Pillole di chimica: il Bitrex

 

Bitrex. Sebbene sia l’anagramma di brexit, non ha nulla a che vedere con la politica. Si tratta del nome commerciale del benzoato di denatonio la cui struttura è riportata nella figura qui sotto e nell’immagine di copertina.

Cos’è il bitrex?

Come si evince dalla struttura, si tratta di un sale di ammonio quaternario. Questo lo rende solubile in acqua. Ma ciò che è più interessante è che esso non è tossico ed ha un sapore estremamente sgradevole. In effetti, sembra che questo sale sia entrato nel Guinness dei primati come la sostanza più amara in assoluto (qui).

La sua scoperta risale al 1958 ad opera dei chimici della T & H Smith, una casa farmaceutica di Edimburgo, che in quel periodo stava studiando la sintesi di nuovi prodotti antidolorifici (qui).

A cosa serve il bitrex?

Quale può essere l’utilità commerciale di un composto così amaro che appena messo sulla lingua fa venir voglia di sputarlo subito via?

Quanti sono i prodotti pericolosi che abbiamo a casa e che possono attirare l’attenzione dei bambini per il loro colore, le confezioni che li contengono o semplicemente perché i bambini sono curiosi per natura e hanno la tendenza a mettere tutto quello che trovano in bocca?

Chi ha bambini sa certamente rispondere: shampoo, medicinali, detersivi per la disinfezione e la pulizia della casa e chi più ne ha più ne metta.

Ebbene, il bitrex è sicuramente uno degli additivi più usati in questi prodotti per renderli di sapore disgustoso ed evitare una loro possibile ingestione accidentale.

Ne volete qualche esempio?

Qui il link al Luma KL un agrofarmaco che viene usato per la lotta a limacce, lumache, chiocciole e gasteropodi che possono infestare gli orti nei quali vengono coltivati asparagi, carciofi, cavolo cappuccio, finocchi, porro e sedano. Potete facilmente individuare la presenza del bitrex, ovvero denatonio benzoato, che viene addizionato proprio per limitare l’ingestione casuale di questo prodotto che può portare a danni epatici e renali molto seri.

Altro esempio?

Quanti di noi hanno genitori o nonni che preparano bevande alcoliche in casa? Magari qualcuno di voi può essere appassionato di limoncello ed ogni anno va al mercato per comprare limoni IGP di Sorrento la cui buccia viene estratta in alcol etilico per ottenere questa bevanda  molto apprezzata nelle regioni del Sud Italia (qui una interessante ricetta per produrlo in casa). E quanti si sono chiesti perché bisogna comprare alcol etilico per uso alimentare, che costa un occhio della testa a causa delle accise che gravano su di esso, e non è possibile, invece, approntare un piccolo distillatore casalingo per purificare l’alcol etilico denaturato che costa pochi centesimi di euro al litro?

Come si denatura l’alcol etilico

L’alcol etilico denaturato, quello che si vende nei supermercati ed è di colore rosso, costa pochi centesimi al litro perché, non potendo essere usato per l’alimentazione, non viene gravato dalle accise che pesano, invece, sull’alcol puro che usiamo in cucina. L’alcol etilico viene denaturato aggiungendo il bitrex, così da produrre un sapore disgustoso, un colorante e tanti altri composti a seconda dell’uso a cui l’alcol etilico è destinato . Per esempio la denaturazione si può ottenere aggiungendo anche canfora, olio di ricino, acetone, kerosene metanolo, aldeidi varie, isopropanolo e benzene.

È possibile distillare l’etanolo denaturato per ottenere quello alimentare?

È vero che si potrebbe distillare la miscela descritta e dal sapore disgustoso per tentare di isolare l’alcol etilico. Tuttavia, ciò che è poco noto ai non chimici è che la distillazione non riesce ad eliminare completamente le sostanze che si aggiungono all’alcol etilico per denaturarlo. Dopo un certo numero di cicli di distillazione si ottiene una miscela che si chiama “azeotropo” nella quale sono ancora presenti gli additivi summenzionati che rendono il prodotto ottenuto per distillazione ancora non adatto all’alimentazione umana. Nel caso della denaturazione dell’etanolo, l’addizione di piccole quantità di acetone è quella che non consente di purificare oltre l’azeotropo.

Chimico amico

Beh, il titolo del paragrafo è fuorviante. Non è detto che tutti i chimici siano simpatici. So di sicuro di essere antipatico almeno ad una persona: a chi ha fatto una recensione su Amazon al mio libro “Frammenti di Chimica” scrivendo che non compra il libro perché non si comprano i libri di chi offende gli ignoranti indicandoli come tali. Questo la dice lunga sull’onestà intellettuale di omeopati, biodinamici e compagnia bella: parlano senza cognizione di causa e senza leggere ciò di cui sentono il bisogno di discutere. Tuttavia, la chimica è amica di tutti. È un corpo di conoscenze che ci permette di comprendere il mondo che ci circonda: come è fatto, perché è fatto così e come funziona.

Ed ora: buon limoncello a tutti!

Fonte: https://ricette.giallozafferano.it/Limoncello.html

 

C’è nessunooooooo? Giocare con i numeri

Quando ero più giovane andava per la maggiore una simpatica pubblicità sulla particella di sodio. Ve la ricordate?

Era simpatica, in effetti.

Il sodio in acqua

Il sodio è un elemento del primo gruppo della tavola periodica che ha la caratteristica di reagire violentemente con l’acqua in una reazione di ossido-riduzione che porta alla formazione dello ione Na+.

Ma non è di questo che voglio parlavi.

Il sodio e la salute umana

Che lo ione sodio sia coinvolto nei problemi cardiovascolari è ben acclarato nella letteratura medica. Di conseguenza, quando un individuo è affetto da ipertensione, il medico può consigliare l’uso di acque adatte alle diete iposodiche.

In base al D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011, possono essere definite acque adatte alle diete povere di sodio tutte quelle in cui il contenuto dello ione Na+ è ≤ 20 mg L-1. L’ho scritto anche nel mio libro “Frammenti di Chimica. Come smascherare falsi miti e leggende“, dove riporto  che se anche le acque hanno un contenuto di sodio ≥ 20 mg L-1 sono comunque potabili. L’unico inconveniente è che possono avere un sapore non necessariamente gradito.

Lo stesso D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011 citato poco fa, prende in considerazione la possibilità che un’acqua potabile possa avere un elevato contenuto di ione sodio. Infatti viene riportato che quando un’acqua ha un contenuto di sodio ≥ 200 mg L-1 essa deve essere obbligatoriamente indicata come “acqua sodica”.  Come riportato nell’Enciclopedia Medica, le acque sodiche “sono indicate in stati di carenze specifiche”.

Consigli del Ministero della Salute

Se andiamo sul sito internet del Ministero della Salute (qui), leggiamo che “l’Organizzazione Mondiale della Sanità (OMS) raccomanda un consumo massimo di 5 grammi al giorno di sale, corrispondenti a circa 2 grammi al giorno di sodio“. Questo vuol dire che dobbiamo limitare il consumo di sodio nell’alimentazione giornaliera utilizzando una corretta pratica alimentare. Si parla di ione sodio, non dell’elemento metallico che dà l’esplosione a contatto con l’acqua che avete visto nel secondo filmato di quest’articolo.

In che modo tenere sotto controllo l’assunzione di ione sodio? È lo stesso Ministero della Salute a suggerircelo:

  • Leggiamo attentamente l’etichetta nutrizionale per scegliere, in ciascuna categoria, i prodotti a minore contenuto di sale e cercare i prodotti a basso contenuto di sale, cioè inferiore a 0.3 grammi per 100 g (corrispondenti a 0.12 g di sodio)
  • Riduciamo l’uso di sale aggiunto in cucina, preferendo comunque, ove necessario, minime quantità di sale iodato.
  • Limitiamo l’uso di altri condimenti contenenti sodio (dadi da brodo, maionese, salse, ecc.) e utilizziamo in alternativa spezie, erbe aromatiche, succo di limone o aceto per insaporire ed esaltare il sapore dei cibi.
  • Non portiamo in tavola sale o salse salate, in modo che non si acquisisca l’abitudine di aggiungere sale sui cibi, soprattutto tra i più giovani della famiglia.
  • Riduciamo il consumo di alimenti trasformati ricchi di sale (snack salati, patatine in sacchetto, alcuni salumi e formaggi, cibi in scatola).
  • Scoliamo e risciacquiamo verdure e legumi in scatola, prima di consumarli.
  • Evitiamo l’aggiunta di sale nelle pappe dei bambini, almeno per il primo anno di vita.
Giocare con i numeri

Ritorniamo ai consigli dell’OMS.  Dobbiamo scegliere quegli alimenti che  contengano meno di  1200 mg kg-1 di sodio.

A questo punto quelli di voi che leggono solo distrattamente mi daranno del pazzo: da dove è venuto fuori questo numero così elevato? È scritto sopra: 0.12 g di sodio per 100 g di sale corrispondono a 1200 mg di sodio ogni chilogrammo (cioè 1000 g) di sale; è molto semplice fare i calcoli per cui non offendo la vostra intelligenza proponendoveli.

In parole povere mi sono messo a giocare coi numeri. Questo vezzo di giocare coi numeri per dare l’impressione che qualcosa sia diverso da quello che effettivamente è, è tipico di quanti, per lavoro, impostano le campagne pubblicitarie di tanti prodotti alimentari come le acque destinate al consumo umano introdotte col filmato sulla particella di sodio inserito all’inizio di questo articolo.

Ne volete un esempio? Eccovi la foto dell’etichetta dell’acqua che ho preso oggi a pranzo

Figura 1. Etichetta di una nota acqua minerale. Si noti il modo in cui viene espressa la concentrazione di sodio

È perfettamente evidenziato che la quantità di sodio è < 0.0005 %. Un numero spaventosamente piccolo, vero? Uno che legge distrattamente pensa: “WOW, praticamente non c’è sodio. Deve essere particolarmente adatta per gli ipertesi”. Ma guardando con attenzione, poco più su nell’etichetta è scritto che il contenuto di sodio è 4.1 mg L-1. Alla luce del D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011 questa è un’acqua adatta per diete iposodiche.

Ma, adesso, dite la verità: 0.0005 non dà l’impressione di essere di gran lunga più piccolo di 4.1?

In realtà sono esattamente la stessa cosa. Sono state usate due unità di misura differenti per indicare lo stesso valore numerico (in realtà il valore percentuale è approssimato, ma non è importante ai fini della discussione). La legge impone di indicare il contenuto di sodio in mg L-1 ; l’azienda di imbottigliamento ha scelto di riportare, evidenziandolo a bella posta, anche il contenuto percentuale cosicché il consumatore distratto possa essere portato a pensare che la quantità di sodio sia molto più bassa di quella che effettivamente è. Si tratta di un escamotage che fa leva sulle sensazioni che nascono in noi quando leggiamo i numeri.

Conclusioni

Giocare con i numeri per suscitare sensazioni in modo da indirizzare le scelte dei consumatori è cosa molto comune. Non è una cosa grave. Non bisogna, tuttavia, farsi trarre in inganno. Le scelte, soprattutto alimentari, vanno fatte con oculatezza e sapendo ciò che si fa.

Fonte dell’immagine di copertina: https://commons.wikimedia.org/wiki/Water#/media/File:Water_Impact_0.jpg

I linguaggi della scienza

E’ con grande piacere che presento oggi l’apertura del canale Youtube dedicato alla scienza e al suo linguaggio:

I linguaggi della scienza

Cercherò di pubblicare con una certa frequenza interventi sulle bufale scientifiche e sulle manipolazioni dei dati e del linguaggio che spesso si trovano in giro. Come sicuramente è ormai risaputo i social sono lo strumento ideale per poter propagare una serie di bugie e male interpretazioni su argomenti scientifici che poi generano paure, comportamenti scorretti e letture non adeguate.

In questo sarò aiutato da Francesco Mercadante,  specialista in analisi del linguaggio (la sua presentazione professionale qui), con cui cercheremo di approfondire un tema, una parola, una questione sia dal punto di vista scientifico che da quelli delle aree semantiche  e delle strutture che vengono utilizzate.

Nel primo video parliamo di zucchero e delle bufale che girano attorno a questo argomento:
https://www.youtube.com/channel/UCwv3omA6MEJRKOnOYErEfsg

Buona visione!

Frammenti di chimica su Oxygen

Ed eccomi qui in una trasmissione on line. Grazie a Carolina Sellitto per l’intervista nella sua Oxygen con la quale mi ha dato modo di poter parlare di chimica,  di scienza e di presentare il mio Frammenti di chimica. La corretta divulgazione si fa con tutti i mezzi possibili in modo da raggiungere le menti curiose del pubblico di ogni fascia di età ed estrazione culturale.

 

Fonte dell’immagine di copertina: https://www.keeptheplanet.org/divulgazione-scientifica/

La chimica del pulito

Vi siete mai chiesti come mai per lavare qualcosa bisogna usare il sapone e, preferibilmente, acqua calda? È tutta questione di chimica fisica.

Più volte ho scritto in merito all’acqua ed alle sue proprietà. Per esempio, qui e qui potete leggere in merito alle proprietà dei legami a idrogeno, qui in merito al ruolo dei legami a idrogeno nell’innalzamento ebullioscopico, qui trovate il significato di pH e la sua dipendenza dalla temperatura.

La chimica dei saponi

Il funzionamento dei saponi è molto semplice e lo ho già descritto qui, quando ho parlato di acqua micellare. In sintesi, un sapone è fatto da molecole anfifiliche, ovvero che hanno caratteristiche sia idrofiliche che idrofobiche. In particolare, le molecole si arrangiano in modo tale da permettere che le teste idrofiliche, rimanendo a contatto con l’acqua, isolino dall’acqua le code idrofobiche che non hanno con essa una buona affinità (Figura 1).

Figura 1. Struttura di una micella. Le teste idrofiliche formano una “pellicola” che separa le code idrofobiche dal contatto con l’acqua (Fonte)

La natura delle micelle è tale da “indebolire” i legami a idrogeno dell’acqua con la conseguenza che si riduce la tensione superficiale del liquido stesso (Figura 2).

Figura 2. La tensione superficiale permette alle zanzare di “camminare” sull’acqua (Fonte)

La riduzione della tensione superficiale consente alle molecole di acqua di penetrare meglio all’interno dei pori dei tessuti degli abiti o della pelle (in generale di tutti i sistemi porosi) così da permettere alle micelle del sapone di interagire meglio con lo sporco.

Quando ciò accade, le micelle “inglobano” lo sporco nella parte idrofobica mentre le teste polari a contatto con l’acqua fanno in modo che lo sporco venga trascinato via dall’acqua stessa (Figura 3).

Figura 3. Funzionamento dei saponi. I punti rossi sono le teste idofiliche, i bastoncini gialli sono le code idrofobiche (Fonte)

Cosa c’entra la temperatura?

Ormai anche le pietre sanno che l’acqua è una molecola polare. La polarità dell’acqua è dovuta alla distribuzione degli elettroni all’interno della stessa molecola. Essa è tale che il centro delle cariche negative è preferenzialmente localizzato sull’ossigeno, mentre quello delle cariche positive sugli atomi di idrogeno (Figura 4).

Figura 4. Distribuzione della densità elettronica nella molecola di acqua (Fonte)

Alla polarità della molecola di acqua, in genere, si attribuisce la “responsabilità” dei legami a idrogeno summenzionati. La polarità dell’acqua è legata anche a quella che si chiama costante dielettrica. La costante dielettrica è una misura della capacità delle molecole di un mezzo (in questo caso l’acqua) di allineare il proprio dipolo elettrico secondo le linee di forza di un campo elettrico applicato (Figura 5).

Figura 5. Orientamento del dipolo acqua all’interno di un campo elettrico. Il centro delle cariche positive del dipolo si orienta verso il polo negativo mentre quello delle cariche negative si orienta verso il polo positivo (Fonte)

Più elevata è la costante dielettrica, più facilmente le molecole si allineano al campo elettrico applicato.

Da un punto di vista sperimentale, la costante dielettrica dell’acqua riduce di circa 80 volte la forza con cui interagiscono gli ioni presenti in un composto chimico. È per questo motivo che i sali tendono a sciogliersi bene in acqua.

Il valore della costante dielettrica è anche una misura della tensione superficiale del sistema liquido per cui esso è misurato. Più elevato è il valore di questa costante, maggiore è la tensione superficiale del liquido.

La Figura 6 mostra come varia il valore della costante dielettrica dell’acqua al variare della temperatura. In parole povere, l’aumento della temperatura comporta una diminuzione della costante dielettrica, ovvero una diminuzione della polarità dell’acqua ed una riduzione della sua tensione superficiale.

Figura 6. Variazione della costante dielettrica relativa dell’acqua con la temperatura

Come già spiegato nel paragrafo precedente, la riduzione della tensione superficiale permette all’acqua di “interagire” meglio con la superficie dei mezzi porosi (per esempio la pelle o un tessuto di un abito).

Conclusioni

L’uso combinato dei saponi e dell’alta temperatura permette una drastica riduzione della tensione superficiale dell’acqua aumentandone la capacità pulente. L’aumento della temperatura consente anche di sterilizzare gli “oggetti” che vengono lavati. La sterilizzazione, naturalmente, ha luogo solo se i microorganismi che contaminano gli oggetti non sono termofili, ovvero in grado di resistere alle classiche temperature usate negli elettrodomestici di casa (gli organismi termofili sono in grado di resistere anche a temperature di 80-90 °C).

Simpatico, vero, l’effetto della temperatura sulle proprietà dell’acqua?

 

Per saperne di più

Fonte dell’immagine di copertina

La chimica del sapore. Il dolce

Guardate la Figura 1. Interessante vero? Si tratta di alcuni dolcificanti di sintesi. Le loro strutture sono alquanto differenti le une dalle altre. Come è possibile che tutte quelle molecole stimolino la sensazione del “dolce”?

Figura 1. Strutture molecolari di alcuni dolcificanti di sintesi (Fonte)

In base al principio secondo cui l’attività biochimica di una molecola dipende dalla sua struttura molecolare, ci si aspetterebbe che il sapore dolce possa essere dovuto alla similitudine strutturale delle molecole che costituiscono i dolcificanti. Ed invece non è così.  Molecole dalla natura chimica molto differente mostrano tutte la medesima capacità dolcificante (in merito all’intensità del sapore dolce ho già scritto qui).

Ricordiamo che tutto quanto studiamo nei libri dei settori scientifici, in realtà, è controintuitivo. È vero che esiste la relazione biunivoca struttura-attività (ad una data struttura corrisponde quella attività biochimica ed una certa attività biochimica è dovuta ad una specifica struttura molecolare), tuttavia non è solo la forma della molecola che deve essere presa in considerazione per spiegare l’attività biochimica; occorre prestare attenzione anche ad altri fattori.

Una delle prime teorie ad essere state sviluppate per spiegare perché molecole dalle caratteristiche così differenti siano in grado di funzionare tutte come dolcificanti, è quella che prende il nome di “modello AH-B” (Figura 2).

Figura 2. Schema del modello AH-B

I recettori presenti sulla nostra lingua sono caratterizzati dalla presenza di due gruppi funzionali di cui uno è un donatore di idrogeno (-AH in Figura 2) e l’altro è un accettore di idrogeno (-B in Figura 2).  Il dolcificante è una molecola che contiene almeno due gruppi funzionali che hanno le stesse proprietà donatrici/accettrici di idrogeno dei gruppi presenti sulla superficie dei recettori.

Quando la molecola “dolcificante” si avvicina al recettore del sapore dolce presente sulla lingua, si formano due legami a idrogeno come quelli mostrati in Figura 2. È proprio alla presenza di questi due legami a idrogeno che è attribuibile il sapore “dolce”.

La Figura 3 mostra quali sono i gruppi funzionali di diverse molecole dolcificanti in grado di formare i legami a idrogeno summenzionati.

Figura 3. Schema dei gruppi funzionali in grado di formare i legami a idrogeno nel modello AH-B (Fonte)

In realtà le cose sono un po’ più complesse di quanto descritto.  Tuttavia, i meccanismi esatti del perché sentiamo il “dolce” o altre tipologie di sapori, non sono ancora ben chiari. Per avere più informazioni e delucidazioni approfondite, consiglio la lettura dei lavori ai link nel paragrafo “Per saperne di più”.

Per saperne di più
  1. Shallenberger et al., 1967, Nature, 216: 480
  2. Kier, 1972, J. Pharm. Sci., 9: 1394
  3. Shallenberger, 1997, Pure & Applied Chemistry, 69: 659
  4. Smith et al., 2001, Scientific American, 32
  5. Morini and Bassoli, 2007, AgroFood, 6
  6. Zhang et al., 2010, PNAS, 107: 4752
  7. Bo Liu et al., 2011, The Journal of Neuroscience, 31: 11070

Fonte dell’immagine di copertinahttp://www.misya.info/ingrediente/zucchero

Tutta questione di Molibdeno

Vi siete mai chiesti perché ci sono alcune popolazioni che non sono in grado di sopportare l’alcol e si ubriacano velocemente? È tutta questione d biochimica ed, in particolare, del Molibdeno.

Il molibdeno è un metallo che ha una azione tossica. Pensate che solo 50 mg di tale metallo, assunti tutti assieme, sono in grado di uccidere un ratto. Nell’uomo pare che questo metallo agisca sulle funzioni epatiche portando ad iperbilirubinemia. Il Molibdeno è anche convolto nella sintesi dell’acido urico. Un eccesso di Molibdeno sembra legato all’accumulo di cristalli di acido urico nelle articolazioni con insorgenza di una patologia molto dolorosa: la gotta.

Nonostante la sua tossicità, il molibdeno è un metallo essenziale per il nostro organismo. Noi ne assumiamo circa 0.3 mg al giorno nella nostra dieta per un ammontare di circa 8 g nella nostra intera vita. Ebbene questo metallo è un cofattore di uno degli enzimi che ci consentono di metabolizzare l’alcol che ingeriamo.

L’alcol etilico viene prima trasformato in acetaldeide da un enzima che contiene zinco (alcol deidrogenasi); l’acetaldeide viene poi ossidata prima ad acido acetico da un enzima che contiene molibdeno (aldeide ossidasi) e poi ad anidride carbonica secondo lo schema riportato qui di seguito:

CH3CH2OH → CH3CHO → CH3COOH → CO2

L’anidride carbonica viene espulsa dal nostro organismo mediante la respirazione. Le reazioni descritte servono per ricavare l’energia necessaria per la nostra sopravvivenza dalla ossidazione dell’alcol etilico. Tuttavia, ci sono alcune popolazioni come quelle orientali, per esempio I giapponesi, che hanno quantità più basse di aldeide ossidasi. Per questo motivo non sono in grado di degradare velocemente come noi l’alcol e tendono ad ubriacarsi più velocemente di noi.

Interessante, vero?

Alla prossima pillola di scienza…e…cin cin

Per saperne di più
https://saluteuropa.org/nutrizione-integrativa-2/il-molibdeno-metallo-importante-per-luomo/

Fonte dell’immagine di chiusurahttp://www.sapere.it/sapere/strumenti/domande-risposte/di-tutto-un-po/perche-si-dice-cin-cin-quando-si-brinda.html

Fonte dell’immagine di copertina: https://blog.edoapp.it/alcol-e-calorie-nascoste/

Aspirina: una storia breve

1763. Il reverendo Stone della Chiesa d’Inghilterra informa la Royal Society che un infuso da lui preparato con la corteccia del salice bianco (Figura 1) e somministrato ad una cinquantina dei suoi parrocchiani affetti da stato febbrile, ha funzionato molto bene nell’attenuare la febbre.

Figura 1. Salice bianco (nome botanico Salix alba) dalla cui corteccia, nel 1763, fu preparato un infuso contro la febbre

Tutto nasce durante una passeggiata

Il reverendo non sa perché l’infuso abbia funzionato, ma pare che l’idea per tale rimedio gli fosse venuta  nel 1758 durante una passeggiata in un bosco. Per motivi non noti, fu indotto ad assaggiare la corteccia del succitato albero e notò una corrispondenza di sapori con quella dell’albero della febbre (si tratta del Cinchona) usata fin dall’antichità tra le popolazioni pre-colombiane per la cura di stati febbrili. Tale corrispondenza lo indusse a pensare che anche la corteccia del Salix alba potesse avere gli stessi effetti curativi, come effettivamente potè verificare.

Il principio attivo

Ciò che il reverendo Stone non poteva sapere era che il principio attivo nella corteccia dell’albero della febbre era differente da quello presente nella corteccia del salice bianco. Infatti, mentre nella prima era presente il  chinino (Figura 2A), nella seconda era presente l’acido salicilico (Figura 2B).

Figura 2. A. Struttura del chinino presente nella corteccia dell’albero della febbre i cui effetti curativi erano noti fin da tempi antichi tra le popolazioni precolombiane. B. Struttura dell’acido salicilico presente nella corteccia del salice bianco o Salix alba i cui effetti curativi furono scoperti dal reverendo Stone.

Gli effetti collaterali

L’acido salicilico presenta gravi effetti collaterali dovuti al fatto che è un acido organico abbastanza forte (Figura 3). In particolare, esso è un potente irritante in grado di causare emorragie ed ulcere sia in bocca che nello stomaco.

Figura 3. Equilibrio di dissociazione dell’acido salicilico. La costante acida ha il valore riportato in figura

Ed eccoci all’aspirina

Nel 1893, Felix Hoffmann, un chimico della Bayer, sintetizzò un derivato dell’acido salicilico mediante una reazione di acilazione al gruppo ossidrilico. Ottenne l’acido acetil salicilico (Figura 4) i cui effetti collaterali risultarono molto più tenui rispetto a quelli dell’acido salicilico, pur conservando le medesime proprietà terapeutiche. Era nata l’aspirina©.

Figura 4. Struttura molecolare dell’acido acetil salicilico

Il nome Aspirina© sembra sia stato ricavato usando la radice del nome dell’acido spirico, il principio attivo presente nella Spiraea ulmaria e chimicamente simile all’acido salicilico, a cui venne anteposta la “a” di acetile.

I vantaggi dell’Aspirina©

Gli esperimenti sull’attività farmacologica dell’Aspirina© condotti dal Dr. Heinrich Dreser della Bayer, ne evidenziarono non solo le caratteristiche antipiretiche, ma rivelarono anche le sue  proprietà antireumatiche e la capacità di migliorare l’attività cardiaca attraverso la fluidificazione del sangue. La presenza del gruppo acetile, inoltre, ne aumentava la torrelabilità gastrica rispetto all’acido salicilico.

Oggi l’Aspirina© è un farmaco molto comune utilizzato in tutto il mondo in diverse formulazioni farmacologiche. Tra queste l’Alka Seltzer®, la forma solubile di Aspirina©, è quella più famosa. L’Alka Seltzer® contiene bicarbonato di sodio, acido citrico ed acido acetil salicilico. Il bicarbonato di sodio ha il compito di deprotonare l’acido acetil salicilico per la formazione dell’acetilsalicilato di sodio (Figura 5). Quest’ultimo è più facilmente solubile dell’acido acetil salicilico. La presenza dell’acido citrico (oltre che quella di altri aromi come quelli di arancia e limone) serve a mascherare il cattivo sapore dell’acetilsalicilato di sodio.

Figura 5. Reazione di formazione dell’acetilsalicilato di sodio

Un’altra formulazione farmacologica è l’aspirinetta. Si tratta di pillole che contengono circa 1/5 (ovvero all’incirca 100 mg) della dose di acido acetilsalicilico contenuta nelle tradizionali confezioni di Aspirina© (ovvero 500 mg). Assunta giornalmente, questa dose di acido acetisalicilico consente di prevenire i trombi e, di conseguenza, problematiche cardiache.

Gli svantaggi dell’Aspirina

Nonostante tutti i suoi effetti positivi, l’idrolisi del gruppo acetile nello stomaco porta alla formazione dell’irritante acido salicilico con possibilità di formazione di ulcere. Gli individui sensibili devono evitare di assumere Aspirina©. Inoltre la dose giornaliera consigliata per gli adulti non deve eccedere i 4 g (sotto controllo medico). Oltre la predetta quantità gli effetti indesiderati possono portare anche alla morte. Nel caso di bambini al di sotto dei 12 anni, l’assunzione di acido acetilsalicilico ha portato a rarissimi casi di sindrome di Reye, per cui è sempre consigliabile non usare Aspirina© al di sotto dell’età anzidetta.

Il funzionamento come antipiretico

Quando il nostro organismo subisce qualche lesione o viene invaso da microorganismi patogeni, si attiva una risposta che porta all’aumento nel circolo sanguigno della quantità di molecole che prendono il nome di prostaglandine, il cui precursore è l’acido prostanoico la cui struttura è in Figura 6.  È la presenza delle prostaglandine che porta allo stato febbrile.

Figura 6. Struttura dell’acido prostanoico, precursore delle prostaglandine

Sia l’acido salicilico che il suo derivato, acido acetilsalicilico, sono in grado di inibire l’attività degli enzimi coinvolti nella sintesi delle prostaglandine. La conseguenza è, quindi, la diminuzione della temperatura corporea.

Conclusioni

La storia dell’Aspirina© ci insegna che un prodotto naturale come l’acido salicilico, sebbene possa avere effetti benefici, ha tante controindicazioni peraltro anche abbastanza gravi. Al contrario un prodotto di sintesi come il suo derivato acetilato, ha molte meno controindicazioni e può essere usato con maggiore sicurezza. Naturalmente, pur essendo oggi l’Aspirina© un prodotto da banco, cioè il preparato contenente 500 mg di acido acetilsalicilico è vendibile senza presentazione di ricetta medica, è sempre consigliabile non abusarne ed assumerne sempre sotto controllo medico in modo tale da poter monitorare eventuali intolleranze che possono sfociare in effetti indesiderati piuttosto pericolosi.

 

 

Fonte dell’immagine di copertinahttp://www.aspirina.it/

I dolcificanti parte IV. Lo zucchero ad alta solubilità

Stamattina mi sono alzato, ho eseguito tutte le operazioni mattutine per consentirmi di svegliarmi (di sabato sono senza successo), sono andato dal barbiere a farmi radere quei quattro peli che mi son rimasti e poi sono andato al bar vicino casa per prendere un cappuccino.

Direte voi: “ma perché questo ci racconta sti fatti? Cosa interessa a noi di quello che fa la mattina e di quanti peli abbia?”

Un attimo e vi racconto.

Arrivo semisveglio al bar e, dopo aver chiesto la mia bevanda preferita a base di caffè e latte montato, l’occhio mi cade sul contenitore delle bustine di zucchero. Alcune di queste sono verdi. La prima cosa che penso, mettendo in funzione il neurone attivo nel fine settimana, è: “toh, guarda. Ci sono le bustine di zucchero steviolitico”.

Grande è la mia sorpresa quando prendo una di quelle bustine verdi e leggo che si tratta di zucchero ad alta solubilità.

Qui i miei sensi di chimico (come quelli di ragno di Peter Parker) si allertano. Cos’è sto zucchero ad alta solubilità?

Dovete sapere che sotto l’aspetto chimico, il concetto di solubilità si riferisce alla quantità massima di soluto che è possibile sciogliere in una prefissata quantità di solvente prima che il soluto cominci a precipitare.

Esistono zuccheri che hanno solubilità differenti. Per esempio, è possibile sciogliere in un litro di acqua circa 2 kg di saccarosio, circa 1 kg di glucosio, circa 3 kg di fruttosio e circa 7 g di lattosio. Insomma, a seconda di quella che è la natura chimica dello zucchero preso in considerazione è possibile sciogliere quantità differenti di prodotto nella stessa quantità di acqua.

Da chimico ho pensato: “zucchero ad alta solubilità…va bene…si tratta di fruttosio”. Poi però ho pensato: “un attimo…ma perché chiamarlo zucchero se nel linguaggio comune questo termine corrisponde al saccarosio? Perché il fruttosio non viene indicato come tale, dal momento che in questo modo possono venderlo ad un prezzo maggiorato?”.

A questo punto dopo aver fatto quattro chiacchiere col gestore del bar, gli chiedo se posso portare via una bustina di questo “zucchero ad alta solubilità”. Sono curioso. Voglio capire di cosa si tratta. Vado in laboratorio dove ho un po’ di strumenti che posso usare il sabato mattina senza colpo ferire.

La prima cosa che faccio è prendere una bustina di zucchero che usiamo per il caffè in laboratorio (Figura 1) e, dopo essere andato in giro per cercare un po’ di vetrini d’orologio, non faccio altro che pesare il contenuto delle bustine contenenti lo zucchero “normale” (l’aggettivo non vuol dire nulla chimicamente, ma mi serve solo per indicare lo zucchero che ho prelevato dal cassetto sotto la macchina da caffè in laboratorio) e quello ad alta solubilità.

Figura 1. La bustina verde è lo zucchero “ad alta solubilità. Nel cerchio la scritta che mi ha incuriosito. La bustina bianco/blu è una “normale” bustina di zucchero che usiamo per il caffè in laboratorio.

Ognuna delle bustine contiene circa 4 g di prodotto (Figura 2).

Figura 2. A sinistra il peso dello zucchero “normale”. A destra quello “ad alta solubilità”. Non fatevi trarre in inganno. Su una bilancia meno sofisticata di quella da laboratorio, i pesi sono identici (e comunque nell’aprire la bustina dello zucchero “ad alta solubilità”, una piccola quantità di campione mi è caduta).

L’ispezione visiva (in gergo laboratoriale noi diciamo “occhiometrica”) mi permette di vedere che lo zucchero “ad alta solubilità” è più finemente suddiviso rispetto a quello “normale” (Figura 3).

Figura 3. A sinistra l’aspetto fisico dello zucchero “ad alta solubilità”. A destra quello dello zucchero “normale”

A questo punto comincio a pensare che il mio barista avesse ragione nel dire che si tratta di zucchero “normale” che però appare un po’ più impalpabile. Ma io sono un chimico e non mi fido delle parole. Già che sono in laboratorio posso usare lo spettrometro ad infrarossi (spettroscopia FT-IR) per registrare l’impronta digitale molecolare dei due prodotti.

Figura 4. Spettri FT-IR dello zucchero “ad alta solubilità” (in nero) e dello zucchero “normale” (in rosso). Le due impronte sono identiche.

La Figura 4 mostra i risultati dell’analisi. Le due impronte molecolari sono assolutamente identiche: si tratta di normale saccarosio. Ed allora perché stampare sulla bustina “alta solubilità”, dal momento che il saccarosio, indipendentemente dal contenitore in cui è racchiuso, ha sempre la stessa solubilità?

Qui entra il gioco l’uso scorretto dei termini chimici nel mondo del marketing. Ma andiamo con ordine.

La velocità con cui un soluto si scioglie in un solvente dipende dall’area superficiale del soluto. Più elevata è l’area superficiale, più velocemente avviene la solubilizzazione come conseguenza di un contatto più intimo tra soluto e solvente.

Il valore dell’area superficiale dipende dalla dimensione dei granuli del soluto. Più piccola è la dimensione di questi granuli, più alta è l’area superficiale e più velocemente avviene la solubilizzazione. In altre parole, il linguaggio del marketing si è appropriato del termine “solubilità”, che ho definito poco più su, per farlo diventare “velocità di solubilizzazione”.

Quindi secondo i “geni” del marketing,  “alta solubilità” non vuol dire che nella stessa quantità di solvente posso sciogliere una quantità più elevata di soluto, ma significa che lo zucchero si scioglie più rapidamente.

Il sabato mattina, quando ancora non riuscite a capire se siete vivi o se deambulate come zombies solo per inerzia, è importante usare lo zucchero “ad alta solubilità”: fare tre giri di cucchiaino nel vostro caffè invece che quattro vi aiuta a risparmiare energia.

That’s all folks (e grazie al gestore del Cicì Coffee and Drink per le quattro chiacchiere che facciamo la mattina e per avermi regalato una bustina di questo zucchero “ad alta solubilità”)

 

 

Fonte dell’immagine dell’uomo ragno: https://www.zoomflume.com/events/meet-spiderman-2017/

Fonte dell’immagine di copertina: https://blog.edoapp.it/saccarosio-cose-e-a-cosa-serve/

Effetto Paperino

Oggi mi sono imbattuto in un filmato molto divertente in cui due persone, dopo aver bevuto una birra all’elio, hanno cominciato a parlare con la voce di Paperino.

Ecco il filmato:

Divertente, vero?

Come mai quando respiriamo elio la nostra voce assume toni acuti?

Dovete sapere che l’emissione dei suoni è legata ad un meccanismo mediato dall’azione di corde vocali, faringe e bocca. Le prime, situate nella laringe (Figura 1), si avvicinano tra loro, si allontanano o vengono  tese (insomma, vibrano) grazie all’azione di alcuni muscoli. Sono proprio le vibrazioni delle corde vocali a generare il suono che si propaga attraverso l’aria che respiriamo.

Figura 1. Anatomia della gola (Fonte)

La frequenza del suono emesso da una sorgente che vibra è inversamente proporzionale alla radice quadrata della densità del mezzo in cui il suono si propaga. In altre parole, più denso è il mezzo, più bassa è la frequenza del suono. Più bassa è la densità del mezzo, maggiore è la frequenza del suono. Nel primo caso sentiamo suoni gravi, nel secondo sentiamo suoni acuti. Guardate il video qui sotto per conoscere meglio le caratteristiche dei suoni.

L’aria atmosferica, costituita da circa il 79% di azoto molecolare, il 20% di ossigeno molecolare e dall’1% di altri gas come anidride carbonica, argon etc., è mediamente otto volte più densa dell’elio. Questo vuol dire che il suono emesso dalle vibrazioni delle corde vocali attraversate dall’aria atmosferica ha una frequenza circa tre volte più bassa rispetto a quella del suono che si propaga attraverso l’elio (il “tre volte” viene fuori dal rapporto della densità dell’aria rispetto a quello dell’elio. La radice quadrata di 8 è 2.9, ovvero circa 3). La conseguenza di quanto appena scritto è che il suono che si propaga attraverso l’aria atmosferica è più grave di quello che si propaga attraverso l’elio. L’effetto finale quando respiriamo l’elio da un palloncino o beviamo birra addizionata di questo gas, come nel primo filmato di questa nota, è la caratteristica voce di Paperino.

Per saperne di più

Anatomia della gola

La propagazione del suono 1 e 2

Fonte dell’immagine di copertinahttp://cinetramando.blogspot.it/2011/12/paperino-donald-duck-walt-disney.html

Share