Si tratta di un elettrone che è descritto dall’equazione di Dirac (Figura 1).
Figura 1. Equazione di Dirac
Semplice vero? Certo come no! Questa è la classica spiegazione a ciambella, ovvero un giro di parole che non spiega nulla se non si è un addetto ai lavori.
Cerchiamo di capire cos’è e perché è importante l’equazione di Dirac.
Ormai è noto a tutti che l’inizio del XX secolo è stato molto prolifico in termini scientifici. È nata, infatti, la meccanica quantistica (MQ) grazie alla quale oggi tutti hanno sentito parlare almeno una volta nella vita dell’equazione di Schoeredinger che, tra le tante cose, permette di descrivere il comportamento degli elettroni.
Una delle cose che viene insegnata a livello semplicistico a tutti gli studenti dei primi anni di corsi di studio scientifici è che l’equazione di Schoeredinger permette di definire gli orbitali come quella zona di spazio in cui esiste una buona probabilità di trovare gli elettroni. Come ho già scritto, questa è una supersemplificazione. Tuttavia fatemela passare per buona perché qui non si sta facendo una lezione di meccanica quantistica, bensì si cerca di fare un po’ di divulgazione per avvicinare concetti complessi a chi non è del settore.
Negli stessi anni in cui nasceva e si sviluppava la MQ, nasceva e si sviluppava anche la teoria della relatività ristretta (RR) di Albert Einstein. Questa si basa sostanzialmente su due postulati. Il primo postulato stabilisce che le leggi della fisica sono le stesse in tutti i sistemi di riferimento inerziali, il secondo afferma che la luce si propaga nel vuoto ad una velocità ben definita pari a 2.99 x 108 m s-1.
”Bene. Bravo. Ed ora? Dove vuoi arrivare mettendo assieme MQ e RR?” vi starete chiedendo.
Abbiate un attimo di pazienza, per favore. Lasciatemi ancora poche parole per arrivare al punto.
Meccanica quantistica e relatività ristretta sono due facce della stessa medaglia.
Fin da quando le due teorie, della MQ e della RR, si sono affermate, gli studiosi hanno cercato di unificarle. Tuttavia, tra le tante difficoltà che essi hanno incontrato, una particolarmente “ostica” è stata quella relativa alla asimmetria tra spazio e tempo della teoria di Schoeredinger che mal si conciliava con la simmetria spazio-temporale di Einstein. In altre parole, mentre Schoeredinger trattava spazio e tempo come se fossero due cose distinte e separate, Einstein considerava le dimensioni spaziali alla stessa stregua della dimensione temporale (prego i miei amici fisici di non essere troppo severi con me se sto semplificando troppo. Anzi, vi invito a correggermi se ritenete che io stia andando fuori dal seminato).
Solo Dirac, grazie alla sua genialità, riuscì a risolvere il problema elaborando una equazione (quella dell’immagine di Figura 1) con la quale riuscì a trattare le particelle quantistiche (quindi anche gli elettroni) nel regime relativistico.
Ma allora, a cosa serve sapere cosa sono gli elettroni di Dirac?
L’equazione di Dirac descrive molto bene il comportamento degli elettroni nei semiconduttori ed in sistemi quali il grafene. Per associazione, anche se studi del genere non sono stati ancora condotti, l’equazione di Dirac dovrebbe descrivere bene anche il comportamento di sistemi simil-grafene quali il biochar. Tuttavia, bisogna aggiungere che il numero di tecniche analitiche capaci di confermare sperimentalmente il comportamento degli elettroni secondo Dirac si può contare sulla punta delle dita di una sola mano. Si tratta di tecniche che sono “maneggiate” con una certa familiarità dai fisici, ma che per un chimico sono alquanto “ostiche”.
La risonanza magnetica nucleare (NMR) e gli elettroni di Dirac.
È di pochi giorni fa la notizia che su Nature Communication è apparso uno studio attraverso cui, per la prima volta, sono stati osservati mediante NMR (una tecnica molto amata dai chimici, incluso me che faccio l’NMR-ista sin dal 1992) gli effetti che gli stati elettronici di Dirac (ovvero quelli descritti dall’equazione di Figura 1) hanno sul comportamento dei nuclei di una lega metallica fatta da Bismuto e Tellurio (Bi2Te3) che viene utilizzata come isolante.
Se avete voglia di leggere l’articolo originale basta cliccare sull’immagine qui sotto.
Bella domanda. Intanto si aggiunge una nuova tecnica a quelle già usate per lo studio del comportamento degli elettroni e la verifica sperimentale dell’equazione di Dirac. Inoltre, si aprono nuovi scenari per la progettazione di nuovi materiali con proprietà sempre più sofisticate da poter utilizzare nei campi più disparati come la ricerca spaziale o quella medica.
Chiedo scusa ai miei lettori, ma questa pillola di scienza oggi è dedicata ai miei studenti ed a tutti quelli che hanno studiato la chimica organica. Per questo motivo userò un linguaggio poco divulgativo ed abbastanza tecnico.
Il linguaggio comune ed il linguaggio scientifico: usi ed abusi
Il termine “aromatico” viene attribuito, nel linguaggio comune, a un oggetto che emana un buon odore. Si tratta quindi di una qualità che viene associata a qualcosa di “buono”. Quante volte abbiamo sentito, o noi stessi abbiamo detto, “senti che buon aroma di caffè” oppure “hmmmm che buon profumo ha questa zuppa” laddove il termine “profumo” è sinonimo di “aroma”.
Ebbene, noi chimici, a causa delle limitazioni del nostro linguaggio, siamo abituati a prendere i termini comuni ed a cambiar loro di significato per attribuirne uno di carattere molto più tecnico. Ecco perché mi salta subito la mosca al naso quando sento le persone parlare di chimica o, più in generale, di scienza usando termini tecnici di cui, però, non conoscono il significato. Queste persone pensano che usare parole prese dal linguaggio scientifico e messe in fila in modo casuale dia un’àura di scientificità alle cose che dicono. Solo per citare pochi esempi mi vengono in mente quelli che esaltano la biodinamica scrivendo “robe” come quelle che vedete nell’immagine qui sotto. Cliccando sull’immagine si apre la pagina dalla quale ho fatto lo screenshot.
Che dire poi di quelli che si sono votati all’omeopatia, pratica esoterica di cui parlo abbondantemente in uno dei capitoli del mio libro “Frammenti di Chimica“? Ne ho già parlato tante volte. Alcune delle chicche sono analizzate nel link qui sotto:
Lasciamo da parte le polemiche e concentriamoci sul significato dell’aggettivo “aromatico” nel linguaggio chimico. Se cerchiamo sulla Treccani online, possiamo leggere:
aromàtico agg. [dal lat. tardo aromatĭcus, gr. ἀρωματικός] (pl. m. –ci). – […] In chimica organica, composti a. (così denominati perché vi appartengono molte sostanze aromatiche), serie di composti ciclici nella cui molecola sono contenuti uno o più sistemi a sei atomi di carbonio disposti ad anello (distinti in omociclici e eterociclici a seconda che ai vertici dell’anello si trovino tutti atomi di carbonio o anche altri atomi)
Questo è il classico esempio di informazione così generale da perdere completamente di significato in termini chimici. Infatti esistono tanti composti omociclici ed eterociclici che non hanno assolutamente la caratteristica di essere aromatici. E non necessariamente devono essere presenti sistemi ciclici a sei atomi di carbonio.
La regola di Hückel
Da un punto di vista chimico un sistema organico si dice aromatico quando:
contiene 4n+2 elettroni π (con n intero e ≥ 0)
è ciclico e planare
In tutti gli altri casi il sistema si dice antiaromatico. I sistemi aromatici hanno come peculiarità la bassa reattività, ovvero elevata stabilità chimica.
Vediamo alcuni esempi di composti aromatici ed antiaromatici
Il benzene è un sistema ciclico con la struttura descritta nella figura seguente:
La posizione dei doppi legami cambia e le due strutture, del tutto equivalenti, sono indicate come ibridi di risonanza. Nel sistema π del benzene sono presenti 6 elettroni, ovvero rispetta la regola del 4n+2 per n=1. Qui sotto viene evidenziato come l’ibridazione (sp2) degli atomi di carbonio consenta alla molecola di avere una struttura planare.
Entrambe le condizioni della regola di Hückel sono rispettate ed il benzene può essere considerato un composto aromatico.
Prendiamo adesso in considerazione il [10]annulene qui sotto:
C’è un anello, ci sono 10 elettroni π. Il numero di elettroni nel sistema π segue la regola di Hückel del 4n+2 per n=2. Tuttavia il composto non è aromatico perché non ha una struttura planare:
La non planarità è dovuta al fatto che gli atomi di idrogeno indicati nella figura sottostante si respingono per effetto sterico portando la molecola ad avere una struttura a twist.
Quando si studia la chimica organica e si arriva al capitolo sull’aromaticità, ci si imbatte anche nello ione tropilio (o catione cicloeptatrienile) che viene, in genere, indicato come lo ione più grande avente caratteristiche aromatiche. Esso si ottiene per allontanamento dello ione idruro dal cicloeptatriene. Quest’ultimo, pur avendo 6 elettroni π (n=1 nella regola di Hückel), non è aromatico a causa di un carbonio sp3 che lo rende non planare. Quando lo ione idruro viene allontanato, tutti gli atomi di carbonio risultano di tipo sp2, il sistema diventa planare, il numero di elettroni è quello previsto dalla regola di Hückel e lo ione è aromatico.
I sistemi aromatici “giganti”
La regola di Hückel è un utile strumento per comprendere cosa significhi il termine “aromatico” in chimica . Questa regola è di applicabilità generale e può essere validata sperimentalmente attraverso l’uso della spettroscopia di risonanza magnetica nucleare (NMR). Infatti, gli elettroni del sistema π di un composto aromatico generano una corrente di anello (ring current) responsabile di un campo magnetico locale che si addiziona o si sottrae al campo magnetico applicato durante l’esperimento NMR. La variazione del campo magnetico dovuta alla corrente di anello comporta uno shift dei segnali dei nuclei soggetti a tale fenomeno. Per un approfondimento di carattere didattico cliccare qui.
La spettroscopia di risonanza magnetica nucleare è la tecnica usata per sfatare un mito in base al quale più grande è la molecola contenente 4n+2 elettroni π e più facilmente essa è in grado di deformarsi così da allontanarsi dalle condizioni strutturali che soddisfano la regola di Hückel.
Nel 2016 è stato pubblicato un lavoro (qui) in cui viene descritta una molecola aromatica contenente fino a 62 elettroni π (ovvero n=15 nella regola del 4n+2):
Come mai una molecola così grande, la più grande sintetizzata fino al 2016, si comporta come un sistema aromatico rispettando la regola di Hückel? Gli autori dell’articolo ipotizzano che l’enorme flessibilità della molecola consenta la coesistenza di tanti conformeri. Tra questi possono sussistere dei conformeri in cui le nuvole elettroniche di tipo π interagiscano tra loro in modo da portare ad una delocalizzazione elettronica in grado di soddisfare la regola di Hückel. Questa stessa spiegazione è stata usata per giustificare il comportamento aromatico di una molecola sintetizzata più recentemente (il lavoro è stato pubblicato il 20 Gennaio 2020, qui) contenente ben 162 elettroni π (ovvero n=40 nella regola del 4n+2). Si tratta di una vera e propria ruota gigantesca in cui coesistono 12 anelli porfirinici.
A questo punto mi potreste chiedere: ok. Bella tutta ‘sta storia, ma a che serve? Voglio evidenziare che la sintesi di molecole così grandi consente di mettere a punto protocolli che possono essere usati per la sintesi di molecole diverse e con attività biochimiche da sfruttare per l’elaborazione di nuovi farmaci. Per poter “vedere” queste molecole è necessario spingersi ai limiti delle tecniche analitiche più utilizzate in chimica. Questo vuol dire che vengono migliorate le caratteristiche di tecniche che possono diventare di applicazione sempre più ampia e consentire di arrivare a limiti finora inesplorati. Infine, queste molecole aromatiche giganti possono essere utilizzate per studiare gli effetti quantistici a livello nanoscopico ben oltre i limiti imposti dalle dimensioni della costante di Planck.
Quando leggo queste notizie, che per me sono affascinanti perché mi consentono di immergermi in un mondo tutto mio, mi ricordo perché mi sono innamorato della chimica ed ho fatto del mio hobby il mio lavoro.
Continua la serie di interviste per la C1V edizioni in cui si affrontano problemi chimici legati alla vita quotidiana. Dopo aver parlato di acqua e dolcificanti (qui), oggi si affronta un problema molto attuale che riguarda la sostenibilità ambientale. Prendendo spunto dalle iniziative di alcune Istituzioni pubbliche che hanno deciso di fornire bottiglie di alluminio per disincentivare l’uso della plastica, affronto il problema dell’inquinamento da plastica ed evidenzio limiti e vantaggi delle iniziative anzidette.
_________________________________
Professore, la sua attività di ricerca è mirata non solo alla delucidazione dei meccanismi coinvolti nella dinamica di nutrienti e contaminanti nei suoli, ma anche al recupero ambientale. Ha letto sicuramente dell’iniziativa promossa dal Comune di Milano e dall’Università di Padova per combattere la lotta all’inquinamento da plastica. Cosa ne pensa?
Cominciamo col dire che il termine “plastica” individua una moltitudine di materiali che si differenziano tra loro per caratteristiche chimico-fisiche e meccaniche. Forse solo gli addetti ai lavori ricordano che una delle prime “plastiche” ad essere sintetizzate fu il rayon. Si tratta di un derivato della cellulosa – sì, il polimero a base di glucosio che costituisce le fibre vegetali – che fu conosciuta come “seta artificiale”. [continua…]
È nata la Rete Informale SETA – Scienze e Tecnologie per l’Agricoltura che raccoglie professionisti del settore (accademici, liberi professionisti ed operatori agricoli) per lo sviluppo ed il sostegno ad una agricoltura sostenibile mediante l’uso delle conoscenze scientifiche e delle tecnologie più attuali.
Nelle immagini che seguono potete leggere il Manifesto per l’Agricoltura del XXI secolo da cui riporto uno stralcio:
<Crediamo necessario guardare all’agricoltura in un’ampia prospettiva di spazio e di tempo: essa si deve prioritariamente preoccupare di assicurare ad un’Umanità in crescita cibo sufficiente in termini quantitativi, sicuro in termini qualitativi, appropriato in termini nutrizionali ed equamente distribuito; lo deve fare incrementando la propria capacità produttiva – quanto meno fintanto che non si giungerà alla stabilità demografica – senza provocare il depauperamento irreversibile delle risorse naturali, al contempo adottando logiche di multifunzionalità che mirino alla tutela del paesaggio, del benessere e della cultura delle comunità locali. In tal senso riteniamo che questi obiettivi possano essere raggiunti soltanto attraverso l’impiego integrato di tutte le tecnologie disponibili, sulla base dei principi di sostenibilità economica, sociale e ambientale>
“Le misure contro la Xylella fastidiosa sono spesso attaccate da un variegato mondo che ama definirsi ambientalista e libertario, il quale ciancia di attacco alla democrazia, di misure imposte senza prove e di pericoli per la salute.
Oltre 150 scienziati del settore, tra cui alcuni Lincei, ricercatori, medici, giuristi, amministratori locali, imprenditori agricoli, naturalisti e chi è o è stato in prima linea – tra loro il generale Silletti – ci dicono una sola cosa: non è così, basta bugie.
Trovate al link qui sotto le loro considerazioni e la possibilità di lasciare il vostro nome per unirvi a loro.”
Io ho firmato perché ritengo che il mondo scientifico debba risollevarsi contro questo rigurgito di superstizioni che alimenta solo interessi personali.
Fonte dell’immagine di copertina: https://commons.m.wikimedia.org/wiki/File:Ostuni_olive_grove_SS379-3339.jpg
In questi giorni si leggono tanti soloni discettare di dogmatismo scientifico perché il mondo accademico, almeno una parte consistente di esso, bolla come pseudoscientifiche le elucubrazioni esoteriche di chi cerca di ammantare di scientificità la pratica agricola che va sotto il nome di biodinamica®. Ricordo brevemente che si tratta di una pratica che si basa sulle concezioni filosofiche di Rudolf Steiner, vissuto tra il 1861 ed il 1925, il quale dettò alcune regole per la produzione alimentare che avevano come obiettivo l’equilibrio “spirituale” tra l’uomo e la Terra. Non è questo il momento per evidenziare le sciocchezze di Steiner. Ne ho scritto qualcosa qui e recentemente, assieme ad Enrico Bucci, ne ho parlato anche qui. Voglio, piuttosto, centrare l’attenzione sul fatto che i soliti redivivi Giordano Bruno e Galileo Galilei pensano di essere innovativi e che la scienza ufficiale brutta e cattiva si opponga alle loro novità per motivi economici o di arrivismo carrieristico. Tralasciando queste accuse che qualificano solo chi le fa, è da un po’ di tempo che non racconto di novità in ambito scientifico. Oggi voglio raccontarvi di nuove scoperte che la chimica – sì, proprio quella che produce le tanto vituperate sostanze tossiche (qui, per esempio) – sta facendo per aiutare la produzione agricola.
Chi mi segue sa che qualche volta ho parlato delle grandi scoperte scientifiche. Tra queste bisogna certamente annoverare il processo Haber-Bosch grazie al quale è possibile convertire l’azoto molecolare in ammoniaca.
Vi chiederete: embé?
Da un punto di vista chimico, l’azoto molecolare (N2) è una delle molecole più stabili (ovvero irreattive) che esistano in natura. L’energia di dissociazione della molecola di azoto è di circa 900 kJ mol-1. Ai non chimici questa informazione quantitativa è inutile. Vediamo di trasformarla in qualcosa di più comprensibile.
La reazione del processo Haber-Bosch (che potete trovare descritta qui) è:
N2 + 3H2 = 2NH3
Per ottenere questa conversione attualmente bisogna operare a 500 °C (contro i 600 °C del processo originario) e 150 bar (contro i 300 bar del processo originario). In altre parole, occorre una temperatura particolarmente alta (voi mettereste la mano nel piombo o nel rame fusi? Ecco…neanche io. 500 °C è una temperatura alla quale sia il rame che il piombo sono in fase liquida) ed una pressione altrettanto drastica (150 bar corrispondono approssimativamente alla pressione esercitata dall’acqua quando scendiamo ad una profondità di circa 1500 m).
L’importanza di questa reazione è legata al fatto che l’aria che noi respiriamo è costituita per l’80 % di azoto molecolare che è, quindi, disponibile a basso costo. La conversione Haber-Bosch consente di ottenere ammoniaca dalla quale poter, poi, sintetizzare molecole quali il solfato di ammonio che vengono usate, tra l’altro, per arricchire di azoto disponibile i suoli. Ricordo che l’azoto è un elemento importantissimo non solo per l’uomo, ma anche per le piante – ed in generale per tutti gli esseri viventi. Il motivo è che esso è presente in molecole come DNA e RNA, e nel nostro corredo proteico. Una carenza di azoto porta le piante a condizioni di stress in quanto esse non sono in grado di sintetizzare le predette molecole. Vi renderete conto, quindi, che l’uso di concimi a base di azoto è estremamente importante per conservare la fertilità dei suoli (che è la capacità di un suolo di sostenere la vita) e consentire la produzione alimentare per fornire sostentamento alla popolazione mondiale attualmente ancora in crescita.
Ebbene, fatta questa lunga premessa su un processo chimico oggi molto importante per le sue implicazioni in agricoltura, veniamo alla novità (l’articolo originale è qui. Se non avete possibilità di accesso a JACS, potete leggerne un riassunto qui).
Ricercatori statunitensi si sono messi a studiare in modo sistematico un fenomeno dall’apparente non riproducibilità.
Circa 75 anni fa si osservò che il biossido di titanio (TiO2), un composto inorganico usato come catalizzatore nella chimica verde, come sbiancante nelle vernici e nei dentifrici, nella forma allotropica indicata come rutilo (Figura 1) riesce a convertire l’azoto molecolare in ammoniaca secondo lo schema riportato più su in condizioni molto blande, ovvero temperatura e pressione ambiente.
Il fenomeno veniva osservato solo saltuariamente. Tuttavia, nel tempo un certo numero di ricercatori ha condotto studi computazionali dai quali si è evinto che la non ripetibilità della conversione era legata al fatto che centro dell’attenzione nell’ottenimento del biossido di titanio era un prodotto con elevato grado di purezza. Quando tracce di impurezze carboniose erano presenti sulla superficie del catalizzatore, esso funzionava ottimamente a temperatura e pressione ambiente per convertire azoto molecolare in ammoniaca. Nel lavoro su JACS (una delle riviste più autorevoli della American Chemical Society) sono riportate finalmente le prove sperimentali di quanto ottenuto attraverso la computazione.
Qual è la morale di questa storia. I “bufalari” sono usi opporsi alla scienza perché definiscono gli scienziati chiusi nelle loro posizioni dogmatiche. Questi ignoranti ed arroganti neanche si rendono conto che se un fenomeno non viene osservato, non c’è nessun motivo per studiarlo. Quali ipotesi si dovrebbero formulare se il fenomeno semplicemente non esiste? Invece, la conversione di azoto in ammoniaca, sebbene saltuaria, era evidente. Bisognava solo capire quali fossero le condizioni necessarie a rendere ripetibile e riproducibile il fenomeno. Una volta individuate queste condizioni, si è ottenuta la fissazione dell’azoto in modo più conveniente del processo Haber-Bosch. Si tratta ora solo di replicare lo studio in laboratori indipendenti e ingegnerizzate il tutto in modo da produrre fertilizzanti a costo molto più basso dell’attuale.
Altro che le scemenze sulla biodinamica o sulla agro-omeopatia che esistono solo nella testa dei seguaci di queste pseudoscienze.
Interessante. Oggi parlavo con un collega che evidentemente sta seguendo i miei post sul blog, in particolare questi sugli errori, e mi faceva notare che anche io non sono esente da errori nel riportare correttamente le cifre significative di cui ho parlato qui. Dovrei stare attento quando giudico gli altri e scrivo certe cose perché io stesso sono suscettibile delle medesime critiche. Sono d’accordo. Anzi aggiungo che sono assolutamente d’accordo. Ma proprio per questo devo guardare anche a me stesso.
Ho controllato nei diversi lavori che ho pubblicato, avendo come traccia solo che si trattava di un lavoro degli inizi della mia carriera. In effetti è così. L’ho trovato. Si tratta di: Zena, Conte, Piccolo (1999) GC/ECD determination of ethylenethiourea residues in tobacco leaves, Fresenius Environmental Bulletin 8, 116-123. Si tratta di un lavoro in cui sono stati ricercati i prodotti di degradazione, anzi del prodotto di degradazione, di un fungicida usato nella coltivazione del tabacco. Le tabelle incriminate sono quelle che potete vedere in Figura 1 e Figura 2.
Figura 1. Tabella 1 con il numero non corretto di cifre significativeFigura 2. Altra tabella con errori nelle cifre significative
Si tratta di errori del tutto analoghi a quelli che ho denunciato nella Parte II di questo reportage.
Non è certo un caso che la rivista che ha accettato questo lavoro abbia un impact factor di 0.673 per il 2017/2018. In effetti una qualsiasi altra rivista più quotata quasi sicuramente non avrebbe fatto passare un lavoro con questi errori così evidenti. La qualità di questa rivista è valutabile al seguente link Fresenius Environmental Bulletin.
La Figura 3 mostra come si posiziona negli anni Fresenius Environmental Bulletin nei vari quartili che sono utilizzati per la valutazione della qualità di una rivista scientifica.
Figura 3. Posizionamento dei Fresenius Environmental Bulletin negli anni
Per i non addetti ai lavori, ogni rivista viene posizionata in un quartile in base all’importanza della rivista stessa. Il quartile più importante è indicato come Q1, poi a scalare ci sono Q2, Q3 e Q4. Le riviste che si posizionano in Q1 sono quelle più accreditate (Nature e Science, tanto per essere chiari), mentre più alto è il valore del quartile, meno importante è la rivista in cui si decide di pubblicare. Il codice dei colori riportato in Figura 3 mostra che Fresenius Environmental Bulletin per il 2017 si trova in Q4 per il settore Environmental Science e Q3 per i settori Pollution e Waste Management and Disposal. La posizione migliore che questa rivista aveva nel 1999 era Q2 per Waste Management and Disposal.
Come fa una rivista a scendere così in basso nel posizionamento dei quartili? Uno dei motivi è che accetta lavori come il mio con errori così evidenti che non consentono agli stessi di far crescere la rivista in cui sono pubblicati.
Le quotazioni di una rivista crescono con la qualità dei lavori che essa accetta e pubblica. Lavori di bassa qualità non permettono alla rivista di essere catalogata tra quelle importanti per un determinato settore scientifico.
Volete sapere quale è stato l’impatto di questo mio lavoro nella comunità scientifica? Lo potete vedere nella Figura 4 che è ricavata dallo screenshot della mia pagina Google Scholar (qui).
Figura 4. Impatto del lavoro su Fresenius Environmental Bulletin nella comunità scientifica
Come vedete, dal 1999 ad oggi il lavoro è stato citato solo sei volte. In quasi venti anni sei citazioni sono davvero poche. Solo come confronto, nella Figura 4 è riportato anche l’impatto (in numero di citazioni) di altri due miei lavori. Evidentemente la qualità dei dati sperimentali descrivibile attraverso l’uso scorretto delle cifre significative riflette la qualità complessiva del lavoro che non è risultato utile alla comunità scientifica relativa al mio settore.
Devo ancora trattenermi in quel che dico o scrivo perchè alcuni ritengono che sottolineare il pressapochismo che sovente si nota nel riportare le cifre significative sia insignificante o, addirittura, sbagliato? No.
Anche io posso sbagliare, ma l’importante è stato imparare dai miei errori, non certo non commetterne mai. Anzi, sono molto grato al mio collega che ha avuto la costanza e la pazienza di andarsi a scaricare tutta (sic!) la mia produzione scientifica, leggere un bel po’ di lavori ed andare a spulciare nei meandri delle mie pubblicazioni se eventualmente ci fosse da segnalare al sottoscritto la presenza di sbagli, anche in pubblicazioni di quasi venti anni fa. Di questo lo ringrazio perchè la mia memoria non è così ferrea.
Ma, anche, questo mi permette di dire che tutti commettiamo errori e che non bisogna mai abbassare la guardia di fronte alla sciatteria scientifica se si ha la volontà di crescere e migliorare professionalmente.
Nelle prime due parti del reportage sulla qualità dei dati scientifici ho posto l’attenzione sulla differenza tra riviste chiuse e riviste aperte (qui) e ho evidenziato che la scarsa qualità dei dati scientifici non riguarda solo i predatory journal, ma anche giornali ritenuti molto affidabili (qui). In altre parole ho puntualizzato che la cosiddetta bad science, ovvero ciò che sfocia nella pseudo-scienza, è trasversale; ne sono pervase un po’ tutte le riviste: siano esse predatory journal oppure no; siano esse open-access oppure no. Ne ho discusso anche altrove (per esempio qui e qui), quando ho evidenziato che lavori poco seri sono apparsi su Nature e Science (riviste al top tra quelle su cui tutti noi vorremmo pubblicare) e che più che dal contenitore, ovvero dalla rivista, bisogna giudicare la qualità di un lavoro scientifico sulla base di ciò che viene scritto. Nonostante questo, tutte le istituzioni accademiche e non, riconoscono che la probabilità di avere bad science in un predatory journal è più alta che nelle riviste considerate non predatory; per questo motivo tutte le istituzioni formulano delle linee guida per tenersi lontani da riviste di dubbia qualità.
In che modo difendersi dalla bad science delle riviste predatorie?
Esistono tanti siti al riguardo. Per esempio, la mia Università, l’Università degli Studi di Palermo, mette a disposizione una pagina (qui) in cui elenca una serie di siti web da cui attingere per valutare se una rivista è seria oppure no. In particolare, se la rivista in cui si desidera pubblicare è compresa negli elenchi dei link riportati ed è anche nella Beall’s list of predatory journals and publishers, con molta probabilità si tratta di un predatory journal a cui si raccomanda di non inviare il proprio rapporto scientifico. Se, invece, la rivista o l’editore sono negli elenchi citati ma non nella Beall’s list of predatory journals and publishers, con buona probabilità si tratta di riviste non predatorie. Qual è il limite di queste raccomandazioni? I predatory journal spuntano come funghi per cui è possibile che ci si imbatta in una rivista che non è stata ancora catalogata come predatoria. Cosa fare in questo caso? Bisogna ricordarsi che tutte le riviste predatorie hanno in comune alcuni caratteri essenziali che le distinguono dalle riviste più accreditate:
Comitati editoriali anomali, non determinati o inesistenti
Tendenza a pubblicare lavori scientifici in settori molto eterogenei tra loro
Tasse per la pubblicazione estremamente basse (in genere meno di 150 €)
Presenza di immagini sfocate o non autorizzate presenti nei loro siti web
Richiesta di invio dei lavori mediante posta elettronica, spesso a indirizzi e-mail non professionali o non accademici, e non attraverso un sistema di invio on-line
Mancanza di qualsiasi politica sulle ritrattazioni, correzioni, errata corrige e plagio (più della metà delle riviste più accreditate descrive nei propri siti web come comportarsi in ognuna delle quattro circostanze)
Basso o inesistente valore di impact factor (IF)
Tutti questi caratteri possono essere presenti contemporaneamente o in parte in una data rivista. Tuttavia, la loro presenza non necessariamente deve essere indice di predazione. Infatti, per esempio, una rivista nuova non ha l’impact factor che si calcola confrontando il numero di citazioni di tutti gli studi pubblicati in un biennio col numero totale di studi pubblicati nello stesso biennio (qui). Questo significa che una rivista può cominciare ad avere un IF solo a partire dal terzo anno di vita. Se la rivista è di nuova fondazione, può attuare una politica di incentivazioni alla pubblicazione fornendo agevolazioni ai ricercatori che decidono di inviare il loro lavoro. Per esempio, la ACS Omega(una rivista ancora senza IF della American Chemical Society, ACS) permette la pubblicazione gratuita a chiunque disponga di voucher (del valore di circa 750 $) elargiti dalla ACS a ricercatori di paesi in via di sviluppo o con problemi di fondi di ricerca per la pubblicazione in open access. C’è anche da dire che attualmente è abbastanza facile costruire siti web accattivanti ed attraenti. Per questo motivo, a meno che non si tratti di truffe molto evidenti, è abbastanza difficile trovare riviste predatorie con siti web fatti male. Infine, in passato ho pubblicato su riviste molto importanti del mio settore (quindi non predatorie, non open access e con ottimo IF), il cui editor rispondeva ad un indirizzo e-mail con dominio gmail.com.
Ma adesso sto diventando prolisso. Basta annoiarvi.
Ho aperto questo articolo scrivendo che tutte le istituzioni accademiche (e non) si raccomandano di seguire le linee guida appena indicate per evitare di pubblicare su riviste dalla scarsa qualità. In altre parole, le linne guida riportate sono un modo per riconoscere l’attendibilità dei contenitori in cui “versare” le conoscenze scientifiche che noi raccogliamo dalla nostra attività di ricercatori. Per ora non vi voglio annoiare di più. Nella quarta ed ultima parte di questo reportage dimostrerò che, in realtà, la qualità della ricerca non dipende dalla tipologia di rivista, ma da ben altri fattori tra cui le istituzioni che finanziano la ricerca e che, nello stesso tempo, si raccomandano di tenersi lontani da certi giornali.
Eravamo rimasti alle riviste predatorie (qui), quelle riviste che, dietro corrispettivo di una tassa più o meno salata, pubblicano di tutto senza una seria revisione tra pari (peer review); anzi possiamo anche dire senza alcuna revisione tra pari.
Volete un esempio?
Cliccate qui e si aprirà uno studio dal titolo “Combined Effects of Ethylacetate Extracts of Propolis Inducing Cell Death of Human Colorectal Adenocarcinoma Cells”, autori: Britta Schulz, Elizabeth Smith , Richard Funden and Ulf Moosberger; rivista: J Integr Oncol 2018, 7:2 (DOI: 10.4172/2329-6771.1000207). In questo studio (citato nel numero 1274 della rivista Internazionale) si discute dell’attività anticancerosa della propoli, ovvero di una sostanza resinosa “fabbricata” dalle api, di origine vegetale e ritenuta la panacea di ogni male. Cosa c’è di strano in questo lavoro? Semplicemente che si tratta di un lavoro inventato dai giornalisti del Süddeutsche Zeitung Magazin e del Süddeutsche Zeitung nell’ambito di una inchiesta (pubblicata appunto sul numero 1274 di Internazionale) in merito ai giornali predatori. Gli stessi giornalisti del Süddeutsche Zeitung Magazin e del Süddeutsche Zeitung, poi, affermano che, per non lasciar traccia di questa pseudo scienza, hanno richiesto il ritiro del lavoro. Ed infatti, qui trovate proprio la retraction, sebbene non sia per nulla indicato che si è trattato di un lavoro inventato.
In questo caso si parla di dati e lavori apparsi su riviste di editori che sono inclusi nella Beall’s list of predatory journals and publishers per cui, sapendo che la serietà di tali riviste è opinabile, uno scienziato serio si guarda bene dal prenderli in considerazione se non dopo essere entrato approfonditamente nel merito di quanto lì scritto ed aver fatto un’accurata revisione post pubblicazione (ricordo che il principio fondante del metodo scientifico si basa sull’importanza di ciò che viene detto e non su quella del contenitore dove viene pubblicato un lavoro. Ne ho parlato anche qui).
Le sciocchezze nelle riviste più accredidate: il caso del gruppo editoriale Nature
Bisogna ammettere che lavori dalla dubbia o inesistente serietà possono essere pubblicati anche su riviste più accreditate. Ne volete un esempio? Eccolo (qui). Si tratta di un lavoro sull’efficacia dell’omeopatia pubblicato su Scientific Reports (una rivista del gruppo editoriale Nature) che tutti i siti pro-omeopatia e tutti i quelli che pensano che l’omeopatia abbia un’efficacia più alta del placebo si affannano a pubblicizzare come pubblicata sulla molto più quotata Nature (qui e qui, per esempio). Cosa ha di strano questo lavoro?
Lo story-telling
Faccio una premessa. Le riviste del gruppo Nature hanno una particolarità: gli articoli sono scritti come se fossero una specie di story-telling. In altre parole, si privilegia la narrazione dei risultati e della loro interpretazione rispetto alla parte tecnico-sperimentale, ovvero l’elencazione dei materiali e metodi usati per gli esperimenti. Non fraintendetemi. Non è che materiali e metodi manchino; ci sono, solo che vengono inseriti in coda all’articolo pubblicato. Questo vuol dire che chi legge spesso si sofferma solo sullo story-telling senza approfondire oltre le modalità con cui sono stati condotti gli esperimenti. Questo modo di esporre una ricerca è positivo perché permette la comprensione di un articolo scientifico ad un pubblico molto più ampio di quello che accede a riviste che non usano il medesimo approccio narrativo: i lettori non si distraggono con particolari tecnici che, molte volte, risultano ostici ed incomprensibili. Il punto è che proprio nei materiali e metodi si annidano le insidie. È dalla lettura di quei paragrafi molto tecnici che si può capire se un progetto sperimentale è stato ben congegnato.
I dettagli tecnici
Andiamo nei particolari. A pagina 9 è scritto:
Drug treatment and groups. Animals were randomly divided into five groups, each consisting of 8 rats (n = 8). Group I: Normal control group of rats were orally administered once daily with 1 ml saline for 14 days. Group II: Sham operated group of rats were treated with 1 ml saline once daily for 14 days. Group III: CCI-induced neuropathy control group of rats orally received 1 ml saline once daily for 14 days. Group IV: CCI-induced neuropathy + RT treated group of rats orally received 0.1 ml of RT (1 × 10−12 dilution) with 1 ml of distilled water once daily for 14 days. Group V: CCI-induced neuropathy + gabapentin treated group of rats orally received Gabapentin (60 mg/kg/day, p.o.) suspended in 0.5% carboxymethyl cellulose (CMC) once daily for 14 days.
Da quanto riportato, si capisce che si tratta di una sperimentazione fatta su ratti divisi in 5 gruppi ognuno contenente 8 individui. Già da questo si potrebbe argomentare che 8 individui non sono una popolazione statisticamente significativa. Per poter avere dati che abbiano un significato statistico accettabile bisogna andare su numeri più grandi. Ed in effetti gli autori sembrano essere coscienti di questo limite perché a pagina 7 (nelle conclusioni del lavoro) scrivono:
Although, the results of present study suggested the anti-neuropathic effect of RT, further pre-clinical and clinical studies are warranted to confirm these effects. Several other biochemical mechanisms may be involved in RT mediated anti-neuropathic effect. Results of present study are suggestive of the anti-nociceptive effect of RT against neuropathic pain and deserve further validation of its effectiveness in various painful conditions.
In altre parole, occorrono esperimenti più approfonditi per validare le loro conclusioni.
La sperimentazione in cieco
Ma torniamo al “Drug treatment and groups”. Riuscite a notare cosa manca? Manca la sperimentazione in cieco. In altre parole, i trattamenti somministrati ai ratti dei cinque gruppi sono stati condotti in modo tale da non evitare né l’effetto Rosenthal né l’effetto Hawthorne. Si tratta di due possibili meccanismi dell’effetto placebo che ho già avuto modo di descrivere qui (ne parlo anche nel mio libro). La conclusione è che, sebbene pubblicato su una rivista prestigiosa di una casa editrice molto antica ed altrettanto prestigiosa, il lavoro non è fatto bene e le conclusioni non consentono di dire che i rimedi ad elevata diluizione sperimentati sono più efficaci dei placebo.
Altri esempi di lavori superficiali su riviste accreditate
Una delle riviste del mio settore è Journal of Chemical Ecology. È una rivista con un impact factor di 2.419 per il 2017. Certo non è paragonabile a quello di Nature che è 42, ma stiamo parlando di riviste scientifiche di carattere differente. Nature è una rivista generalista e, per questo, letta da scienziati di ogni settore disciplinare; Journal of Chemical Ecology è un giornale di chimica ecologica ed è destinato ad una nicchia molto piccola di scienziati, ovvero chimici che si occupano di ecologia ed ecologi. Da qui discende che il numero di citazioni che possono ricevere i lavori di Nature è di gran lunga più alto di quello che possono ricevere i lavori di Journal of Chemical Ecology destinato ad un settore enormemente più piccolo di quello di Nature (ricordo che l’impact factor è un parametro quantitativo che si calcola confrontando il numero di citazioni di tutti gli studi pubblicati in un biennio col numero totale di studi pubblicati nello stesso biennio. Per esempio, supponiamo che il numero di citazioni di tutti gli studi pubblicati su una rivista nel biennio 2015-2016 sia 13000, mentre il numero di studi pubblicati nello stesso periodo sia 5000. L’impact factor si ottiene dal rapporto 13000/5000, ovvero esso è 2.6).
Fatta questa premessa doverosa per evitare che i non addetti ai lavori si mettano a fare confronti idioti tra riviste che non possono essere confrontate tra loro (e vi assicuro che stupidi che fanno questi confronti ce ne sono), vediamo cosa mi è capitato sotto le mani.
Le cifre significative
Chi mi legge da un po’ di tempo sa che non scrivo solo per il mio blog, ma anche per altri siti come Laputa e Chimicare. In quest’ultimo ho pubblicato un breve articolo sulla matematica elementare nella chimica. Lo potete trovare qui. Non voglio tediarvi con troppi dettagli. L’articoletto sulla matematica elementare per la chimica descrive il numero esatto di cifre che si deve utilizzare per esprimere il valore numerico di una grandezza fisica e il modo con cui si esprime l’errore sperimentale:
Sono cifre significative tutte le cifre non nulle presenti nel numero che esprime la misura sperimentale
Lo zero compreso tra numeri non nulli è una cifra significativa
Gli zeri che seguono numeri non nulli sono anch’essi cifre significative
Lo zero all’inizio del numero che esprime la misura sperimentale non è una cifra significativa
Tutti gli esponenziali in un numero espresso in forma scientifica non sono cifre significative
Se la prima cifra non significativa è <5, il valore dell’ultima cifra significativa rimane inalterato (1.03, con 3 cifra non significativa, viene approssimato a 1.0; un errore del tipo 0.012, con 2 non significativo, viene approssimato a 0.01)
Se la prima cifra non significativa è >5, il valore dell’ultima cifra significativa viene approssimato per eccesso (1.06, con 6 cifra non significativa, viene approssimato a 1.1; un errore del tipo 0.016, con 6 non significativo, viene approssimato a 0.02)
Se la prima cifra non significativa è =5, il valore dell’ultima cifra significativa resta inalterato se è un numero pari o 0, viene approssimato per eccesso se è un numero dispari (1.05, con 5 non significativo, viene approssimato a 1.0; 1.25, con 5 non significativo, viene approssimato a 1.2; 1.15, con 5 non significativo, viene approssimato a 1.2; un errore del tipo: 0.015, con 5 non significativo, si approssima a 0.02; un errore del tipo: 0.025, con 5 non significativo, diventa: 0.02)
Gli errori in Journal of Chemical Ecology
Ed eccoci arrivati al dunque. Nel 2012 appare su J Chem Ecol un articolo dal titolo “Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid” (qui). Non voglio porre l’attenzione sulla natura del lavoro, ma sul modo con cui gli autori (un insieme di entomologi, agronomi ed ecologi) hanno espresso i loro dati sperimentali. La Figura 1 riporta uno stralcio della Tabella 1 del lavoro citato.
Figura 1. Stralcio della Tabella 1 di un lavoro pubblicato su J Chem Ecol
In giallo ho evidenziato gli errori commessi dagli autori nel riportare il numero di cifre significative e i relativi errori sperimentali per le concentrazioni delle molecole indicate nella prima colonna a sinistra della tabella. Se aprite il lavoro (qui) potete divertirvi voi stessi a trovare gli errori commessi dagli autori nella restante parte della tabella, alla luce delle indicazioni che ho dato poco più sopra. Come possiamo ritenere affidabili le conclusioni di un lavoro scientifico se chi l’ha scritto si macchia di superficialità nell’esprimere i valori numerici delle grandezze che misura? Perché dovrei ritenere superficiale una parte del lavoro e non superficiale un’altra parte del lavoro? Devo dire che quando opero come revisore nei processi di peer review, gli errori che ho appena mostrato sono quelli che mi fanno rifiutare i lavori per la pubblicazione: se io insegno e pretendo dai miei studenti il rigore scientifico che si palesa anche, ma non solo, nella correttezza con cui si effettuano le misure e si riportano i dati sperimentali, pretendo analoga coerenza sia da me che dai miei colleghi che, come professionisti, siamo chiamati ad essere di esempio per le generazioni che ci sostituiranno nel nostro ruolo e nel mondo della ricerca scientifica.
Come è possibile che certi lavori arrivino ad essere pubblicati?
La risposta alla domanda è che anche noi scienziati siamo umani. Prima di tutto non siamo esperti di tutto lo scibile. Se un lavoro che deve essere sottoposto alla revisione tra pari arriva nelle mani di un non esperto del settore, la correttezza professionale dovrebbe imporre di non accettare l’incarico per la revisione. Ma non sempre accade. Anzi, più spesso di quanto si creda, accade che i lavori vengano revisionati da non esperti che non si dichiarano tali o addirittura da amici degli autori che chiudono entrambi gli occhi di fronte ad errori palesi. Quando ciò accade, un lavoro riesce ad essere pubblicato anche su una rivista prestigiosa semplicemente perché chi doveva accorgersi degli svarioni, o ha scientemente evitato le critiche oppure non aveva gli strumenti adatti per poterlo fare. A questo punto la domanda che una persona comune che non si occupa di scienza si può fare è: ma come faccio a fidarmi della letteratura scientifica? Se non si è preparati in modo adeguato, non ci sono molte possibilità per riconoscere un lavoro fatto bene, da uno pasticciato. L’unica arma che un lettore comune ha per distinguere la buona scienza da una scienza fatta male (o pseudo scienza) è il fattore tempo. Quando un lavoro viene pubblicato non passa inosservato. C’è sempre uno scienziato in un qualche laboratorio in giro per il mondo che si appropria dei dati pubblicati e cerca di riprodurli. Se nonostante tutti i tentativi non ci riesce, pubblica una nota in cui evidenzia l’inconsistenza dei dati riportati in letteratura. La confutazione/approvazione di un dato sperimentale pubblicato richiede tanto tempo e tanta pazienza, ma alla fine il protocollo che noi indichiamo come “metodo scientifico” consente di fare una cernita tra dati seri e dati meno seri: è capitato con i lavori di Wakefield, Schoen e tanti altri di cui ho già parlato qui.
Adesso, però, vi ho annoiato anche troppo. Il reportage continua la prossima settimana.
Viaggio tanto. In aereo, in treno, in autobus e porto sempre con me qualche libro da leggere per evitare di annoiarmi e tenere acceso, per quanto possibile, il cervello. Nel mio ultimo viaggio ho portato con me l’ultimo di Walter Quattrociocchi ed Antonella Vicini dal titolo “Liberi di crederci” (Figura 1). In esso gli autori focalizzano la loro attenzione sulla loro ipotesi in base alla quale debunking e fact checking sono inutili. Il motivo è che queste due pratiche non fanno altro che rafforzare le convinzioni di chi è già orientato ideologicamente verso certe posizioni politiche, scientifiche o altro.
Figura 1. Copertina del libro del Dr. Walter Quattrociocchi e della Dr.ssa Antonella Vicini
Ho, tuttavia, notato che gli autori nella loro disamina commettono a mio modesto parere un paio di ingenuità.
Ad un certo punto essi scrivono a proposito di vaccinazioni in questi termini: “La legge ha innalzato l’obbligo a dieci vaccinazioni, pena il divieto di frequentare l’asilo nido e la scuola dell’infanzia per i non vaccinati”.
Ecco. Questo è il tipico modo di esprimersi dei no-vaxx. Non sto dicendo che Quattrociocchi/Vicini lo siano. Sto solo dicendo che hanno usato una terminologia non corretta. Le vaccinazioni non sono 10. Dieci sono le patologie contro cui si viene vaccinati. Le vaccinazioni che bisogna fare sono solo due: vaccino esavalente e vaccino MPRV. In totale, seguendo il calendario vaccinale, le iniezioni che bisogna fare sono cinque, diluite nei primi 5/6 anni di vita del bambino. In particolare, il vaccino esavalente (che copre per difterite, tetano, pertosse, polio, Hib, epatite B) viene fatto dopo il secondo mese di vita (ed ha 2 richiami); il vaccino MPRV (che copre per morbillo, parotite, rosolia e varicella) viene fatto dopo l’anno di età (con richiamo singolo dopo i 5/6 anni). In definitiva, quindi, non si fanno 10 iniezioni con relativi richiami (come verrebbe da dedurre dalla terminologia usata da Quattrociocchi/Vicini), ma 3 + 2 iniezioni. Giusto per completezza non è neanche vero che il numero di antigeni è enorme (a onor del vero Quattrociocchi/Vicini non ne discutono, ma lo faccio io per completare il discorso vaccini in questa sede). Infatti, i due vaccini che vengono inoculati e che coprono per 10 patologie contengono circa 260 antigeni contro, per esempio, i 3000 che anni fa erano contenuti nel solo vaccino anti morbillo.
Leggere questa inesattezza mi ha lasciato un po’ l’amaro in bocca. Non potevano chiedere informazioni a qualche esperto (come ho fatto io per scrivere queste poche righe) prima di pubblicare il loro libro? Quando trattano dei propri argomenti Quattrociocchi/Vicini sono veramente pignoli. Perché non lo sono altrettanto quando si riferiscono a campi scientifici che prevedono competenze diverse dalle loro? O non è una distrazione e questa frase con relativo linguaggio è voluta?
Ma andiamo oltre.
A parte ciò che ho appena evidenziato, nella loro discussione in merito alle echo chamber, Quattrociocchi/Vicini scrivono: “Un altro errore comune è confondere le scienze come la fisica o la matematica, i cui risultati si ottengono con metodologie rigorose, con la medicina”.
Qui entriamo in un campo minato perché tutti quelli che si occupano di scienza e di filosofia della scienza possono avere idee differenti.
Io qui dico la mia con la consapevolezza di innescare una miccia.
Innanzi tutto: cos’è la scienza? È il complesso di conoscenze che si ottiene applicando un metodo, quello scientifico, alle osservazioni fisiche che si fanno: vedo; faccio un’ipotesi; sulla base di questa ipotesi faccio una previsione; verifico la previsione mediante degli esperimenti; se la risposta sperimentale è sì, l’ipotesi è corretta; se la risposta è no, l’ipotesi va riformulata. Questo, in sintesi, il metodo scientifico (ne avevo parlato anche qui). Sulla base di quanto scritto, può la matematica essere definita scienza? Diciamo che la matematica è nata per risolvere problemi concreti legati al commercio in senso lato (mi perdonino i miei amici matematici se sono un po’ troppo superficiale). Quindi, usando il pensiero moderno, mi sento di dire che la matematica è nata come una forma di scienza. Tuttavia, da quando abbiamo imparato a contare per risolvere problemi concreti, è passata tanta acqua sotto ai ponti. La matematica ha subito una evoluzione che altre discipline scientifiche non hanno ancora avuto. La matematica, per come la vedo io, è diventata una struttura del pensiero. Non ha più bisogno delle osservazioni fisiche (come quelle legate al commercio in senso lato) per poter avanzare.
Ad oggi, come sovrastruttura del pensiero, la matematica è al di sopra di quelle che possono essere indicate come scienze (ovvero tutti quei campi che hanno bisogno di osservazioni sperimentali per poter avanzare) e fornisce gli strumenti (logici e fisici) ad ognuna di esse. Esistono scienze che sono come la matematica? Qualcosa che ci si avvicina sono la fisica e la chimica teorica. Tuttavia, entrambe hanno poi bisogno di procedure sperimentali per poter validare ciò che sono le conclusioni del pensiero. Senza esperimenti sia la chimica che la fisica teorica sono fini a se stesse e non hanno validità alcuna.
E la medicina? In quanto forma di conoscenza basata sul metodo induttivo – cioè trarre un giudizio generale o universale partendo dall’osservazione di uno o più fatti particolari, di dati contingenti, v. vocabolario Treccani – (esattamente come fisica e chimica), anche la medicina è una scienza. Gli strumenti logici e fisici con cui procedere vengono forniti alla medicina dalla matematica (proprio come nel caso di fisica e chimica). Quali sono le metodologie rigorose che accomunerebbero matematica e fisica, ma non la medicina come scritto da Quattrociocchi/Vicini nel loro libro? Forse la statistica, su cui si basa principalmente la medicina, non è ritenuta rigorosa? Ed allora la termodinamica statistica elaborata da Boltzmann? E la meccanica quantistica (che fornisce gli strumenti per la diagnostica per immagini) basata sulla statistica? E potrei continuare perché anche la biologia, altra branca della conoscenza scientifica, si basa sulla statistica. Forse l’autore si riferisce alla discrezionalità umana che sembra essere presente nella medicina ma non nella fisica? Non è così. Entrambe le forme di conoscenza sono soggette a discrezionalità umana: un medico può sbagliare una diagnosi, così come un fisico può sbagliare l’impianto sperimentale oppure, pur avendo un impianto sperimentale corretto, non riuscire a “vedere” ciò che ha “sotto il naso”. In altre parole, anche un fisico può sbagliare la diagnosi.
In definitiva, secondo me, nella loro affermazione, gli autori sono stati un po’ superficiali (come lo sono stati nel caso dei vaccini). Questa superficialità può avere conseguenze notevoli perché chi non è avvezzo al metodo scientifico può essere portato a pensare che la medicina sia roba da stregoni, mentre la fisica sia una materia con dignità superiore. Non è così. Entrambe le discipline hanno pari dignità ed entrambe fanno buon uso di tutti gli strumenti, egualmente rigorosi, messi a disposizione dalla sovrastruttura matematica. E tanto per evidenziare che il lavoro medico prevede un approccio rigoroso ed interdisciplinare, inserisco la notizia che potete leggere ingrandendo la Figura 2 (oppure cliccando qui).
Figura 2. La medicina riesce a salvare la vita ad un bambino con rara patologia
È finita qui? No. Perché basandosi sulle loro osservazioni, come scritto nel paragrafetto introduttivo, Quattrociocchi/Vicini evidenziano l’inutilità del fact checking. Mi sembra allora interessante riportare una notizia apparsa recentemente su La Gazzetta di Modena (qui e Figura 3) e su altri siti minori (per esempio qui).
Figura 3. Un fact checking test ha avuto successo tra gli studenti di un istituto professionale
Una professoressa di un istituto tecnico industriale di Modena ha ideato un fact checking test con cui si sono cimentati i suoi allievi. A quanto pare il fact checking ha funzionato. Alcuni pregiudizi sono stati rimossi. Mi rendo conto che questo è un fatto isolato rispetto ai grandi numeri di cui dispone Quattrociocchi. Mi permetto di pensare, però, che c’è qualcosa di positivo. Da un punto di vista scientifico posso dire che il fact checking ha funzionato date le condizioni al contorno utilizzate (ragazzini di un istituto tecnico industriale costretti ad imparare). Se riformulassimo le condizioni al contorno in modo da adattarle ai grandi numeri, sarebbe possibile un esito positivo del fact checking e, di conseguenza, la rimozione dell’ipotesi di inutilità dello stesso evidenziata dagli studi di Quattrociocchi? Non lo so e qui mi fermo. Non è il mio campo ma qualcun altro con più competenze di me potrebbe anche farci un pensiero sopra e dire a noi se questa ipotesi di lavoro potrebbe funzionare o meno.
Fonte dell’immagine di copertina: https://www.insidemarketing.it/fact-checking-strumenti-verifica-notizie/
Questo sito usa i cookie per migliorare la tua esperienza di navigazione. Viene assunto che tu sia d'accordo. Tuttavia, puoi annullare i cookie se lo desideri cliccando su “cookie settings” e deselezionando i cookie non necessari. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
Questo sito Web utilizza i cookie per migliorare la tua esperienza durante la navigazione. Tra questi, i cookie classificati come necessari vengono memorizzati nel browser in quanto sono essenziali per il funzionamento base del sito. Si utilizzano anche cookie di terze parti che aiutano ad analizzare e comprendere come si utilizza il sito. Questi cookie sono memorizzati nel tuo browser solo con il tuo consenso. Hai anche la possibilità di disattivarli. La disattivazione di alcuni cookie può, tuttavia, influire sulla tua esperienza di navigazione.
I cookie cosiddetti necessari sono essenziali per il funzionamento corretto del sito Web. Questa categoria include solo i cookie che assicurano le funzionalità di base e la sicurezza del sito Web. Non viene conservata alcuna informazione personale.