posso sapere, naturalmente. Dovrei entrare nel merito di tutto quanto pubblicato tra il 2012 ed il 2015. Si tratta, ovviamente, di lavori molto diversificati (ed io non ho una cultura enciclopedica che mi permette di entrare nel merito di tutto), oltre che di una quantità di lavori molto elevata la cui lettura richiederebbe un tempo che non ho a disposizione. In questa sede analizzo solo il dato numerico. Ciò che posso dire è che l’insieme di riviste in cui sono apparsi i lavori del progetto EPI3 sono del settore medico o del settore generalista tutte con peer review. In altre parole, ognuna di esse sottopone i manoscritti ricevuti al giudizio di scienziati dello stesso settore degli autori. Questo va bene. E’ così che funziona il mondo delle pubblicazioni in ambito scientifico.

Essendo pubbliche ed accessibili a tutti, ognuno di noi può leggere ciò che è scritto in queste pubblicazioni (nello specifico basta cliccare sui link presenti nella lista precedente). Se chi legge ha familiarità col metodo scientifico può giudicare da solo la validità di quanto è riportato. Considerando la mia attività, entro, allora, nel merito della validità del metodo scientifico usato negli undici lavori elencati sopra.

I limiti metodologici

Quando si fa un disegno sperimentale per validare/falsificare un certo modello scientifico bisogna cercare di essere quanto più dettagliati e precisi possibile. Faccio un esempio molto semplice per me. Se penso di monitorare (lo so, i puristi della lingua italiana mi diranno strali. Ma non me ne importa. Io uso e continuerò ad usare questo termine che è del gergo tecnico scientifico) la contaminazione di un suolo rispetto ad un elemento qualsiasi della tavola periodica, non posso campionare solo il suolo che ho deciso di analizzare e “vedere” se quell’elemento è semplicemente presente in esso. Mi chiederete: perché? Perché quasi sicuramente io troverò quell’elemento nel suolo che voglio studiare. Per dire che esso è contaminato ho necessità di confrontarlo con uno del tutto analogo che mi deve servire da “bianco”, ovvero da termine di paragone. Nel linguaggio tecnico quest’ultimo suolo viene indicato come “suolo vergine”. Questa locuzione indica un suolo che non è stato sottoposto alla contaminazione che ho deciso di monitorare.

Se l’elemento che voglio osservare è presente sia nel bianco che nel suolo sotto osservazione, posso parlare di contaminazione solo se la quantità di quell’elemento è molto più alta nel suolo “incriminato” rispetto al bianco. Se le quantità sono confrontabili tra loro, posso dire che non c’è contaminazione oppure che il bianco era contaminato come il suolo osservato. Per eliminare il dubbio in merito alla qualità del suolo vergine, posso andare a campionare un altro suolo e considerarlo come controllo rispetto agli altri due. Se ancora una volta le quantità dell’elemento che ho deciso di monitorare sono confrontabili, posso dire che rispetto al nuovo suolo controllo, gli altri due non sono contaminati. La conseguenza è che la scelta del primo suolo controllo era giusta. Se voglio essere ancora più pignolo (i siciliani usano un termine che a me fa morire dal ridere: pillicusu) posso campionare un quarto suolo come bianco e confrontarlo con gli altri tre. E si potrebbe continuare.

Dall’esempio fatto, si comprende che in un disegno sperimentale bisogna prendere in considerazione sempre un campione controllo rispetto al quale poter trarre le conclusioni dell’esperimento.

Prendiamo, ora, in considerazione gli undici lavori elencati sopra.

I lavori dal n. 1 al n. 6 sono uno screening di pazienti, medici, farmaci etc in cui si cominciano a porre le basi per le valutazioni statistiche che vengono proposte nei lavori successivi. In tutti questi lavori vengono considerati pazienti a cui si prescrivono farmaci convenzionali (indichiamoli per semplicità con la sigla FC), rimedi omeopatici (indichiamoli RO) e pazienti sottoposti sia all’azione di farmaci convenzionali che di rimedi omeopatici (indichiamoli con la sigla Mix).

Dopo lo screening, vengono confrontati gli effetti che i FC hanno rispetto ai RO e ai Mix (lavoro n. 7, n. 8, n. 9 e n. 11). Le conclusioni sono che le tre tipologie di rimedi apportano  i medesimi benefici ai pazienti cui essi vengono somministrati.

Nel lavoro n. 10 viene riportato un confronto economico, nell’ambito della sanità francese, nell’uso di FC, RO e Mix. Il lavoro conclude che l’uso dei RO è più conveniente, economicamente parlando, rispetto a quello dei FC.

Dall’analisi, neanche troppo attenta, dei lavori pubblicati grazie al progetto EPI3, salta subito all’occhio che non vengono presi in considerazione “suoli vergini”, ovvero controlli. In altre parole, si confrontano pazienti a cui vengono somministrati FC, RO e Mix e si conclude che RO e Mix hanno la stessa efficacia dei FC, ovvero non è vero che l’omeopatia non funziona. L’omeopatia sembra funzionare almeno quanto i farmaci convenzionali per le patologie prese in considerazione e per il numero statisticamente significativo di pazienti protagonisti del progetto. Neanche tanto velatamente, gli autori sembrano indicare che i rimedi omeopatici hanno il medesimo effetto biologico dei farmaci convenzionali.

La domanda nasce spontanea: come mai non hanno preso in considerazione l’effetto placebo? (ne ho parlato qui). Come mai hanno escluso la considerazione che sia la somministrazione dei farmaci convenzionali che quella dei rimedi omeopatici potesse comportare un miglioramento delle condizioni di salute dovute ad un effetto di carattere psicologico, piuttosto che a un effetto di un principio attivo più o meno diluito?

La risposta a questa domanda è che, sebbene in tutti i lavori che ho letto gli autori facciano un copia/incolla dei limiti che essi hanno visto nel loro disegno sperimentale, manca una popolazione di controllo con le patologie summenzionate ed a cui fosse somministrato un rimedio placebo. Gli autori hanno voluto vedere l’aspetto positivo del loro progetto sperimentale. Hanno dimenticato che i loro dati possono essere letti anche in un altro modo: i farmaci convenzonali non hanno alcun effetto biochimico esattamente come non ne hanno i rimedi omeopatici. Sia i farmaci convenzionali che i rimedi omeopatici agiscono attraverso l’azione del solo effetto placebo.

Conclusioni

Gli autori del progetto EPI3 sono rimasti “fulminati” dal loro pregiudizio di conferma. Hanno voluto vedere degli effetti positivi dell’omeopatia senza prendere in considerazione letture diverse dei loro dati sperimentali.

Come mai, nonostante questo, i lavori sono stati pubblicati? Beh, la validità di un modello scientifico o la bontà di dati sperimentali devono passare il vaglio temporale. Non dimentichiamoci che ci son voluti 12 anni prima che ci si rendesse conto che il lavoro di Wakefield sulla relazione vaccini-autismo fosse un falso; altrettanti ne sono passati prima che qualcuno si accorgesse che i lavori di Schoen sui superconduttori organici fossero anche essi dei falsi; e tanti altri casi di falsa scienza potete leggere qui. In definitiva: lasciamo lavorare gli anticorpi presenti nell’apparato scientifico. Se sono riuscito ad accorgermi io di questo limite metodologico, altri, più preparati di me nel campo, si accorgeranno non solo di questo, ma anche di altri limiti che io non sono stato in grado di vedere, vuoi per noia, vuoi per impreparazione medica.

Integrazioni

Dopo la pubblicazione di questo articolo sul blog sono arrivati tantissimi commenti. Uno di questi da parte di Stefano Cervigni, autore di utilissimi libri di chimica, in cui scrive:

Ciao Rino, per curiosità mi sono andato a guardare un po’ più in dettaglio gli articoli che hai indicato. Anzi, dico la verità: mi sono letto per bene solo il numero 9, quello di Clinical Epidemiology, l‘articolo del giornale col più alto impact factor.
Oltre alla completa mancanza di prove in bianco, come giustamente osservavi, mi permetto di far notare qualche altra „peculiarità“ di questo articolo (ripeto, quello pubblicato sul posto ‘migliore’ di tutti)
1) Due su quattro autori dell’articolo lavorano per la Boiron, mentre uno lavora per il Cyklad Group, che Google mi dice essere “une société spécialisée dans le coaching des entreprises.” (?)
2) I risultati sono molto incoraggianti. Guarda la figura: qualsiasi cosa prendi, dopo 1 anno di trattamento stai messo esattamente uguale a prima.
3) La conclusione a cui arrivano è da incorniciare: tanto dal mal di schiena e artrite non si guarisce comunque. Tanto vale che ti prendi la caramellina mia.

Come gli omeopatici siano riusciti da questo a strombazzare titoli come: Omeopatia vs allopatia, il piùgrande studio fatto in Francia, EPI3, dice che l’efficacia delle cure è la stessa”e che: “Dopo 7 anni di osservazioni su oltre migliaia di pazienti, EPI3 mostra che la percentuale di guarigione è la stessa, ma usando l’omeopatia ci sono meno effetti collaterali” mi è completamente oscuro.
Grazie ancora e in bocca al lupo!

Fonte dell’immagine di copertina: Wikipedia Commons

Omeopatia e fantasia. Parte IV

Ed eccoci giunti all’ultima parte di questo lungo reportage sull’omeopatia. Questa serie di articoli divulgativi è nata da uno studio cominciato un po’ di tempo fa che ha consentito prima una pubblicazione divulgativa e poi una lezione divulgativa che ho tenuto a Bassano del Grappa il 29 Dicembre 2016 (qui l’articolo e qui la lezione se non siete interessati a leggere l’articolo).

L’esigenza di un reportage divulgativo più approfondito dell’articolo citato è nata dalla constatazione che i pro-omeopatia (quelli che io definisco “amici dell’omeopatia”) battono sempre sugli stessi tasti ogni volta che si parla di tale pratica che più volte ho definito “magica” ed “esoterica”. In particolare, l’opinione corrente di questi individui informatissimi sull’omeopatia, ma di certo molto poco informati sulla scienza chimica, fisica e biologica, è che gli scienziati sono, mediamente, contro l’omeopatia perché chiusi intellettualmente e rifiutano a-priori questa pratica sulla base di preconcetti culturali che ne impediscono una adeguata apertura mentale.

Ho voluto far vedere che, in realtà, non è così. Sono stati condotti studi molto dettagliati su tutti gli aspetti dell’omeopatia e tutti questi studi si incanalano in un’unica direzione: l’omeopatia è veramente una pratica magica al di fuori dal tempo. Il suo uso si basa solo su una fede cieca ed incondizionata che denota, purtroppo, ascientificità, illogicità e scarsa cultura scientifica.

Riassunto delle puntate precedenti

Nella prima parte di questo reportage (qui) ho evidenziato i limiti dei lavori di Benveniste e Montagnier intesi come “paladini” dell’omeopatia. I lavori di questi due “eroi” contengono tante di quelle incongruenze sperimentali da renderli del tutto inaffidabili. Tuttavia, nonostante l’inaffidabilità, le loro ipotesi affascinanti sono state tenute in debito conto tanto è vero che sono stati condotti studi per verificare la validità dell’ipotesi della “memoria” dell’acqua che è alla base della presunta efficacia dei rimedi omeopatici. La seconda parte del reportage (qui) è stata proprio dedicata alla valutazione delle prove a sostegno dell’ipotesi “memoria”. La conclusione è che tale ipotesi è frutto solo di fantasia e di scienza patologica. Nella terza parte del reportage (qui) ho preso in considerazione le varie meta-analisi che nel corso degli anni sono state fatte per valutare, in modo statistico, l’eventuale efficacia dell’omeopatia. Ne è venuto che gli effetti dell’omeopatia sono ascrivibili al solo effetto placebo.

effetto placebo

Quando parliamo di “effetto placebo” intendiamo riferirci ad un qualsiasi cambiamento positivo (nel caso di un cambiamento negativo si parla di “effetto nocebo”) nello stato di salute di un paziente come conseguenza di un’azione aspecifica non attribuibile ad alcun trattamento o farmaco.

Tale effetto si osserva solo in pazienti che sono in stato di veglia e coscienti. Questa è una considerazione importante perché permette ai seguaci dell’omeopatia di affermare che tale pratica, a discapito di quanto già evidenziato nelle “puntate precedenti”, ha un effetto biochimico reale sebbene ancora non conosciuto nei suoi particolari. Infatti, quale coscienza può avere un neonato o un animale a cui vengono somministrati i rimedi omeopatici?

I meccanismi alla base dell’effetto placebo

I principali meccanismi che consentono di spiegare l’effetto placebo sono i seguenti:

  1. effetto Rosenthal o effetto aspettativa
  2. apprendimento per imitazione
  3. condizionamento Pavlov o riflesso condizionato
  4. effetto Hawthorne o effetto dell’osservatore.

L’effetto Rosenthal consiste nel fatto che ogni individuo tende a modulare il proprio comportamento secondo quanto ci si aspetta in base ai risultati attesi. Per esempio, se un medico somministra un medicamento ad un paziente e si attende un risultato positivo, trasmette, anche inconsciamente, al paziente quelle che sono le sue aspettative. Il paziente risponderà alla somministrazione del preparato fornendo al medico le indicazioni che egli si aspetta in merito alla terapia.

L’apprendimento per imitazione si riferisce al processo in cui un individuo modula il suo comportamento osservando e imitando/emulando le azioni di un individuo di riferimento. Questo tipo di apprendimento è molto sfruttato, per esempio, nel campo della comunicazione. Il testimonial pubblicitario, modello da cui prendere esempio, induce un comportamento emulativo/imitativo nell’acquirente che si immedesima nel modello stesso ed immagina di poterlo incarnare così da identificarsi con lui e con i valori che egli rappresenta.

Il condizionamento Pavlov consiste nella modulazione involontaria di un determinato comportamento quando l’individuo è soggetto a stimoli sia interni che esterni a se stesso. Supponiamo che un individuo assuma un rimedio convinto che possa essere utile a far passare un dolore. A seguito dell’assunzione del rimedio si attiveranno nel suo cervello delle aree che porteranno alla produzione di sostanze deputate al raggiungimento dello stato di benessere. Una volta “abituato a guarire” con quel rimedio, l’individuo avvertirà la diminuzione del dolore ogni volta che è convinto di assumere quel particolare rimedio a cui associa la cura di quel determinato dolore.

L’ effetto Hawthorne consiste nella variazione di un comportamento quando un individuo è soggetto all’osservazione da parte di un terzo. Il nome di questo effetto deriva da quello di una cittadina dell’Illinois in cui fu condotto uno studio per valutare le azioni da intraprendere per il miglioramento dell’efficienza produttiva degli impiegati di una azienda elettrica. I risultati dimostrarono che l’efficienza lavorativa non migliorava per effetto di migliori condizioni lavorative come, per esempio, migliore illuminazione, mensa meglio organizzata, migliore retribuzione etc, ma grazie alle attenzioni personali da parte dei responsabili dell’azienda. In altre parole, si evidenziò che il miglioramento dell’efficienza lavorativa era legato ad una migliore comunicazione, una più elevata attenzione per i sentimenti individuali, comprensione dei problemi personali, etc. etc. Insomma, è l’osservatore che induce un comportamento positivo da parte dell’osservato.

Effetto placebo in pediatria, veterinaria e agricoltura

L’azione dell’effetto placebo è descritto in tutti gli studi sull’uso dei rimedi omeopatici in pediatria , veterinaria ed agricoltura .

Nel caso di applicazioni pediatriche, l’effetto placebo si può realizzare o attraverso l’apprendimento per imitazione, o attraverso il condizionamento Pavlov o attraverso l’effetto Hawthorne .

Un bambino nell’età in cui è in grado di comprendere ed a cui viene applicato un rimedio omeopatico che secondo i genitori ha una qualche efficacia terapeutica, viene condizionato dalle aspettative e dalle attenzioni dei genitori.

In altre parole, il suo comportamento nei confronti della patologia si adegua a quanto i genitori si attendono dal rimedio. Se il bambino è un neonato o è in una condizione tale da non poter comprendere, allora l’effetto placebo dipende solo dalle aspettative dei genitori. Questi ultimi interpretano le variazioni comportamentali come effetti positivi del rimedio, mentre, invece, si tratta solo di correlazioni senza causazione.
Le aspettative dell’osservatore influenzano anche le osservazioni sugli animali e sulle piante. Un animale o una pianta appaiono riprendersi per effetto dell’azione dei rimedi omeopatici solo perché l’osservatore “pretende” di vedere cambiamenti positivi che, in realtà, non esistono.

Conclusioni

Ed eccoci finalmente alle conclusioni. Dall’insieme delle informazioni riportate nelle diverse parti di questo reportage, appare chiaro che l’omeopatia è stata ampiamente studiata ed opportunamente falsificata in senso popperiano. Quando scrivo che questa pratica è assimilabile ad una pratica magica di tipo esoterico, lo faccio a ragion veduta: la mia opinione scientifica si basa sulla valutazione delle osservazioni sperimentali che si sono accumulate nel corso degli anni.

Mentre l’omeopatia, nata ufficialmente nel 1810 con la pubblicazione dell’ “Organon of medicine” di Hanhemann, è rimasta ferma alle conoscenze primitive in voga nel XIX secolo, la scienza è andata avanti; ha elaborato un impianto di conoscenze col quale è in grado di spiegare gran parte dei fenomeni osservabili intorno a noi. L’omeopatia, purtroppo, pur essendo una pratica cosiddetta “dolce” e non invasiva, non è osservabile e, per questo, priva di ogni significato. Le osservazioni in merito alla sua presunta efficacia sono riconducibili ai meccanismi dell’effetto placebo.

Mi rendo perfettamente conto che tutto quanto riportato non convincerà gli estremisti dell’omeopatia. Ma non è importante. Questi individui sono e rimarranno ignoranti. Le loro obiezioni si baseranno sulle solite chiacchiere come per esempio “ciò che non è osservabile oggi, lo sarà domani” oppure “anche gli elettroni non si osservano, eppure esistono”. Queste posizioni sono illogiche ed antiscientifiche. Neanche oggi noi siamo in grado di osservare gli elettroni. La loro esistenza è teorizzata sulla base di osservazioni indirette che ci hanno permesso di capire che la materia è fatta da particelle elementari con certe particolari caratteristiche. Noi osserviamo solo gli effetti che queste caratteristiche hanno sul mondo che ci circonda.

L’obiettivo di questo reportage scientifico è quello di mettere assieme le informazioni sperimentali più attuali per cercare di far capire, a chi ancora nutre dei dubbi, che l’omeopatia non serve. Per la cura di patologie serie bisogna sempre ed esclusivamente rivolgersi a medici e farmacisti seri.

Ringraziamenti

Devo ringraziare il Prof. Stefano Alcini per le utilissime chiacchierate che mi hanno consentito di chiarire i miei dubbi in merito all’effetto placebo. In realtà, sto ancora studiando i meccanismi psicologici alla base di tale effetto. Mi scuso per le eventuali inesattezze ed il linguaggio non corretto che ho potuto utilizzare in quest’ultima nota. La responsabilità è tutta mia ed è legata alla mia ignoranza dovuta al fatto che non sono né un medico né uno psicologo. Qualsiasi suggerimento utile a migliorare la nota è più che benvenuto.

Letture consigliate

R. Rosenthal, L. Jacobson (1966) Teachers’ expectancies: determinants of pupils’ IQ gains, Psycological Reports, 19: 115-118

R.W. Byrne, A.E. Russon (1998) Learning by imitation: a hierarchical approach, Behavioural and Brain Sciences, 21: 667-721

I. Pavlov (2010) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex (Translated by G.V. Anrep), Annals of Neurosceinces, 17: 136-141

E. Mayo (1945) The social problems of an industrial civilization, Boston: Division of Research, Harvard Businness School

K. Weimer et al. (2013) Placebo effects in children: a review, Pediatric Research, 74: 96-10

R.T. Mathie, J. Clausen (2015) Veterniary homeopathy: meta-analysis of randomised placebo-controlled trials, Homeopathy, 104: 3-8

Altre letture divulgative

www.laputa.it

Omeopatia pratica esoterica senza fondamenti scientifici

Fonte dell’immagine di copertinahttps://daily.wired.it/news/internet/2011/08/17/boiron-minacce-blogger-14039.html

pH. Il suo significato nei sistemi complessi (Parte I)

Quanti di voi sanno che cos’è il pH? Stiano zitti i chimici, i periti chimici e tutti coloro che hanno studiato, ad un qualsiasi livello, la chimica.

Bene. Mi perdoneranno tutti coloro che hanno studiato o studiano la chimica, ma devo dare la definizione di pH  a tutti coloro che non hanno idea, se non vaga, di cosa significhi questa parola.

Non è una parola magica; non è neanche un rito magico di carattere esoterico. Si tratta semplicemente di un modo che i chimici usano per riportare quella che è la concentrazione di ioni idrogeno (H+) in una soluzione acquosa. Mi diranno i chimici più estremi che il pH si può valutare anche per sistemi organici. Ma io non voglio essere estremo e mi attengo alla chimica più tradizionale, per cui mi fermo al fatto che la misura del pH è quella che si fa per le soluzioni acquose.

Il pH è il logaritmo in base 10 dell’inverso della concentrazione idrogenionica:

Anche la casalinga di Voghera sa che se il pH è inferiore a 7 si parla di sistemi acidi; se il pH è superiore a 7 si parla di sistemi basici; se il pH è proprio 7, allora si parla di sistemi neutri. Il problema è che, al di fuori del contesto chimico, le parole “acido”, “base” e “neutro” sono prive di significato. Ad usare in modo improprio termini che hanno un significato ben definito nel linguaggio scientifico ci si mettono anche i giornalisti. Per esempio cliccando qui si apre una pagina di Repubblica.it in cui si legge che una donna è stata aggredita ed è stata costretta a versarsi addosso della soda caustica. Per effetto di questa aggressione la donna ha subito ustioni da “acido”. Non ci credete? Allora cliccate sul link anzidetto oppure leggete la Figura 1 in cui ho evidenziato l’incongruenza tra “soda caustica”, che è una base, e “acido”, che nell’opinione comune è qualcosa che fa male.

Figura 1 Nell’opinione comune qualsiasi sostanza faccia male è considerata un acido. La notizia riportata qui è tratta da Repubblica Vicenza

Ma veniamo al punto principale di questa nota.

L’equilibrio di dissociazione dell’acqua si può scrivere in questo modo:

Questo equilibrio è governato da una costante alla quale è stato dato il nome di “prodotto ionico dell’acqua” che ha la forma:

Il valore del prodotto ionico dell’acqua è 1.0 x 10-14 M2 quando la temperatura è 25 °C. È facile calcolare il pH al punto di neutralità, ovvero quando la concentrazione degli ioni idrogeno è uguale a quella degli ioni ossidrile. Al punto di neutralità il valore di pH è 7.

Ciò che in genere molto spesso si dimentica è che le informazioni contenute nelle righe precedenti sono valide solo ed esclusivamente alla temperatura di 25 °C. Infatti, i valori delle costanti di equilibrio (ed il prodotto ionico è una costante di equilibrio) dipendono dalla temperatura alla quale si ha l’equilibrio chimico. La Figura 2 mostra come cambia il prodotto ionico dell’acqua al variare della temperatura.

Figura 2 Variazione del prodotto ionico dell’acqua al variare della temperatura

La Figura 3, invece, fa vedere il cambiamento del valore del pH in funzione della temperatura. Più è alta la temperatura più si abbassa il valore del pH relativo alla condizione di neutralità come conseguenza dell’indebolimento dei legami covalenti tra ossigeno ed idrogeno nell’acqua. A 100 °C, il valore del pH all’equilibrio è circa 6.1. Questo valore non indica acidità, bensì neutralità a quel valore della temperatura.

Figura 3 Variazione del pH dell’acqua pura con la temperatura

Ciò che è valido per l’equilibrio di dissociazione dell’acqua è valido per tutti i tipi di equilibrio. Per esempio, la dissociazione dell’acido acetico in acqua segue l’equilibrio:

La costante di equilibrio ha la forma:

Il valore della ka a 25 °C è 1.75 x 10-4 M. Da un lavoro pioneristico del 1933, si ricava il grafico di Figura 4 che mostra la variazione del valore della costante acida dell’acido acetico al variare della temperatura nell’intervallo 0-60 °C.

Figura 4 Variazioni con la temperatura della costante di dissociazione dell’acido acetico

Utilizzando valori differenti per le concentrazioni pre-equilibrio di acido acetico, è facile ricavare il grafico di Figura 5 che mostra come cambia il valore del pH nelle condizioni di equilibrio al variare della temperatura.

Figura 5 Variazione del pH all’equilibrio per la dissociazione dell’acido acetico a diverse concentrazioni di partenza e nell’intervallo di temperatura 0-60 °C

In sintesi, il valore del pH di una qualsiasi soluzione acquosa dipende da numerosi fattori tra cui: natura e concentrazione del soluto e temperatura del sistema.

Quando si considerano sistemi complessi in cui l’equilibrio acido/base è regolato dalla presenza di più coppie acido/base differenti, oltre alla temperatura, bisogna tener conto anche degli equilibri di dissociazione multipli. Per esempio, la valutazione del pH all’equilibrio per soluzioni di acido fosforico (H3PO4) va fatta considerando le seguenti condizioni:

Ad ognuno degli equilibri descritti è associata una costante il cui valore cambia in funzione della temperatura. Si capisce, quindi, che la valutazione del pH all’equilibrio diventa sempre più difficile all’aumentare della complessità del sistema.

Anche la presenza di sali altera i valori delle costanti di equilibrio. Per esempio la costante acida del secondo equilibrio dell’acido fosforico risente della forza ionica come indicato in Figura 6.

Figura 6 Variazioni della costante ka2 dell’acido fosforico in funzione della forza ionica. Le serie da A ad E indicano soluzioni di acido fosforico contenenti sali differenti

Riassumendo, il pH all’equilibrio per sistemi complessi contenenti coppie acido/base di natura differente dipende da natura del soluto, concentrazione del soluto, temperatura e forza ionica.

 

Fonte dell’immagine di copertina: http://alcyonitalia.com/items?key=_-57&keyType=I

Omeopatia e fantasia. Parte III

Nelle prime due parti di questo reportage scientifico sull’omeopatia ho discusso dei limiti chimici dei modelli proposti da Benveniste e Montagnier (Omeopatia e fantasia. Parte I Parte II).

Le conclusioni a cui sono giunto indicano chiaramente che sia il lavoro di Benveniste che quello di Montagnier non sono attendibili (Omeopatia e fantasia. Parte I); e non sono attendibili, perché affetti da bias metodologici, nemmeno i lavori che cercano di spiegare la memoria dell’acqua, cavallo di battaglia di chi assume che l’omeopatia funzioni (Omeopatia e fantasia. Parte II).

Nelle conclusioni della seconda parte di questo reportage ho anche evidenziato che sono più che sicuro che gli amici dell’omeopatia non si arrenderanno neanche di fronte alle evidenze più ovvie e diranno che è vero che la memoria dell’acqua non esiste, ma l’omeopatia funziona (ovvero ha effetti) in ogni caso. Si tratta solo di individuare il corretto meccanismo per cui essa ha effetto contro tutte le basi chimiche e biochimiche di cui oggi disponiamo.

Lo scopo di questa terza parte è evidenziare quale sia il reale meccanismo di funzionamento dei rimedi omeopatici.

Effetto placebo

Un placebo è un trattamento – o un farmaco – che non ha alcuno effetto specifico sulle condizioni di salute che vengono studiate durante una sperimentazione.

“Effetto placebo” è una locuzione che indica un qualsiasi cambiamento positivo (nel caso di un cambiamento negativo si parla di “effetto nocebo”) nello stato di salute di un paziente come conseguenza di un’azione aspecifica non attribuibile ad alcun trattamento o farmaco.

Perché un trattamento possa avere un effetto placebo, il paziente deve essere in stato di veglia e cosciente. In caso contrario, l’effetto placebo non si osserva.

La storia delle origini della medicina è ricca di trattamenti aspecifici la cui efficacia terapeutica, alla luce delle conoscenze odierne, era nulla. Per questo motivo possiamo dire che la medicina di 100-150 anni fa era lo studio e l’osservazione degli effetti placebo.

Omeopatia ed effetto placebo nella letteratura scientifica

Linde et al. (1997) [1] riportano che dagli 89 studi selezionati tra i 186 pubblicati fino al 1995, si evince che i  rimedi omeopatici, statisticamente parlando, sembrano funzionare meglio dei rimedi placebo. Tuttavia, due anni dopo, nel 1999, gli stessi autori [2], dopo aver rivisto i parametri di qualità usati per la scelta degli studi da valutare comparativamente, concludono:

THE EVIDENCE OF BIAS WEAKENS THE FINDINGS OF OUR ORIGINAL META-ANALYSIS […]. IT SEEMS, THEREFORE, LIKELY THAT OUR META-ANALYSIS AT LEAST OVERESTIMATED THE EFFECTS OF HOMEOPATHIC TREATMENTS”.

In altre parole, gli autori ammettono che in molti degli studi che avevano preso in considerazione per la loro indagine del 1997, sono individuabili dei limiti metodologici che hanno condotto ad una sovrastima della validità dell’omeopatia. Infatti, rimuovendo dall’indagine tutti gli studi meno rigorosi, si conclude che l’efficacia terapeutica dei rimedi omeopatici non è superiore al placebo.

Le conclusioni rivedute e corrette di Linde et al. (1999) [2] sono state confermate anche da Ernst (2002) [3]:

THE HYPOTHESIS THAT ANY GIVEN HOMEOPATHIC REMEDY LEADS TO CLINICAL EFFECTS THAT ARE RELEVANTLY DIFFERENT FROM PLACEBO OR SUPERIOR TO OTHER CONTROL INTERVENTIONS FOR ANY MEDICAL CONDITION, IS NOT SUPPORTED BY EVIDENCE OF SYSTEMATIC REVIEWS”.

Per cercare di ri-equilibrare una situazione abbastanza sfavorevole per l’omeopatia, Mathie (2003) [4] pubblica una nuova analisi in cui decide di prendere in considerazione lavori pubblicati tra il 1975 ed il 2002 per un totale di 93 studi. La motivazione che spinge Mathie a rifare una meta-analisi con un numero di studi appena più alto di quello preso in considerazione da Linde et al. (1997) [1], è che:

THE RESULTS OF SEVERAL META-ANALYSES OF CLINICAL TRIALS ARE POSITIVE, BUT THEY FAIL IN GENERAL TO HIGHLIGHT SPECIFIC MEDICAL CONDITIONS THAT RESPOND WELL TO HOMEOPATHY”.

In altre parole, secondo Mathie, le meta-analisi finora pubblicate, pur dimostrando l’efficacia dell’omeopatia (non si sa bene su cosa si basi questa sua convinzione considerando quanto realmente riportato in letteratura), non danno indicazioni sul tipo di patologie per le quali essa risulta maggiormente efficiente. Per questo, egli decide di evidenziare nella sua meta-analisi quali siano le patologie per le quali ci sono state risposte positive oltre il placebo e quali, invece, quelle per le quali le risposte sono state negative al di sotto del placebo.

Le conclusioni a cui Mathie giunge sono che i rimedi omeopatici funzionano meglio del placebo per la diarrea infantile, la fibriomalgia, la rinite allergica, l’influenza, dolori di varia origine, effetti collaterali di chemio- e radio-terapie, distorsioni ed infezioni del tratto respiratorio superiore. L’omeopatia si è, invece, dimostrata inutile per mal di testa, ictus e verruche.

Ciò che in realtà colpisce della meta-analisi di Mathie è che egli non tiene in alcun conto né della rivalutazione che Linde et al. hanno fatto del loro primo studio riportando che le loro precedenti conclusioni avevano sovrastimato gli effetti dei rimedi omeopatici [1, 2], né di quanto riportato da Ernst nel 2002 [3]. In particolare, del lavoro di Ernst, Mathie dice che, date le premesse scelte dall’autore, non si poteva non concludere che l’omeopatia fosse una pratica inutile. Insomma, attribuisce la valutazione negativa che Ernst fa dell’omeopatia al modo con cui quell’autore ha deciso di selezionare e riportare gli studi di riferimento: studi che descrivono l’omeopatia in modo vantaggioso vengono contrapposti ad un ugual numero di lavori in cui l’omeopatia non ha rivelato la sua efficienza. Mediamente, quindi, il peso dei primi viene annullato da quello dei secondi ed il risultato è che l’omeopatia non fa meglio del placebo.

Tuttavia, non si può non evidenziare che la tabella 1 del lavoro di Mathie (2003) [4] riporta  il numero di studi presi in considerazione per tipologia di patologia. Per esempio, la diarrea infantile è stata studiata solo in tre lavori, la fibriomalgia in due, le distorsioni in due, gli ictus in due e così via di seguito. Trarre conclusioni in merito all’efficacia o alla non efficacia di un certo trattamento solo sulla base di un numero così esiguo di studi, è quantomeno azzardato. La meta-analisi condotta da Ernst nel 2002 [3] è certamente più significativa sotto l’aspetto statistico.

Nel 2005 compare in letteratura una meta-analisi a firma di Shang e collaboratori [5] che mette un punto definitivo in merito al rapporto tra efficacia dell’omeopatia ed effetto placebo.

Utilizzando 19 database diversi, gli autori individuano 165 studi pubblicati tra il 1995 ed il 2003 da cui ne selezionano 105 sulla base di criteri di inclusione/esclusione che si basano sulla presenza di gruppi di controllo con placebo; sulla descrizione degli esiti clinici dei vari trattamenti; sulla presenza di indicazioni in merito alla scelta randomizzata sia degli individui da inserire nei gruppi di controllo che della somministrazione dei rimedi omeopatici e placebo; sul fatto che i risultati siano apparsi su riviste non predatorie e siano, quindi, stati soggetti ad una seria revisione tra pari (peer review).

Senza entrare troppo nei dettagli tecnici dell’analisi statistica riportata in Shang et al., le principali conclusioni di questi autori sono:

OUR STUDY POWERFULLY ILLUSTRATES THE INTERPLAY AND CUMULATIVE EFFECT OF DIFFERENT SOURCES OF BIAS. WE ACKNOWLEDGE THAT TO PROVE A NEGATIVE IS IMPOSSIBLE, BUT WE HAVE SHOWN THAT THE EFFECTS SEEN IN PLACEBO-CONTROLLED TRIALS OF HOMEOPATHY ARE COMPATIBLE WITH THE PLACEBO HYPOTHESIS. BY CONTRAST, WITH IDENTICAL METHODS, WE FOUND THAT THE BENEFITS OF CONVENTIONAL MEDICINE ARE UNLIKELY TO BE EXPLAINED BY UNSPECIFIC EFFECTS”.

In definitiva, gli autori evidenziano come gli studi condotti per valutare  gli effetti dei rimedi omeopatici siano soggetti a pregiudizi di conferma che impediscono di raggiungere conclusioni oggettive in merito alla distinzione tra effetto reale di tipo biochimico ed effetto placebo. Quest’ultimo, in realtà, è l’ipotesi più semplice e, di conseguenza, più plausibile per spiegare il successo dei rimedi omeopatici.

L’importanza del lavoro di Shang et al. si evince dal tiro incrociato a cui, negli anni, è stato sottoposto dagli amici dell’omeopatia. Per esempio, subito dopo la sua pubblicazione, appaiono su The Lancet – la rivista che ospita lo studio di Shang et al – delle lettere all’editore a firma, la prima, di Walach, Jonas e Lewith [6], la seconda di Linde e Jonas [7], la terza ad opera di una moltitudine di autori tra cui compare Mathie e di nuovo Walach [8].

Sebbene a firme (quasi) differenti, le tre lettere all’editore lamentano tutte di una mancanza di chiarezza da parte di Shang e collaboratori [5] in merito al modo con cui essi hanno deciso di applicare i criteri di inclusione/esclusione e criticando il fatto che le conclusioni sono troppo pessimistiche per l’omeopatia.

Queste critiche vengono mosse nonostante venga indicato, da un lato, che:

there are, after all, been very few placebo-controlled randomized trials in homeopathy, which is why there is an absence of evidence

dall’altro che:

we agree that homeopathy is highly implausible and that the evidence from placebo-controlled trials is not robust

In altre parole, per gli autori  delle lettere anzidette, l’omeopatia funziona nonostante non ci siano evidenze positive al di là di ogni possibile dubbio perché studi in cui viene fatto un confronto con il placebo non ce ne sono ed anche quei pochi pubblicati soffrono di un qualche pregiudizio metodologico.

A mio avviso questa è una posizione veramente antiscientifica. Uno scienziato deve sospendere ogni possibile giudizio se ritiene che non siano presenti dati sufficienti per avallare una posizione o un’altra in merito ad un determinato modello scientifico. Non può dire “questa cosa funziona, sebbene non ci siano prove a sostegno di una tale evidenza” e sulla base di questo criticare uno studio che cerca di fare chiarezza utilizzando il meglio di quanto la ricerca in omeopatia ha finora prodotto.

Gli argomenti della lettera di cui al riferimento [8] sono ripresi in un lavoro pubblicato di Rutten e Stolper (2008) [9].

La critica al lavoro di Shang et al. [5] si basa sul fatto che secondo Rutten e Stolper (2008) [9] la qualità della meta-analisi dipende fortemente dal modo in cui vengono selezionati i criteri di inclusione/esclusione. In particolare, vengono confrontati lo studio di Shang et al. [5] con quello di Linde et al. [1]. La conclusione è che, applicando i criteri riportati da Linde et al. agli studi selezionati da Shang et al. [5], non si può dire, come hanno fatto Shang e collaboratori [5], che l’efficacia dell’omeopatia sia dovuta all’effetto placebo.

Devo dire, come mia personale considerazione, che la lettura del lavoro di Rutten e Stolper [9] mi lascia molto perplesso per la velata disonestà intellettuale dei due autori.

Come mai prendono in considerazione un lavoro scritto nel 1997 che, nel 1999, gli stessi autori (Linde et al. [2]) hanno rielaborato arrivando a scrivere che quanto da loro riportato in precedenza era affetto da una sovrastima dei dati relativi all’efficacia dell’omeopatia? Come mai non hanno mai citato il lavoro scritto da Linde et al. nel 1999 [2]? Leggendo meglio lo studio di Rutten e Stolper [9] noto che il primo si firma “homeopathic physician” ed il secondo come “general practioner, homeopathic physician”, ovvero sono entrambi dei “medici omeopati”, peraltro operanti nella libera professione, ovvero non sono affiliati ad alcuna università o ente di ricerca. Non è che ci sia un conflitto di interessi con la loro attività privata, per cui un lavoro anti-omeopatia apparso su una delle riviste più prestigiose del mondo medico (ovvero il lavoro di Shang e collaboratori pubblicato su The Lancet [5]) dia molto fastidio e debba essere in qualche modo “smontato” cercando di intaccarne la credibilità con ogni mezzo possibile, anche attraverso un opportuno “cherry picking”?

Il sospetto di “cherry picking” si rinforza quando si legge il lavoro apparso su Journal of Clinical Epidemiology [10] di cui uno degli autori è lo stesso Rutten del cui studio ho discusso fino ad ora. Infatti, nello studio a firma di Lüdtke e Rutten [10] non solo si citano entrambi i lavori di Linde et al. [1, 2] (prova che Rutten conosce l’esistenza della rivalutazione fatta nel 1999 da Linde et al.[2] ma volutamente non la prende in considerazione), ma si conclude anche che:

Our results do neither prove that homeopathic medicines are superior to placebo nor do they prove the opposite”.

Insomma, a quanto pare anche Rutten e Stolper [10] non sono in grado di poter dire che l’efficacia dei rimedi omeopatici possa andare oltre l’effetto placebo.

Nel 2010 appaiono in letteratura altre meta-analisi a firma di Teixeira et al. [11], Nuhn et al. [12] ed Ernst [13] in cui ancora una volta viene ribadito che l’efficacia dell’omeopatia è attribuibile all’effetto placebo.

Le stesse conclusioni sono riportate in un lavoro di Mathie pubblicato nel 2014 [14] ed in uno a firma di Unlu et al. appena apparso on line sul sito del Journal of Oncological Sciences [15]. In particolare, in quest’ultimo lavoro non solo viene evidenziata l’inutilità dell’omeopatia nella cura di patologie come i tumori, ma viene riportato anche che i rimedi omeopatici possono essere tossici se non preparati nel modo adeguato. Infatti, per molti rimedi sono state riscontrate tracce non omeopatiche di contaminanti che hanno portato a problemi gastrointestinali, melanosi ed epatite.

Conclusioni

Dalla breve disanima qui riportata si comprende che non c’è discussione. I rimedi omeopatici hanno un effetto che equivale a quello di un qualsiasi placebo. Se vi sentite bene dopo aver assunto un rimedio omeopatico non è perché ci sia stato un qualche effetto di carattere biochimico. La vostra patologia sarebbe passata anche bevendo un semplice bicchiere di acqua e facendovi credere che esso sia stato toccato dalla bacchetta magica di Harry Potter.

Ma la storia non è certamente finita. L’ultima opposizione degli amici dell’omeopatia è che l’effetto placebo non può essere osservato sugli animali e sui bambini. Quindi ci deve essere qualcosa che non va in tutto quello che sto scrivendo. Questo sarà l’oggetto della quarta parte di questo reportage sull’omeopatia.

Riferimenti

[1] K. Linde et al. (1997) Are the clinical effects of homeopathy placebo effects? A meta-analysis of placebo-controlled trials, The Lancet, 350: 834-843

[2] K. Linde et al. (1999) Impact of study quality on outcome in placebo-controlled trials of homeopathy, Journal of Clinical Epidemiology, 52: 631-636

[3] E. Ernst (2002) A systematic review of systematic reviews of homeopathy, Journal of Clinical Pharmacology, 54: 577-582

[4] R.T. Mathie (2003) The research evidence base for homeopathy: a fresh assessment of the literature, Homeopathy, 92: 84-91

[5] A. Shang et al. (2005) Are the clinical effects of homeopathy placebo effects? Comparative study of placebo-controlled trials of homeopathy and allopathy, The Lancet, 366: 726-732

[6] H. Walach et al. (2005) The Lancet, 366: 2081

[7] K. Linde e W. Jonas (2005) The Lancet, 366: 2081-2082

[8] AA. VV. (2005) The Lancet, 366: 2082

[9] A.L.B. Rutten, C.F. Stolper (2008) The 2005 meta-analysis of homeopathy: the importance of post-publication data, Homeopathy, 97: 169-177

[10] R. Lüdtke, A.L.B. Rutten (2008) The conclusions on the effectiveness of homeopathy highly depend on the set of analysed trials, Journal of Clinical Epidemiology, 61: 1197-1204

[11] M.Z. Teixeira et al. (2010) The placebo effect and homeopathy, Homeopathy, 99: 119-129

[12] T. Nuhn et al. (2010) Placebo effect sizes in homeopathic compared to conventional drugs – a systematic review of randomised controlled trials, Homeopathy, 99: 76-82

[13] E. Ernst (2010) Homeopathy: what does the “best” evidence tell us? The Medical Journal of Australia, 192: 458-460

[14] R.T. Mathie et al (2014) Randomised placebo-controlled trials of individualised homeopathic treatment: systematic review and meta-analysis, Systematic Reviews, 3: 142

[15] A. Unlu et al. (2017) Homeopathy and cancer, Journal of Oncological Sciences, http://dx.doi.org/10.1016/j.jons.2017.05.006

Fonte dell’immagine di copertina: http://www.ilpost.it/2015/03/12/omeopatia-inutile/

Omeopatia e fantasia. Parte II

Qualche settimana fa ho dedicato una nota dal titolo “Omeopatia e fantasia” (clicca qui) ai risultati di Benveniste e Montagnier in merito ad uno dei cavalli di battaglia più incisivi di quelli che io definisco gli “amici dell’omeopatia”, ovvero la memoria dell’acqua. Ho messo in evidenza come il lavoro di Benveniste sia stato smentito dagli editor di Nature (rivista su cui il concetto di memoria dell’acqua fu pubblicato per la prima volta nel 1988) così come il lavoro di Montagnier sia risultato affetto da limiti sperimentali che hanno reso le conclusioni ivi contenute del tutto inaffidabili.

Tuttavia ho anche concluso che una anomalia chimica come la memoria dell’acqua non è passata inosservata e, dopo le pubblicazioni di Benveniste e Montagnier – nonostante tutti i limiti di cui ho discusso, il mondo scientifico non se ne è stato con le mani in mano.

Tutti noi lavoriamo per scrivere i nostri nomi nei libri di storia della scienza. Se “annusiamo l’affare”, ci buttiamo a pesce per essere tra i primi, se non i primi, a descrivere il modello più adatto per spiegare certi fenomeni strani. La conseguenza è che la letteratura è piena di studi i cui autori descrivono i loro infruttuosi tentativi di trovare la “pietra filosofale”. E’ quanto accaduto anche per la memoria dell’acqua. Ma andiamo con ordine ed applichiamo il metodo scientifico di cui ho già scritto qui, qui e qui.

La domanda

Alla luce dei risultati di Benveniste, immaginiamo che  un principio attivo lasci la sua impronta all’interno del solvente che lo contiene e che tale impronta permanga nel sistema dopo una sequenza di succussioni e diluizioni successive. Questa impronta deve essere fatta da molecole di acqua che si muovono a velocità differenti, ovvero ci si deve aspettare che le molecole di acqua  sui bordi dell’impronta debbano essere meno mobili di quelle più lontane dall’impronta.

Supponiamo ora che sia valido  quanto affermato da Montagnier in merito alla presenza di nano-strutture di acqua tenute assieme da radiazioni elettromagnetiche. Ci dovremmo aspettare anche in questo caso la presenza di acqua che si muove a differenti velocità. Infatti le molecole di acqua impegnate nella formazione di nano-strutture, trovandosi in domini chimici piuttosto ingombranti rispetto alle dimensioni di una singola molecola di acqua, si devono muovere più lentamente di quelle che sono posizionate in zone più lontane dalle predette nano-strutture.

E’ possibile trovare delle evidenze sperimentali che possano validare le ipotesi suddette formulate sulla base di studi ritenuti in ogni caso inaffidabili dalla comunità scientifica?

Gli esperimenti in risonanza magnetica nucleare

La risonanza magnetica nucleare (NMR) permette di studiare il comportamento della materia in presenza di campi magnetici ad intensità differente. Non è questa la sede per entrare nei dettagli della tecnica che possono essere trovati altrove [1].

In modo molto semplicistico possiamo dire che al variare dell’intensità del campo magnetico è possibile misurare la velocità con cui si muovono le molecole di acqua confinate in specifici intorni chimici. In particolare, per intensità basse del campo magnetico applicato, si possono monitorare le velocità di molecole di acqua che si muovono lentamente. Man mano che aumenta l’intensità del campo magnetico applicato si può monitorare la velocità di molecole di acqua che si muovono con velocità progressivamente più elevata.

Nel 1999, Rolland Conte et al. [2] pubblicano una “Theory of high dilutions and experimental aspects” dove vengono riportati dati sperimentali a supporto di una teoria delle “impronte” che sembra validare la presunta efficacia dell’omeopatia. Tuttavia, le evidenze sperimentali riportate in quel libro sono state completamente smentite dai lavori di Milgrom et al. [3] e Demangeat et al. [4]. Questi autori, infatti, hanno evidenziato, mediante applicazione della tecnica NMR, che i risultati di Rolland Conte e collaboratori sono ascrivibili ad artefatti derivanti da impurezze rilasciate dalle pareti dei recipienti di vetro usati per gli esperimenti. Nessuna “impronta” rilasciata dal soluto nel solvente e presente anche dopo un certo numero di diluizioni e succussioni, è stata  rilevata da Aabel et al. [5] che scrivono:

there is no experimental evidence that homeopathic remedies make any kind of imprint on their solvent, which can be detected with nuclear magnetic resonance”.

Alle stesse conclusioni giunge anche Anick [6] che riporta:

no discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity 1H-NMR spectroscopy. The results failed to support a hypothesis that remedies made in water contain long-lived non-dynamic alterations of the H-bonding pattern of the solvent”.

Le evidenze di Milgrom et al., Demangeat et al., Aabel et al. e Anick, sono state recentemente confermate anche da Baumgartner et al. [7] che riportano:

No clear pattern emerged with respect to a difference between homeopathic preparations and controls or between homeopathic preparations”.

Da quanto appena riportato, si comprende che l’ipotesi sulla memoria dell’acqua è stata falsificata in senso popperiano. In altre parole l’uso di tale ipotesi consente di fare delle previsioni che, poi, non sono confermate dalla realtà sperimentale.

Quale conclusione si può trarre da questa lezione? La memoria dell’acqua semplicemente non esiste.

Andiamo oltre

Altre realtà sperimentali

Concentriamoci ora sul fenomeno della succussione ovvero dell’agitazione meccanica e violenta che, secondo Hannhemann, dinaminizzerebbe l’acqua rendendola capace di accumulare e potenziare l’essenza del principio attivo rendendolo efficace anche alle estreme diluizioni omeopatiche.

Tra le tecniche utilizzate per lo studio degli effetti della succussione sulla struttura dell’acqua sono da annoverare conduttimetria e calorimetria. La conduttimetria è un tipo di analisi attraverso cui si valuta la capacità dell’acqua di condurre la corrente elettrica. La conduttimetria, per esempio, consente di misurare l’effetto Grotthus di cui ho parlato qui. La calorimetria è una tecnica che consente la misura della quantità di energia coinvolta nei processi chimici. In altre parole,  l’idea alla base di queste misure è che i processi di diluizione e succussione che portano alla formazione di “impronte”, modificano la rete di legami a idrogeno in cui le molecole di acqua sono coinvolte. Queste modifiche sono individuabili sia attraverso la misura dell’energia (ovvero calore) coinvolta durante le trasformazioni che attraverso le alterazioni temporali delle proprietà conduttimetriche [8].

Sia le indagini conduttimetriche che quelle calorimetriche in cui si conclude che la succussione permette la formazione di strutture acquose coinvolte nelle proprietà dei rimedi omeopatici, sono state smentite in lavori apparsi recentemente in letteratura. Per esempio, Horatio Corti [9] riporta che tutti i lavori in cui si fa uso di conduttimetria soffrono di fallacie metodologiche. Per esempio, quando si descrive la succussione si scrive “violent agitaton”. Cosa vuol dire “agitazione violenta”? Ciò che è “violento” per me potrebbe non esserlo per altri. Sotto il profilo metodologico è sempre – e ribadisco sempre – necessario riportare le condizioni esatte con cui vengono preparati i campioni per le analisi. La base del metodo scientifico è quella di consentire a tutti i ricercatori interessati, di ripetere, se necessario, gli esperimenti fatti dai propri colleghi. Se mancano informazioni, gli esperimenti sono irripetibili ed irriproducibili; i fenomeni di cui si tenta di dare una spiegazione non sono osservabili; quei fenomeni non possono essere descritti e ricadono nell’ambito della pseudo scienza.

Si potrebbe argomentare che in alcuni lavori sia stato indicato che la succussione consiste:

in a single succussion process, 50–500 vertical strokes are given at the frequency of 0.83 Hz to the vessel containing the solution. In the case of the vortex, the time the vortex was present varied from 20 to 120 s” [10].

In altre parole, la succussione può essere effettuata in due modi. Una prima modalità consiste nell’agitare da 50 a 500 volte dall’alto verso il basso (ovvero in verticale) con una frequenza di 0.83 Hz il contenitore in cui vengono effettuate le diluizioni. Una seconda modalità consiste nell’usare un miscelatore “vortex” per un intervallo di tempo variabile da 20 a 120 s.

Sebbene quanto riportato possa sembrare ineccepibile sotto l’aspetto scientifico, in realtà le informazioni non sono sufficienti affinché la preparazione dei campioni possa essere considerata riproducibile. Infatti, manca l’indicazione relativa alla quantità di energia meccanica coinvolta nel processo di succussione.

In altri studi sui processi di succussione e diluizione, vengono prese in considerazione miscele acqua/biossido di silicio [8]. Ebbene, il biossido di silicio è un composto chimico, presente anche nel vetro, del tutto insolubile in acqua. In funzione delle dimensioni delle particelle di biossido di silicio, si può parlare di dispersione colloidale (particelle di dimensione compresa tra 2 x 10-9 e 2 x 10-6 m, ovvero tra 2 nm e 2 micron) o di sospensione (particelle con dimensione > 2 x 10-6 m, ovvero > 2 micron). È evidente, quindi, che le miscele biossido di silicio/acqua non sono “soluzioni” propriamente dette.

Non essendo delle soluzioni, ma delle dispersioni colloidali o addirittura delle sospensioni, le miscele acqua/biossido di silicio non possono essere campionate in modo riproducibile dal momento che la distribuzione del particolato solido nell’intera miscela dipende fortemente dalla turbolenza del sistema. Si tratta, in definitiva, anche in questo caso di un sistema irriproducibile che non consente ad altri ricercatori di poter controllare la validità delle osservazioni fatte da chi “esalta” la capacità “dinamizzatrice” della succussione.

Cosa dire poi dell’uso di bottiglie scure usate per la conservazione dei campioni? [11]  Il colore delle bottiglie è dovuto a composti contenenti nickel, ferro o altri ossidi di metalli di transizione che possono essere rilasciati nelle soluzioni. Queste impurezze, della cui presenza è stato già discusso nel paragrafo precedente in merito ai risultati NMR, possono inficiare sia le misure conduttimetriche che quelle calorimetriche.

Non si può, poi, non ricordare anche che  le “agitazioni violente” incrementano la solubilità dei gas in acqua portando alla formazione di nanobolle la cui presenza inficia ogni possibile tipo di analisi si decida di effettuare.

Non è un caso, quindi, che Verdel e Bukovec [12] affermino che quando tutte le possibili fonti di errori sono sotto controllo:

we found no differences in conductivities of aged mechanically treated solutions and aged untreated solutions

ovvero la succussione non produce effetti rispetto a soluzioni controllo.

Verdel e Bukovec evidenziano anche che le modifiche temporali nelle misure conduttimetriche dell’acqua possono essere ricondotti ad una proprietà anomala della stessa indicata come tissotropia. La tissotropia è una particolare caratteristica fisica di alcuni gel o liquidi per la quale la viscosità è più elevata in condizioni di riposo, mentre diventa via via più bassa man mano che aumenta l’agitazione meccanica.

Conclusioni I

Questa breve disanima sulle realtà sperimentali in merito all’omeopatia, ha evidenziato che non è vero quanto dicono gli amici dell’omeopatia in merito al mondo scientifico chiuso e sordo alle novità. Si tratta di fantasie di ignoranti che non hanno alcuna idea di come ci si muove nel mondo scientifico.Queste persone, che non hanno idea di cosa sia la Scienza, hanno in mente solo le biografie romanzate di grandi scienziati del passato e pensano che queste biografie romantiche riflettano esattamente il mondo nel quale io stesso mi muovo da circa 25 anni.

Conclusioni II

Anche sotto l’aspetto chimico, l’omeopatia altro non è che una vera e propria scemenza. C’è bisogno di prove per affermarlo? Secondo me, sì. Quando si fanno delle affermazioni in ambito scientifico bisogna sempre parlare con cognizione di causa. Bene hanno fatto i colleghi a fare esperimenti per individuare la validità della cosiddetta memoria dell’acqua. I risultati hanno dimostrato in modo ineccepibile che s tratta di una idea affascinante che, tuttavia, non ha alcun riscontro sperimentale. Si può accantonare senza alcuna difficoltà.

Conclusioni III

Ci sarà sicuramente qualcuno che penserà: “va bene. La memoria dell’acqua non è verificata e quindi non si può considerare. Ma l’omeopatia su di me funziona. Ci sarà qualche altro motivo”.

Il funzionamento dell’omeopatia è legato all’effetto placebo, un effetto non biochimico che si realizza solo in alcune condizioni e che, comunque, non consente di risolvere problemi seri. Ma questo sarà l’oggetto di un’altra nota.

Riferimenti e note

[1] D. Goldenberg (2016) Principles of NMR Spectoscopy, University Science Books; R. Kimmich (2011) NMR: Tomography, Diffusometry, Relaxometry. Springer 2nd ed.

[2] R.R. Conte et al. (1999) Theory of high dilutions and experimental aspects. Paris: Polytechnica. Tradotto e pubblicato da Dynsol Ltd, Huddersfield

[3] LR Milgrom et al. (2001) On the investigation of homeopathic potencies using low resolution NMR T2 relaxation times: an experimental and critical survey of the work of Rolland Conte et al. British Homeopathic Journal, 90: 5-12

[4] JL Demangeat et al. (2004) Low-field NMR water proton longitudinal relaxation in ultrahigh diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Applied Magnetic Resonance. 26: 465-481

[5] S Aabel et al. (2001) Nuclear magnetic resonance (NMR) studies of homeopathic solutions. British Homeopathic Journal, 90: 14-20

[6] DJ Anick (2004) High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water.  BMC Complementary and Alternative Medicine, 4: 15 DOI: 10.1186/1472-6882-4-15

[7] S. Baumgartner et al. (2009) High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quarrtz, sulfur, and copper sulfate. Naturwissenschaften, 96: 1079-1089

[8] V. Elia et al. (2004) New physico-chemical properties of extremely diluted aqueous solutions. A calorimetric and conductivity study at 25°C, Journal of Thermal Analysis and Calorimetry, 78: 331–342; V. Elia et al. (2005) Hydrohysteretic phenomena of “Extremely Diluted Solutions” induced by mechanical treatments: a calorimetric and conductometric study at 25 °C. Journal of Solution Chemistry, 34: 947-960; V. Elia et al. (2007) The “Memory of Water”: an almost deciphered enigma. Dissipative structures in extremely dilute aqueous solutions. Homeophaty 96: 163–169; V. Elia et al. (2008) New physico-chemical properties of extremely dilute solutions. A conductivity study at 25 °C in relation to ageing. Journal of Solution Chemistry, 37: 85–96

[9] H.R. Corti (2008) Comments on “New Physico-Chemical Properties of Extremely Dilute Solutions. A Conductivity Study at 25 °C in Relation to Ageing”, Journal of Solution Chemistry 37: 1819–1824

[10] V. Elia et al. (2005) Hydrohysteretic phenomena of “Extremely Diluted Solutions” induced by mechanical treatments: a calorimetric and conductometric study at 25 °C. Journal of Solution Chemistry, 34: 947-960

[11] V. Elia et al. (2004) New physico-chemical properties of extremely diluted aqueous solutions. A calorimetric and conductivity study at 25°C, Journal of Thermal Analysis and Calorimetry, 78: 331–342

[12] N. Verdel e P. Bukovec (2014) Possible further evidence for the thixotropic phenomenon of water, Entropy 16: 2146-2160

Fonte dell’immagine di copertinaultimi studi

Meccanismo di Grotthuss

Avete mai sentito parlare del meccanismo di Grotthuss? In genere, sono pochi a conoscere questa locuzione, anche tra i chimici. A cosa ci si riferisce?

Si parla di acqua e del modo con cui diffondono gli ioni ioni H+ (ione idrogeno o idrogenione) e OH (ione ossidrile o ossidrilione) all’interno del sistema acqua.

E’ noto che un acido in acqua dà luogo al seguente equilibrio:

che può essere spostato verso i reagenti o verso i prodotti a seconda della forza dell’acido stesso.

Allo stesso modo una base in acqua dà un equilibrio descrivibile secondo la seguente equazione chimica:

anche esso spostato a destra (verso i prodotti) o a sinistra (verso i reagenti) a seconda della forza della base.

La stessa acqua dà luogo ad un equilibrio di autoprotolisi che può essere descritto così:

Ciò che in genere si insegna agli studenti del primo anno dei corsi di laurea scientifici in cui si studia la chimica è che tutti gli ioni in soluzione acquosa sono solvatati, ovvero sono circondati da un certo numero di molecole di acqua. Anche gli ioni H+ e OH sono solvatati.

La struttura contenente il minimo numero di molecole di acqua per l’idrogenione e l’ossidrilione è:

In altre parole, lo ione H ha formula minima  H9O4+ mentre lo ione OH ha formula minima H7O4 .

I legami tratteggiati indicano interazioni di carattere elettrostastico. Sono i legami a idrogeno.

Quando si parla di interazioni elettriche si pensa sempre ad interazioni che si realizzano tra cariche dello stesso segno che si respingono o cariche di segno opposto che si attraggono. Nel caso specifico delle interazioni tra l’idrogenione e le molecole di acqua o l’ossidrilione e le molecole di acqua, l’interazione si stabilisce tra la carica positiva dell’idrogenione e le cariche negative presenti sugli atomi di ossigeno delle molecole di acqua; tra la carica negativa dell’ossidrilione e le cariche positive localizzate sugli atomi di idrogeno delle molecole di acqua.

I legami a idrogeno anzidetti, in realtà, non sono esclusivamente di natura elettrostatica. Esiste un altro modo per descriverli. Si possono prendere in considerazione gli orbitali molecolari. In altre aprole, si può dire che uno degli orbitali contenenti gli elettroni di non legame (ovvero una coppia solitaria) dell’atomo di ossigeno di una molecola di acqua, si combina con l’orbitale povero di elettroni dello ione idrogeno per la formazione della specie chimica  H3O+ . Quest’ultima a sua volta è caratterizzata da una vacanza elettronica (ovvero una carica positiva) delocalizzata sull’intera struttura, o meglio sui tre atomi di idrogeno legati all’ossigeno centrale. Una seconda molecola di acqua può interagire con la specie H3O+ attraverso la combinazione di un orbitale molecolare che contiene una delle coppie elettroniche solitarie dell’atomo di ossigeno con l’orbitale vuoto di uno degli atomi di idrogeno dello ione H3O+ . Queste interazioni, di natura covalente, si realizzano anche con gli altri atomi di idrogeno dello ione H3O+ .

Un discorso analogo va fatto per quanto riguarda l’interazione tra lo ione ossidrile e le molecole di acqua. La differenza rispetto a quanto accade tra acqua ed H3O+ è che nel caso dell’ossidrilione, l’orbitale ricco di elettroni è quello dello ione OH mentre quello povero di elettroni è l’orbitale presente negli atomi di idrogeno delle molecole di acqua.

Considerando quanto appena detto, ne viene che nel legame

può avvenire lo scambio

Ovvero quello che prima era un legame covalente diventa legame a idrogeno; quello che prima era un legame a idrogeno diventa legame covalente.

Quando lo scambio predetto si realizza sull’intera rete di legami a idrogeno del sistema acquoso, si ottiene la diffusione della carica positiva all’interno dell’acqua. La figura qui sotto chiarisce il movimento della carica elettrica come conseguenza dello scambio di cui si è parlato fino ad ora.

 

Un discorso analogo si può fare per la diffusione dello ione ossidrile all’interno della rete dei legami a idrogeno con le molecole di acqua:

Conclusioni I

Alla luce di quanto indicato, si evince che la diffusione degli ossidrili e degli idrogenioni in acqua non segue solo un meccanismo basato sul gradiente di concentrazione, ma anche quello fondato sullo scambio chimico conosciuto come meccanismo di Grotthus, dal nome del chimico Tedesco che per primo descrisse questo fenomeno che può essere valutato sperimentalmente attraverso tecniche di spettroscopia e conduttimetria.

Conclusioni II

Come si legge in questa “pillola di scienza”, la chimica può risultare veramente complessa se non si possiede padronanza con un certo tipo di linguaggio e con un certo modo di pensare. Nel rileggere questa nota mi sono reso conto di non aver utilizzato un linguaggio elementare. Me ne scuso con i miei lettori meno addentro al linguaggio chimico. Non sempre è facile fare lo “storytelling” di argomenti scientifici, specialmente quando questi necessitano di conoscenze di base non proprio banali.

Il lettore più curioso potrebbe chiedersi se questo meccanismo abbia una qualche utilità pratica oltre al piacere intellettuale di aver apportato una conoscenza di base al nostro bagaglio culturale. Ebbene sì. Questo meccanismo può spiegare la cinetica degli ioni (in questo caso H+ e OH ) nelle matrici ambientali come suoli ed acque. La dinamica degli ioni nei suoli è direttamente correlata alla fertilità. Come conseguenza, approfondire i meccanismi con cui le specie chimiche si “muovono” all’interno del suolo può aiutare a comprendere in che modo possiamo agire non solo per migliorare la fertilità dei suoli, ma anche per il recupero di ecosistemi stressati da attività agricole intensive necessarie alla nostra produzione alimentare.

Note e considerazioni

Gli orbitali molecolari che contengono le coppie solitarie degli atomi di ossigeno dell’acqua sono indicati come HOMO, ovvero “Highest Occupied Molecular Orbital”, orbitale molecolare a più alta energia occupato. Quelli non occupati presenti sugli atomi di idrogeno sono indicati come LUMO, ovvero “Lowest Unoccupied Molecular Orbital”, orbitale molecolare a più bassa energia non occupato.

Per saperne di più

La conduttanza ed il meccanismo di Grotthuss

La chimica dello ione idrogeno

Fonte dell’immagine di copertinahttp://www.chimica-online.it/download/legame-a-idrogeno.htm