Gli OGM per le biodiversità

INTRODUZIONE AGLI OGM

Il tema degli OGM per le biodiversità e il pericolo che rappresentano è un cavallo di battaglia per i sostenitori anti-OGM. La loro idea è che gli organismi modificati geneticamente riducano la biodiversità degli ecosistemi con conseguente danni ecologici non più risanabili. Infatti, è ben noto che i vari comparti ambientali (residenza di forme di vita diversificate) siano risorse non rinnovabili, per cui i danni ad essi apportati si tradurrebbero nella perdita delle proprietà atte al sostentamento della vita. Questa argomentazione è ampiamente documentata  in tantissimi siti web.  Basta, infatti, ricercare in Google “OGM per le biodiversità” per venire inondati da centinaia, se non migliaia, di siti anti-OGM.

Nel mondo attuale in cui predomina la falsa idea della democraticità della scienza, ne viene che un utente medio (ovvero dalla cultura scientifica non troppo sviluppata) possa pensare che, se tanti, troppi, siti web dichiarano che gli OGM per le biodiversità siano pericolosi, questo sia un fatto reale e che la posizione pro-OGM da parte del mondo scientifico nasconda chissà quali trame oscure. Prevale, insomma, l’idea che il rumore di fondo sia paragonabile ed abbia la stessa rilevanza dei segnali, neanche molto sporadici, che si alzano ben al di sopra di tale rumore.

Cerchiamo di fare, invece, chiarezza per quanto possibile e vediamo di affrontare il problema nel modo più oggettivo possibile.

Affrontare un problema in modo oggettivo vuol dire applicare il metodo scientifico e cominciare, innanzitutto, a definire i contorni entro i quali ci si muove. Per delimitare i contorni anzidetti bisogna capire ciò di cui si parla.

COSA VUOL DIRE COMPARTO AMBIENTALE

È ben noto che l’acqua è un bene indispensabile del quale nessun organismo vivente può fare a meno. È il mezzo che consente la veicolazione dei nutrienti ed è il solvente nel quale si completano tutte le reazioni chimiche che caratterizzano il metabolismo sia animale che vegetale. Contaminare le acque vuol dire renderle inadatte al metabolismo come esso si è sviluppato nel corso degli eoni [1].

Una argomentazione analoga va invocata per il suolo. Anche se meno intuitivamente, il suolo va protetto esattamente come le acque. Dal momento che esso è la sede per la produzione alimentare ed è fonte del nostro nutrimento (sembra strano doverlo dire, ma i prodotti che si comprano al supermercato non crescono sui banconi degli stessi), contaminare un suolo o (più in generale) depauperarlo delle proprietà che lo caratterizzano, vuol dire ridurre drasticamente l’approvvigionamento alimentare in grado di sostenere tutte le forme animali e vegetali che popolano il nostro pianeta [1].

Anche l’atmosfera ha una importanza fondamentale nel sostenere la vita. È ben noto, infatti, che, grazie alla particolare miscela dei vari gas che la compongono, tutti gli organismi viventi sono in grado di esplicare le proprie funzioni. Rimanendo solo nell’ambito umano, una composizione atmosferica solo in minima parte diversa da quella che conosciamo (ovvero all’incirca 20% di ossigeno molecolare, 79% di azoto molecolare e 1% di altre tipologie di gas) non consentirebbe la nostra sopravvivenza. Infatti, al di sotto del 16% circa di ossigeno molecolare atmosferico moriremmo per asfissia, mentre concentrazioni molto elevate di ossigeno molecolare atmosferico comporterebbero la distruzione delle cellule secondo meccanismi che non sto a descrivere perché al di là degli scopi di questo semplice articoletto [1].

I tre sistemi citati, ovvero acque, suoli ed atmosfera (tralascio per semplicità il quarto che è quello dei sedimenti), sono tutti indispensabili al sostentamento della vita come noi la conosciamo e rappresentano tre comparti distinti dell’ambiente in cui viviamo. Pur essendo distinti per la loro natura chimica, essi non sono indipendenti gli uni dagli altri, ma  sono interconnessi secondo uno schema semplificato del tipo:

In altre parole, gli equilibri chimici alla base dello sviluppo di uno dei tre comparti influenzano tutti gli altri. Questo vuol dire che un contaminante immesso in atmosfera dall’attività antropica può ricadere al suolo attraverso le piogge; dal suolo può raggiungere le acque di falda mediante lisciviazione; da queste, infine, può arrivare ai fiumi ed al mare. Durante tutto questo percorso, il contaminante può entrare a contatto con la biosfera, ed in particolare con l’uomo, attraverso la catena alimentare con conseguenze più o meno drammatiche a seconda del livello di tossicità del contaminante stesso  [1].

COSA VUOL DIRE RISORSA NON RINNOVABILE

In termini ambientali, una “risorsa” è una qualsiasi fonte o un qualsiasi mezzo atto al sostentamento della vita [1, 2]. Alla luce di questa definizione, si può dire che i comparti ambientali descritti nel paragrafo precedente sono utili “risorse” per tutti gli esseri viventi. Non è difficile intuire, infatti, che senza aria e senza acqua non potrebbe esistere la vita come noi la conosciamo, così come senza suolo non sarebbe possibile alcuna produzione alimentare.

Sfruttare le risorse per il sostentamento della vita vuol dire usarle, da un lato, per migliorare la qualità dell’esistenza (per esempio, producendo l’energia necessaria per muoversi verso l’agognato luogo delle meritate  vacanze), dall’altro, per produrre gli alimenti che servono per sopravvivere (in modo da poter lavorare e guadagnare abbastanza per poter andare nei luoghi vacanzieri anzidetti). In ogni caso, lo sfruttamento delle risorse ambientali comporta il consumo delle stesse con riduzione progressiva delle capacità di sostenere la vita. Per esempio, usare acqua dolce nella lavatrice sottrae questa risorsa all’alimentazione; coltivare i campi per produrre alimenti  diminuisce la qualità dei suoli (laddove il concetto di qualità è di tipo positivo dal momento che ci si riferisce ad un insieme di proprietà che  consentono l’utilizzo dei suoli ai fini della produzione alimentare).

Il significato di “rinnovabile” si riconduce alla capacità della risorsa utilizzata (e, di conseguenza, consumata) di rigenerarsi in modo da consentirne un uso costante nel tempo [1, 2]. Questa visione di “rinnovabile”, tuttavia, è troppo generica perché non tiene conto del fatto che tutti i comparti ambientali sono rinnovabili su scale temporali che vanno molto oltre il tempo di vita medio degli esseri umani.

Perché una risorsa possa essere considerata “rinnovabile” e, quindi, utile al sostentamento della vita, è necessario che il tempo necessario per la sua rigenerazione sia almeno confrontabile con quello medio della vita umana. Per questo motivo, si può affermare che i comparti ambientali anzidetti, in grado di rigenerarsi in tempi molto più lunghi della vita media umana, sono delle risorse non rinnovabili.

COSA E’ LA SOSTENIBILITA’?

“Sostenibilità” è un termine usato a livello scientifico con diversi significati a seconda del contesto in cui viene usato. In particolare, in campo agricolo, “sostenibilità” si riferisce alla capacità di un sistema a mantenere la propria produttività costante, indipendentemente dal grado di alterazione a cui il sistema stesso è sottoposto [2]. Detto ciò, si può intuire che l’attività agricola in toto, ovvero anche quella ritenuta a impatto nullo come l’agricoltura biologica, ha un forte effetto sui suoli e sui diversi comparti ambientali. La lavorazione meccanica dei suoli, per esempio, se da un lato ne migliora l’ossigenazione e la strutturazione, dall’altro li rende più facilmente erodibili; le piante che assumono nutrienti durante le diverse fasi della germinazione e della crescita li sottraggono al suolo diminuendone, così, la fertilità se tali nutrienti non vengono opportunamente restituiti al suolo mediante fertilizzazione; l’irrigazione, necessaria per consentire la produzione vegetale, sottrae acqua potabile necessaria alla sopravvivenza umana; l’attività zootecnica oltre a sfruttare suolo (per la costruzione delle stalle e l’approvvigionamento alimentare degli animali) è associata anche alla contaminazione atmosferica in quanto gli animali producono gas serra; e potrei continuare. La conservazione delle risorse non rinnovabili passa necessariamente attraverso l’uso di pratiche agricole sostenibili quali, per esempio, quelle che limitano l’uso massivo di fertilizzanti inorganici favorendo l’applicazione di fertilizzanti organici; l’uso di tecniche colturali che limitano la produzione di gas serra (per esempio il minimum tillage e la semina diretta su terreno non lavorato) o il consumo di acqua potabile (per esempio la pacciamatura); la gestione integrata del suolo attraverso la lotta alla desertificazione e la corretta gestione dei suoli destinati sia alla produzione alimentare che energetica [3-5].

COSA SIGNIFICA BIODIVERSITÀ

L’enciclopedia Treccani definisce la biodiversità come “la variabilità tra gli organismi viventi all’interno di una singola specie, fra specie diverse e tra ecosistemi”. In effetti il termine “biodiversità”, di cui tanti oggi abusano, è molto complesso e per spiegarlo provo ad usare delle metafore.

Immaginiamo un condominio in un palazzo di 5 piani (sistema A) con due appartamenti per piano; ogni singolo appartamento può essere considerato come un piccolo ecosistema autonomo. Gli abitanti di ogni appartamento rappresentano la biodiversità dell’ecosistema/appartamento. Essi dormono, si svegliano, fanno colazione, pranzano, cenano e comprano tutto ciò di cui hanno bisogno. Un giorno il singolo proprietario di un appartamento che vive da solo nel suo ecosistema/bilocale, decide di fare un dolce ma si accorge di aver finito lo zucchero ed è troppo tardi per trovare un negozio aperto. Cosa fa? Esce dal proprio ecosistema/appartamento e suona all’ecosistema/appartamento vicino. Quest’ultimo è un ecosistema/quadrilocale in cui possono vivere comodamente 4 persone. La biodiversità dell’ecosistema/bilocale è inferiore in termini numerici rispetto a quella dell’ecosistema/quadrilocale. La maggiore disponibilità di spazio consente una maggiore biodiversità. Tuttavia, i due ecosistemi autonomi interagiscono tra loro quando è necessario per permettere la sopravvivenza (nel nostro caso mediante lo scambio di zucchero) degli organismi viventi che lo occupano (potremmo dire che occupano le due diverse nicchie ecologiche).

Una volta evidenziato che gli organismi viventi possono sopravvivere grazie alla interazione tra gli ecosistemi confinanti, andiamo oltre.

Il numero di componenti medio negli ecosistemi/appartamento è, diciamo, 4; ne viene che la popolazione del condominio è di 40 persone.

Cambiamo scenario.

Consideriamo lo stesso numero medio di persone per appartamento ma in un condominio di un palazzo di 10 piani (sistema B). Il numero totale di persone in questo nuovo sistema è 80. Possiamo dire che la biodiversità (intesa come numero di persone) del sistema B è maggiore di quella del sistema A. Supponiamo ora che i due palazzi (ovvero sistema A e sistema B) siano costruiti in uno spazio in cui sia presente un termitaio (sistema C). Il termitaio è abitato da, diciamo, 10000 termiti. Possiamo dire che la biodiversità (sempre intesa come numero di individui per ogni sistema) varia nell’ordine sistema C > sistema B > sistema A. Tuttavia, la popolazione dei sistemi A e B è fatta da persone appartenenti alla stessa specie, ovvero umani (indichiamoli come sistema U, per semplicità), per cui possiamo dire che la biodiversità del termitaio è di gran lunga maggiore di quella degli umani nei due condomini appena citati, ovvero sistema C > sistema U. Facciamo, ora, un passo avanti e assumiamo che nel terreno dove sorgono i condomini ed il termitaio ci sia anche un fiume (sistema D) in cui mediamente vivono non meno di 500 pesci. Possiamo dire che la biodiversità (ancora intesa come numero di individui diversi) nei due ecosistemi suolo e acqua varia come sistema C > sistema D > sistema U. Tuttavia, se raggruppiamo i sistemi C ed U in base al fatto che sono entrambi terrestri (indichiamo i due messi insieme come sistema T), ne viene che sistema T > sistema D. Ma nel fiume, così come sulla terra, non “abitano” soltanto pesci o termiti o umani. Ci sono anche piante, uccelli, insetti, e altre moltitudini di micro, meso e macro organismi. È l’insieme di tutti questi esseri viventi, in grado di interagire tra loro con modalità differenti (per esempio in modo simbiotico o parassitario), a costituire la biodiversità [6].

L’esempio fatto evidenzia che la biodiversità si riferisce non solo alle specie viventi in un dato ecosistema, ma anche alla diversificazione degli ecosistemi stessi che sono in grado di interagire simbioticamente, e quindi sopravvivere, grazie alle interazioni tra loro.

L’importanza della biodiversità  risiede nel fatto che viene assicurato l’equilibrio dinamico della biosfera [7]. In particolare, maggiore è la biodiversità e maggiore è la probabilità che venga assicurata la continuità della vita nel caso in cui alterazioni ambientali sconvolgano gli ecosistemi [7].  In altre parole, se l’impatto di un meteorite sulla Terra comporta l’estinzione di una certa specie (come i dinosauri), la nicchia ecologica lasciata libera dalla specie estinta viene occupata da altre forme di vita e la vita, in senso generale, è, in ogni caso, in grado di continuare [7]

AGRICOLTURA E BIODIVERSITÀ

Alla luce di quanto detto fino ad ora è lecito chiedersi quale sia il ruolo dell’agricoltura in tutte le sue forme nello sviluppo della biodiversità.

È stato già evidenziato che tutte le pratiche agricole hanno un forte impatto sui diversi comparti ambientali alterandone le caratteristiche e rendendoli inadatti al sostentamento della vita se non vengono applicate opportune regole per la conservazione degli stessi [3-5]. Nella fattispecie, l’attività agricola necessita di ampi spazi nei quali poter coltivare le piante ad uso alimentare. I grandi spazi si ottengono solo attraverso il disboscamento. La semplice conversione di uno spazio da foresta a campo agricolo comporta non solo un aumento netto di anidride carbonica [1], ovvero un gas serra, nell’atmosfera (quindi incremento dell’inquinamento del comparto aria), ma anche un cambiamento nella tipologia di micro, meso e macro fauna che è in grado di sopravvivere in quel luogo [1]. Faccio un esempio molto semplice.

In un bosco vivono i gufi; se viene attuato il disboscamento per convertire il bosco in spazio arabile, si elimina l’habitat dei gufi che, di conseguenza, spariscono da quell’area. Al posto dei gufi subentrerà un’altra tipologia di uccelli, per esempio i corvi, che sopravvivono “predando” le colture che gli umani usano per la loro produzione alimentare. I gufi sono predatori naturali di topi ed altri piccoli animali. Questi ultimi, in assenza dei loro predatori, tenderanno a proliferare incrementando il loro numero. Come si arguisce da questo esempio banale, la conversione di uno spazio da bosco a campo agricolo comporta la sparizione di un certo tipo di esseri viventi e la comparsa di altri animali più adatti a vivere nel nuovo ambiente.

Il discorso che ho fatto sui gufi, i corvi ed i topi si applica anche alla biomassa microbica dei suoli che, come gli animali anzidetti, contribuisce alla biodiversità del sistema agricolo. Tutto questo, naturalmente, è valido se guardiamo solo  alla fauna. Se guardiamo alle specie vegetali, l’attività agricola (e, si badi bene, sto parlando di tutte le tipologie di agricoltura) comporta una drastica riduzione della biodiversità vegetale. Infatti le aree boschive sono molto ricche di specie vegetali di ogni tipo, in grado di vivere in simbiosi tra loro o parassitando altre specie vegetali. Se vogliamo produrre mega litri di olio extra vergine di oliva dalla varietà Biancolilla da esportare in tutto il mondo abbiamo bisogno solo di ulivi che appartengono alla cultivar che ci interessa. La massimizzazione della produzione, inoltre, comporta la necessità di eliminare tutte le piante “parassite” in grado di competere con quelle di interesse per l’assorbimento dei nutrienti.

In altre parole, l’attività agricola comporta una alterazione della biodiversità faunistica (micro, meso e macro) nel senso che ad una diminuzione del numero di specie viventi rispetto a quelle presenti nelle zone vergini corrisponde anche la colonizzazione del nuovo habitat da parte di altre specie adatte alla sopravvivenza negli spazi destinati all’agricoltura. Per altri versi, sotto il profilo della biodiversità vegetale, le monocolture sostituiscono l’enorme varietà biologica che caratterizza le aree boschive/forestali.

Da tutto quanto detto si capisce che è possibile distinguere tra biodiversità forestale/boschiva e biodiversità agricola (in questa sede tralascio gli altri tipi di biodiversità come quella aerea e acquatica che sono fuori contesto). La prima riceve un rapido decremento nel cambio di destinazione d’uso di un suolo (da forestale/boschivo a coltivato). Tuttavia, la biodiversità agricola, legata alla diversificazione delle specie viventi adatte alla vita in un ambiente “antropizzato”, dipende fortemente dal tipo di tecniche agricole utilizzate [8-11]. Infatti le pratiche intensive (intese come quelle che non guardano alla salvaguardia dell’ambiente ma solo alla produttività economica) portano ad una riduzione della biodiversità che è dal 10 al 30 % in meno rispetto a quella che si misura quando si fa uso di pratiche sostenibili [8-11]. Dal momento che è stato evidenziato che la salubrità alimentare è direttamente correlata alla biodiversità agricola [12, 13], da qualche anno tutte le agenzie internazionali spingono per l’applicazione di pratiche agricole sostenibili [12-14]. Queste ultime, quindi, oltre a consentire la conservazione delle risorse non rinnovabili come definite in precedenza, consentono anche la salvaguardia della biodiversità. Quest’ultima può essere a tutti gli effetti considerata anch’essa come una risorsa non rinnovabile (esattamente come suolo, aria ed acqua) da proteggere e conservare per il miglioramento della qualità della vita umana.

COSA SONO GLI ORGANISMI GENETICAMENTE MODIFICATI O OGM?

Esistono due aspetti distinti che devono essere presi in considerazione per definire il significato di “organismo geneticamente modificato”. Da un lato abbiamo l’approccio scientifico che si basa sui fatti, dall’altro abbiamo l’approccio politico che non tiene conto dei fatti ma solo dell’umore degli elettori e delle convenienze elettorali. Insomma, l’approccio politico alla definizione di OGM è di carattere culturale, piuttosto che reale [15]. Ma andiamo con ordine.

LE MODIFICHE GENETICHE PER LA SCIENZA

Fin da quando Darwin ha posto le basi della teoria dell’evoluzione è apparso chiaro, ed è diventato progressivamente sempre più evidente sotto il profilo sperimentale, che tutti gli organismi viventi hanno avuto origine da un progenitore comune che oggi noi chiamiamo LUCA, ovvero “Last universal common ancestor”, che altro non è che il famoso brodo primordiale nel quale si sono realizzate tutte le condizioni chimico fisiche per la formazione delle protocellule e lo sviluppo del metabolismo che caratterizza tutti gli esseri viventi [16]. Solo l’evoluzione, associata all’adattamento alle condizioni ambientali, dal progenitore comune riesce a spiegare la similitudine tra il nostro patrimonio genetico e quello di tanti altri organismi viventi. Per esempio, oltre il 98% di similitudine esiste tra il DNA umano e quello degli scimpanzé, oltre il 90% di affinità esiste tra il DNA umano e quello dei topi mentre oltre il 50% di somiglianza accomuna il nostro DNA a quello delle piante [15].

La differenziazione genetica avviene in modo casuale per effetto di errori imprevedibili durante i processi di replicazione del DNA. La moltitudine di organismi che viene così generata (quella che in precedenza è stata identificata col termine di “biodiversità”) è fatta da individui che sotto la spinta della pressione ambientale possono soccombere oppure sopravvivere. In quest’ultimo caso, il patrimonio genetico viene trasmesso alle generazioni successive.

Nel corso di milioni di anni, la differenziazione genetica ha prodotto l’insieme di organismi viventi (dai microorganismi  all’uomo) che oggi siamo abituati a conoscere. In definitiva, tutti noi siamo il prodotto di modificazioni genetiche (ovvero alterazioni imprevedibili del DNA) che ci consentono di occupare delle ben precise nicchie ecologiche nelle quali siamo in grado di sopravvivere [17].

Le modifiche genetiche possono essere  indotte anche in modo mirato. Per esempio, fin da quando 10.000 anni fa l’uomo è passato dalla fase nomade di caccia/raccolta a quella stanziale di carattere prevalentemente agricolo [18], ha tentato, tra successi ed insuccessi, di modificare le caratteristiche genetiche dei vegetali e degli animali  in modo da aumentare la produttività agricola dei primi e rendere più docili i secondi. In tutti e due i casi, lo scopo è sempre stata la massimizzazione della produzione alimentare così da sfamare un numero sempre più ampio (attualmente in fase di crescita esponenziale) di esseri umani.

In assenza di conoscenze specifiche, le modifiche genetiche mirate venivano indotte per tentativi ed errori attraverso l’incrocio di organismi aventi ognuno una o più delle caratteristiche desiderate. In questo modo era possibile ottenere piante “domestiche” in grado di resistere a certe particolari patologie a cui non erano soggette piante selvatiche e meno utili sotto l’aspetto alimentare. Allo stesso modo, era possibile selezionare animali da latte in grado di produrre questo alimento in modo continuativo o animali da caccia con specifiche caratteristiche morfologiche tali da renderli adatti per le diverse tipologie di caccia.

La progressione delle conoscenze ha condotto alla comprensione dei meccanismi biochimici alla base dell’ereditarietà genetica cosicché oggi è possibile operare modifiche genetiche con una possibilità di errore di gran lunga inferiore rispetto a quella associata ai tentativi di incrocio delle vecchie pratiche agricole/zootecniche. La nuove tecniche di ingegneria genetica consentono, infatti, di modificare il DNA di una specie vegetale variando unicamente i geni responsabili di certe particolari caratteristiche [19]. In questo modo si ottengono, in tempi molto più rapidi rispetto alle pratiche convenzionali, piante con proprietà nutrizionali o meccanismi di difesa di gran lunga superiori rispetto a quelle cosiddette tradizionali [15]. Un esempio tra tutti è il famoso “goldenrice” [20]. Si tratta di un riso modificato geneticamente capace di produrre, come metabolita secondario, il b-carotene, ovvero il precursore della vitamina A la cui carenza è associata a inibizione della crescita, deformazione e fragilità delle ossa e  modifiche delle strutture epiteliali e degli organi riproduttivi [21]. La carenza di vitamina A si ottiene solo per deficit nutrizionali in quelle popolazioni che non hanno accesso a fonti alimentari in grado di fornire i precursori della suddetta vitamina. È il caso, per esempio, delle popolazioni orientali (India in testa) la cui alimentazione è prevalentemente basata sull’uso del riso. La sostituzione del riso tradizionale col riso golden consente di superare i problemi nutrizionali di cui si accennava.

LE MODIFICHE GENETICHE PER LA POLITICA E L’OPINIONE COMUNE

È stato evidenziato come, sotto l’aspetto scientifico, tutti gli esseri viventi possano essere considerati come organismi geneticamente modificati perché derivati da processi evolutivi durante i quali piccole variazioni genetiche hanno consentito l’adattamento (e, di conseguenza, la sopravvivenza) nelle condizioni più disparate. È stato anche puntualizzato come il progresso tecnologico in ambito agricolo consenta oggi di effettuare modifiche genetiche mirate ed in tempi brevi in modo da ottimizzare la produttività agricola. I prodotti agricoli selezionati mediante ingegneria genetica non vengono utilizzati o immessi in commercio a cuor leggero, ma subiscono una serie di controlli molto minuziosi in modo da rilevare ogni possibile effetto collaterale sulla salute umana [15]. Nonostante la “naturalità” (nel senso comune del termine) delle modifiche genetiche e gli innumerevoli controlli cui i prodotti modificati geneticamente sono sottoposti, la politica, che – come già evidenziato – segue gli umori degli elettori, cerca di opporsi in tutti i modi agli OGM.

La prima direttiva Europea 90/220/CEE sugli OGM stabilisce al comma 2 dell’articolo 2 che è “organismo geneticamente modificato (OGM), un organismo il cui materiale genetico è stato modificato in modo diverso da quanto si verifica in natura con l’accoppiamento e/o la ricombinazione genetica naturale” [22], laddove viene preso in considerazione il concetto di “natura” che, come evidenziato in molta letteratura, è solo ed esclusivamente di carattere culturale [15, 23]. I processi tecnologici mirati alle modifiche genetiche per il miglioramento delle caratteristiche vegetali sono in tutto e per tutto simili, in termini biochimici, a quanto accade “naturalmente”. La differenza che una certa politica vuole vedere è solo nel procedimento utilizzato. In questo modo una modifica genetica ottenuta per tentativi ed errori mediante innesti non porta, normativamente, ad un OGM, mentre un organismo ottenuto mediante la tecnica del DNA ricombinante è considerato, per legge, un OGM. Si deve, quindi, puntualizzare che, sotto l’aspetto scientifico, questa differenziazione normativa è completamente priva di significato e potrebbe essere legata unicamente ad una politica protezionistica delle aziende di prodotti fitosanitari di cui il vecchio continente, e l’Italia in particolare, è abbastanza ricco [15, 24, 25]. In effetti, come riportato in una intervista alla senatrice Elena Cattaneo su Linkiesta [24], i maggiori avversari, in Italia, dei prodotti OGM sono proprio le aziende che producono fitofarmaci [25] le quali vedrebbero ridurre i propri introiti dalla introduzione in agricoltura delle piante OGM (nel prossimo paragrafo si discuterà brevemente dei possibili vantaggi/svantaggi dell’uso agricolo degli OGM).

Ma quale è il ruolo giocato dalle popolazioni Europee nell’indirizzare la politica dell’Unione e degli stati membri?  In realtà bisogna dire che i cittadini dell’Unione Europea non sono adeguatamente informati sull’aspetto scientifico degli OGM e risentono in gran parte delle leggende e dei miti propagandati ad arte da gente di spettacolo [26] e da persone che hanno mitizzato i sapori delle epoche andate [27]. Tra questi miti sono da ricordare quello delle biotecnologie contro natura, della alterazione del DNA umano per ingestione di piante OGM, della diffusione della resistenza agli antibiotici con conseguente incremento nella difficoltà a resistere ad alcune malattie, della riduzione della biodiversità (di cui si discuterà più avanti) e così via cantando [28]. La scarsa preparazione scientifica associata ai miti anzidetti fa in modo che il cittadino EU prema sui governi affinché venga limitato l’uso di organismi geneticamente modificati in agricoltura. I governi colgono la palla al balzo e, per non perdere consensi, seguono l’umore del “popolo” abusando di un principio di precauzione che, come si intuisce da quanto scritto fino ad ora e come si comprenderà dalla lettura dei paragrafi seguenti, non ha alcun senso.

AGRICOLTURA ED OGM

Al momento attuale l’uso di organismi geneticamente modificati in agricoltura è vietato in quasi tutta Europa. Solo Spagna e Portogallo hanno introdotto coltivazioni di mais OGM [29]. Tuttavia, la ascientificità delle proibizioni normative in atto sia in Europa che in tantissimi paesi del globo terrestre è supportata dalla pubblicazione di numerosi studi che evidenziano l’efficacia economica ed ambientale nell’uso agricolo di piante geneticamente modificate. In Cina, per esempio, la coltivazione di cotone OGM (quello che viene indicato come cotone Bt, ovvero  modificato geneticamente con il gene del Bacillusthuringensis inserito nel vegetale per fargli produrre una tossina che lo rende resistente ai parassiti) ha portato benefici sia economici che ambientali. Infatti, studi condotti per la valutazione a breve [30] e lungo termine [31] del cotone Bt sulla società Cinese dimostrano non solo che gli agricoltori che hanno introdotto questa pianta nella loro produzione hanno avuto un incremento di guadagni economici, ma hanno anche operato una riduzione nella quantità di fitofarmaci, dannosi per l’ambiente, usati nella loro pratica agricola. Il cotone Bt ha apportato benefici anche agli agricoltori Indiani come riportato nei riferimenti [32-34].  Inoltre, impatti positivi, sia economici che ambientali, si sono avuti anche in alcuni paesi del Sud America (Brasile, Argentina e Paraguay) e negli Stati Uniti [35-37] a seguito dell’introduzione della soja OGM.

Nonostante la grande massa di dati sperimentali che attestano della positività dell’uso in agricoltura di piante OGM, un  lavoro molto recente pubblicato su Science Advances [38] si pone in controtendenza rispetto a quanto finora riportato per gli Stati Uniti. In particolare, gli autori dello studio [38] rivelano che mentre l’uso di mais OGM ha portato ad una riduzione della quantità di insetticidi ed erbicidi rispetto alla situazione antecedente al 1998, l’uso di soja OGM ha comportato sì una riduzione nella quantità di insetticidi, ma un incremento in quella di erbicidi. Gli autori del lavoro contestualizzano i loro dati evidenziando che l’incremento nell’uso di erbicidi conseguente alla coltivazione di soja OGM è dovuto all’aumento alla resistenza al glifosato [39] da parte delle erbe infestanti.

RELAZIONE TRA ORGANISMI GENETICAMENTE MODIFICATI E BIODIVERSITA’

La nota in merito all’aumento alla resistenza al glifosato da parte delle erbe infestanti riportata nel riferimento [38] è un interessante punto di partenza per discutere dell’argomento OGM-biodiversità, scopo del presente articolo. Infatti, il punto focale del predetto studio [38] è che l’aumento della resistenza al glifosato da parte delle erbe infestanti è conseguente alla coltivazione di soja Roundup® resistant. Il Roundup® è un fitofarmaco a base di glifosato [39]. La soja Roundup® resistant è un vegetale che non subisce danni da parte del glifosato. Nel momento in cui la soja Roundup® resistant viene coltivata, si può far gran uso di glifosato  per eliminare le erbe infestanti che competono con la soja per l’assunzione di nutrienti dal suolo. La velocità di riproduzione e crescita delle erbe infestanti consente una variabilità genetica molto elevata. Questo significa che, per effetto  degli errori casuali nella replicazione del DNA di cui si accennava in precedenza, è possibile che, tra le tante piantine infestanti, ne possa nascere qualcuna che sia resistente al glifosato. La conseguenza è che sono proprio queste ultime, più adatte a sopravvivere al citato erbicida, a prendere il sopravvento e a portare ad un uso sempre più massiccio di glifosato o di altre tipologie di erbicidi. In altre parole, la coltivazione della soja Roundup® resistant favorisce la biodiversità. Si tratta di un tipo di biodiversità economicamente dannosa e contro la quale bisogna applicare fitofarmaci dal forte impatto ambientale; ma il punto, per il momento, non è questo. Il punto è che l’uso di un sistema OGM  favorisce la biodiversità vegetale strettamente detta. Una situazione analoga, sebbene più utile sotto l’aspetto economico per gli agricoltori che decidono di farne uso, si verifica in tutti quei paesi in cui non sono validi i brevetti sulle piante OGM. Per esempio in India il cotone Bt prodotto dalla Monsanto è stato utilizzato per generare 137 differenti ibridi ognuno con proprietà ben specifiche [15]. La possibilità di avere un numero di specie vegetali potenzialmente infinito mediante l’uso dell’ingegneria genetica ha consentito di salvaguardare tanti prodotti tipici [15] come, per esempio, la papaya nelle Hawaii [40] o il pomodoro San Marzano [41] prodotto tipico Campano. In altre parole, sulla base delle definizioni oggettive date in merito a biodiversità e sistemi OGM, si può concludere che gli organismi geneticamente modificati possono essere considerati come risorsa per la biodiversità, piuttosto che come un problema come da più parti propagandato [42-44].

CONCLUSIONI

Gli organismi geneticamente modificati sono una risorsa per la biodiversità. Tuttavia, bisogna evidenziare che oltre ad una biodiversità economicamente conveniente, l’uso di coltivazioni OGM può generare una biodiversità vegetale contrastabile attraverso un uso progressivamente più massiccio di fitofarmaci potenzialmente dannosi per l’ambiente. Alla luce di questo, gli OGM devono essere condannati senza appello? La risposta è: certamente no. L’applicazione dell’ingegneria genetica all’agricoltura si inserisce nell’ambito di quella che è stata dichiarata in precedenza come “agricoltura sostenibile”. In altre parole, gli OGM devono essere pensati come complementari ai prodotti dell’agricoltura tradizionale (intensiva o meno) in modo da consentire la salvaguardia  sia dei prodotti tipici che di tutte le risorse ambientali non rinnovabili dalla cui “distruzione”, alla luce dei meccanismi che avvengono in natura, gli unici ad uscire sconfitti sono solo gli esseri umani.

RIFERIMENTI

1

https://www.crcpress.com/Environmental-Chemistry-Ninth-Edition/Manahan-     Manahan/p/book/9781420059205

2

https://www.researchgate.net/publication/279179431_Research_and_Application_of_Biochar_in_Europe

3

http://www.sinanet.isprambiente.it/gelso/tematiche/buone-pratiche-per-lagricoltura

4

http://sito.entecra.it/portale/public/documenti/Risultati/445a78ed-4c43-1944-62b0-4ee61d1615a1.pdf

5

http://dspace.inea.it/bitstream/inea/519/1/Agres_Metodi.pdf

6

http://www.isprambiente.gov.it/it/temi/biodiversita

7

http://www.bollatiboringhieri.it/scheda.php?codice=9788833927039

8

http://onlinelibrary.wiley.com/doi/10.1111/gcb.12517/full

9

http://link.springer.com/article/10.1007/s10460-009-9251-4

10

http://www.nature.com/articles/ncomms5151

11

http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12219/full

12

http://www.fao.org/docrep/006/y5418i/y5418i00.HTM

13

http://ec.europa.eu/agriculture/cap-post-2013/communication/com2010-672_it.pdf

14

http://www1.interno.gov.it/mininterno/export/sites/default/it/sezioni/sala_stampa/notizie/formazione_professionale/app_notizia_20084.html

15

Dario Bressanini, OGM tra leggende e realtà, Zanichelli, 2009 (http://online.scuola.zanichelli.it/chiavidilettura/ogm-tra-leggende-e-realta/)

16

Cristian De Duve, Alle origini della vita, Bollati Boringheri, 2011 (http://www.bollatiboringhieri.it/scheda.php?codice=9788833922072)

17

http://online.scuola.zanichelli.it/LupiaSaraceni_ScienzeIntegrate-files/Zanichelli_Lupia_Saraceni_Scienze_Sintesi_UB1.pdf

18

http://www.laputa.it/libri/da-animali-a-dei-breve-storia-dellumanita/

19 http://nut.entecra.it/files/download/Pubblicazioni_divulgative/inran_interno_web_bassaqualita.pdf

20

http://www.treccani.it/enciclopedia/golden-rice_(Enciclopedia-della-Scienza-e-della-Tecnica)/

21

http://www.msd-italia.it/altre/manuale/sez01/0030035.html

22

http://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:31990L0220&from=IT

23

Silvano Fuso, Naturale = Buono, Carocci editore, 2016 (http://www.carocci.it/index.php?option=com_carocci&task=schedalibro&Itemid=72&isbn=9788843079230)

24

http://www.linkiesta.it/it/article/2015/10/11/perche-gli-ogm-fanno-paura/27729/

25

http://www.prodottifitosanitari.net/imprese/elenco_imprese

26

http://www.beppegrillo.it/2013/07/passaparola_ogm_tolleranza_zero.html

27

http://www.slowfood.com/sloweurope/it/gli-ogm-in-europa/

28

http://www.siga.unina.it/circolari/Fascicolo_OGM.pdf

29

http://www.greenbiz.it/food/agricoltura/12679-ogm-2014

30

Pray & Ma, 2001, Impact of BT cotton in China, World Development, 29: 813-825 (http://www.sciencedirect.com/science/article/pii/S0305750X01000109)

31

Qiao, 2015, Fifteen Years of Bt Cotton in China: The Economic Impact and its Dynamics, World Development, 70: 177-185 (http://www.sciencedirect.com/science/article/pii/S0305750X15000121)

32

Qaim, 2003, Bt Cotton in India: Field Trial Results and Economic Projections, World Development, 31: 2115–2127 (http://www.sciencedirect.com/science/article/pii/S0305750X03001670)

33

Krishna &Qaim, 2012, Bt cotton and sustainability of pesticide reduction in India, Agricultural Systems, 107: 47-55 (http://www.sciencedirect.com/science/article/pii/S0308521X11001764)

34

Subramanian &Qaim, 2009, Village-wide effects of agricultural biotechnology: the case of Bt cotton in India, World Development, 37: 256-267 (http://www.sciencedirect.com/science/article/pii/S0305750X0800123X)

35

https://www.researchgate.net/profile/Clemens_Van_de_Wiel/publication/242115382_GM-related_sustainability_agro-ecological_impacts_risks_and_opportunities_of_soy_production_in_Argentina_and_Brazil/links/554725d30cf234bdb21db793.pdf

36

http://www.agbioforum.org/v8n23/v8n23a15-brookes.htm?&sa=U&ei=KojTVOKAL9CyogTSqYCgCg&ved=0CBQQFjAA&usg=AFQjCNH-zn1ERidarL6-x-Pnq3lsHjPUeg

37

Bonny, 2008, Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review, Agronomy for Sustainable Development, 28: 21-32 (http://link.springer.com/article/10.1051/agro:2007044)

38

Perry & al., 2016, Genetically engineered crops and pesticide use in U.S. maize and soybeans, Science Advances,

2(8), e1600850 (http://advances.sciencemag.org/content/2/8/e1600850.full.pdf+html)

39

http://www.laputa.it/blog/glifosato-pericolo-ambiente-innocuo-uomo/

40

http://www.gmo-compass.org/eng/grocery_shopping/fruit_vegetables/14.genetically_modified_papayas_virus_resistance.html

41

http://www.ncfap.org/documents/VirusResistantTomato.pdf

42

Facciamo chiarezza

43

http://cmsdata.iucn.org/downloads/ip_gmo_09_2007_1_.pdf

44

http://agroeco.org/wp-content/uploads/2010/09/garcia-altieri.pdf

Fonte dell’immagine di copertina: Wikimedia Commons

Acque micellari. Il ruolo del marketing e la comunicazione scientifica

Recentemente, in questo blog, ho riproposto una brevissima nota sulle acque micellari; una nota che avevo scritto già un po’ di tempo fa su facebook. Ha avuto un successo di pubblico notevole dal momento che ha raggiunto più di 57000 utenti (Figura 1).

Figura 1. Successo di pubblico per la nota sulle acque micellari

Nonostante l’evidenza scientifica sul ruolo che svolgono questi prodotti cosmetici, che è la medesima dei saponi, c’è stata una sòrta di sollevazione popolare. Da un lato sono state fatte considerazioni pseudo scientifiche sul modo in cui ho comunicato una cosa che ai miei occhi – e non solo – appare abbastanza ovvia; dall’altro è stata invocata a gran voce la necessità di rispettare ogni opinione, anche quelle che danno contro ogni evidenza e modello di carattere scientifico. La cosa bella è che questa sollevazione è avvenuta in gruppi e pagine  popolati da scettici o, quanto meno, presunti tali. Questo significa che queste persone dovrebbero farsi qualche domanda in più rispetto a quello che è il modo di pensare complottistico. Evidentemente non è così e quando le bufale toccano la propria sfera personale, si alza un muro che impedisce ad ognuno di noi di essere razionale.

Le Figure 2 e 3 mostrano uno spaccato delle diverse tipologie di contestazioni cui la mia nota ha dato luogo.

Figura 2. Considerazioni pseudo scientifiche
Figura 3. Considerazioni ad personam

A questo punto rientro nel mio ruolo chimico ed utilizzerò un linguaggio tecnico così da puntualizzare l’incongruenza di quanti si sono sentiti toccati in prima persona da considerazioni che avevano il solo scopo di evidenziare che il marketing manipola informazioni serie adattandole ai desiderata del mercato.

Il mercato lo facciamo tutti noi. Se siamo impreparati o se non siamo in grado di capire ciò che leggiamo, siamo noi i responsabili in prima persona della propagazione di sciocchezze, notizie infondate e bufale.

Tensioattivo o surfattante?

Nelle mie note ed elucubrazioni faccio uso dei due termini “surfattante” e “tensioattivo” in modo assolutamente libero. In italiano essi sono sinonimi. Del resto basta andare on line e ricercare il termine “surfattante” nella enciclopedia Treccani per trovare la seguente definizione

surfattante agg. e s. m. [dall’ingl. surfactant, acronimo della locuz. surf(ace) act(ive) a(ge)nt «agente superficialmente attivo»]. – Sinon., meno com., di tensioattivo”.

Micelle o non micelle? Questo è il problema

Non è parte dei programmi di studio di tutti i chimici. Per esempio io ho affrontato questi problemi quando mi sono impegnato nella ricerca sulla chimica delle sostanze umiche ed ho avuto necessità di approfondire la chimica fisica delle interazioni deboli. All’epoca studiai un bellissimo libro dal titolo The hydrophobic effect: formation of micelles and biological membranes” (autore Tanford, anno 1980, Editore Wiley intescience) in cui si riporta chiaramente il meccanismo della formazione di emulsioni olio/acqua. Una emulsione è una dispersione di piccole goccioline di olio in acqua (in realtà la definizione è un poco più complessa, ma mi sto soffermando solo sulla miscela che ci interessa per rispondere alle critiche che contestano quanto ho scritto nella nota sull’acqua micellare). Queste goccioline si formano per effetto di due “forze” contrastanti. Da un lato le molecole che costituiscono l’olio  sono anfifiliche (ovvero hanno una testa polare ed una coda apolare), dall’altro le molecole di acqua sono polari. La solubilizzazione di un soluto in un solvente è una vera e propria reazione chimica che segue il seguente percorso:

soluto-soluto → 2 soluto

solvente-solvente → 2 solvente

soluto + solvente → soluto-solvente

In altre parole, le molecole di soluto interagiscono tra loro, esattamente come fanno quelle di solvente. Perché il soluto si possa “sciogliere” nel solvente è necessario che esso si solvati, ovvero venga “circondato” da molecole di solvente. A tale scopo si devono rompere le interazioni soluto-soluto e solvente-solvente per la formazione di interazioni soluto-solvente. Questo è possibile solo se le interazioni soluto-solvente sono della stessa natura o più forti di quelle solvente-solvente e soluto-soluto. Essendo le molecole di olio anfifiliche, mentre quelle di acqua polari, si può qualitativamente dire che l’interazione tra queste due tipologie di molecole non è conveniente. Per questo motivo le molecole di olio tendono ad “isolarsi” da quelle di acqua formando delle goccioline. Come sono fatte queste goccioline? Sono fatte da una parte interna in cui interagiscono tra loro tutte le componenti più idrofobiche e da una superficie esterna dove sono localizzate le componenti più polari che possono “sopportare” la presenza dell’acqua. Si realizza, cioè, una situazione simile a quella descritta in Figura 4.

Figura 4. Struttura di una gocciolina di olio. La componente interna è isolata dalle molecole di acqua esterne da una superficie costituita dalla componente più polare delle molecole di olio.

Come è fatta una micella? Esattamente nello stesso modo. Senza scomodare il Tanford citato sopra, una micella è definita, nell’enciclopedia Treccani, come

aggregato in soluzione acquosa di molecole anfifiliche; le catene idrofobe idrocarburiche si trovano all’interno e i gruppi idrofili (polari o ionici) all’esterno in contatto con il solvente.

In altre parole, non c’è nessuna bestialità in quanto ho scritto. Mi rendo conto, tuttavia, che chi non ha molta familiarità con la chimica di questi sistemi complessi possa essere stato tratto in inganno.

Frittata con uova di gallina o con uova di storione?

Una delle critiche che mi sono state mosse è nell’aver detto che i surfattanti sono tutti uguali tanto è vero che qualcuno ha scritto: “Anche le uova di gallina sotto sale sono caviale, laddove per uovo, in senso lato si intende una cellula gametica aploide”.

Non sono un biologo, ma se prendo la definizione di uovo nell’enciclopedia Treccani trovo che uovo è

In biologia, il gamete femminile costituito da una cellula di varie dimensioni (detto perciò anche cellula uovo), di forma per lo più sferica, ellissoidale o cilindrica, che si origina generalmente nell’ovario e ha accumulati, nel suo citoplasma, materiali nutritizî di riserva (tuorlo o vitello o plasma nutritivo) per lo sviluppo dell’embrione

Lascio al lettore la libertà di leggere per intero la definizione di “uovo” nell’enciclopedia al link già inserito. Tuttavia, a me sembra di capire che non c’è differenza alcuna nella definizione di uovo di storione, gallina o struzzo. Sono tutte uova. Ci sono anche ricette di frittate di uova di storione. Si veda per esempio qui. Che le acque micellari siano in tutto e per tutto acqua e sapone, non è un errore. Il meccanismo di funzionamento dei saponi è il medesimo e l’effetto sulla pulizia della pelle anche.

Possiamo usare un tensioattivo per il forno a scopo cosmetico?

Non sono mancati commenti pseudo ironici del tipo:  “Ma infatti, stasera andate a casa, e struccatevi col fornet, tanto sempre detergente è, anche quello ha le micelle”. I prodotti per uso topico sono surfattanti come quelli del prodotto per la pulizia dei fornelli, ma devono rispettare dei requisiti di anallergicità e atossicità che quelli per i fornelli non hanno. Quindi, la battuta non fa tanto ridere. Non seguite questo consiglio perché rischiereste di farvi veramente male.

Relazione struttura-attività

Una delle critiche che mi sono state fatte è quella che riporto qui sotto:

“Io credevo di trovare un articolo ben più “scientifico”, in questo caso quelle poche righe sono aria fritta. Non si parla di concentrazioni, proporzioni, nulla. Lo posso dire anche io che ho fatto un esame di Chimica Organica in cui ho letto mezza pagina su come agisce un sapone che “acqua micellare” contiene la parola “micelle” che sono una proprietà dei saponi allora “acqua micellare” = “acqua e sapone”. Ma effettivamente non è così. La pelle non si deterge meglio con l’acqua micellare che con acqua e sapone solo perchè si è fermamente convinti che lo faccia. Se due animali perfettamente identici ma che volano uno a 3 metri dal suolo e uno a 4 possono essere due specie diverse, non vedo perchè due composizioni chimiche differenti con evidenti effetti differenti non possano essere, appunto, due robe differenti.”

Chi ha scritto queste cose sta cercando di dire che “acqua e sapone” e “acqua micellare” sono due cose diverse. In realtà, come ho già detto, non è così. Il meccanismo di funzionamento delle acque micellari è lo stesso dei saponi e, più specificatamente, dell’acqua e sapone. La differenza, se proprio ne vogliamo trovare una, è la concentrazione di surfattante Le acque micellari sono prodotti che io definisco “saponi omeopatici” per effetto del fatto che la quantità di tensioattivo è molto più bassa che in un sapone normale.

Le critiche continuano:

“Comunque è quantomeno antiscientifico (nella Galileana concezione del termine) da parte di laureati ammettere che anche se ci sono ingredienti in più “è la stessa cosa”. Se addirittura il semplice orientamento nello spazio conferisce a due molecole identiche proprietà diverse, perché due miscele (miscele si intenda nel più volgare possibile, poiché non vorrei incappare in uso di termini errati) con ingredienti diversi devono essere la stessa cosa?”

“Spiego il termine “Galileana concezione”. Un vero scienziato, non si figurerebbe mai di semplificare due cose alla stessa cosa. Anzi, si chiederebbe perché due composti apparentemente simili hanno azioni così diverse. Pensate applicato alla cura del cancro: direste mai che due cose sono uguali se hanno la stessa composizione ma una cura il cancro e l’altra no? Direste che è marketing? Oppure vi chiedereste perché?”

Da chimico posso dire con certezza che le elucubrazioni appena riportate sono una miscela di cose verosimili e cose chiaramente insensate sotto l’aspetto scientifico. Mi sembra evidente che la critica cerca di spostare l’attenzione all’isomeria conformazionale ovvero ad un tipo particolare di isomeria per cui due molecole che sono descritte dalla stessa identica formula bruta, hanno tuttavia una struttura differente per effetto della diversa orientazione nello spazio di uno o più gruppi funzionali. Per saperne di più potete andare al seguente link. Faccio un esempio molto banale considerando il talidomide (Figura 5).

Figura 5. Strutture enantiomeriche del talidomide. La figura è presa da www.chimicare.org

Si tratta di una molecola in cui uno degli atomi di carbonio ha quattro sostituenti diversi. Grazie a ciò, esso può esistere in due forme isomeriche (più correttamente si dovrebbe dire enantiomeriche) di cui una, la forma indicata con S ha effetti teratogeni (in parole semplici interferisce col normale sviluppo del feto ed una delle conseguenze è la focomelia), mentre l’altro, l’isomero R, non ha lo stesso effetto. Quest’ultimo, in particolare, interviene nei processi metabolici associati alla nausea, attenuandola. Negli anni Sessanta del ventesimo secolo questa molecola era il principio attivo di un farmaco anti nausea per donne gravide. Fu ritirato dal commercio perché il farmaco conteneva entrambi gli isomeri e provocò la nascita di più di 10000 (diecimila) bimbi focomelici. Oggi questo principio attivo è usato per la cura di diverse patologie invalidanti. Ma non è questo il punto. Il punto è che le due molecole mostrate in Figura 5 non sono uguali. Pur avendo la stessa formula bruta e pur avendo lo stesso nome, hanno attività biochimica e proprietà differenti per cui esse sono differenti. Non sono la stessa molecola. E’ questo il motivo per cui è necessario andare a differenziare le due molecole indicando nel loro nome le caratteristiche ottiche che le contraddistinguono. Al contrario del talidomide e degli isomeri conformazionali, acque micellari e saponi sono esattamente la stessa cosa. Entrambi contengono dei surfattanti che hanno esattamente la stessa funzione, ovvero la rimozione dello sporco.

Una incomprensione del concetto struttura-attività si riscontra anche nella considerazione secondo cui: “applicato alla cura del cancro: direste mai che due cose sono uguali se hanno la stessa composizione ma una cura il cancro e l’altra no? Direste che è marketing? Oppure vi chiedereste perché?“. Due cose chimicamente uguali non possono avere effetti biochimici differenti. A questo punto credo che il lettore si sarà convinto sulla base dell’esempio fatto prima descrivendo brevemente la chimica del talidomide. Allo stesso modo due miscele identiche curano entrambe la stessa particolare tipologia di cancro. Se una delle due miscele non funziona è perché non è adatta a quella particolare forma di cancro per cui è stata utilizzata.

Le acque micellari e loro composizione

In una delle tante risposte alla mia nota, c’è chi ha inserito la fotografia mostrata in Figura 6. Lo scopo era quello di far vedere che le acque micellari sono diverse dai saponi. Devo dire che questa cosa mi ha lasciato molto perplesso. Se io voglio difendere la mia causa e voglio far vedere che una cosa è differente da un’altra, non inserisco solo gli ingredienti di ciò che cerco di difendere, ma anche quelli della cosa che reputo differente.

Figura 6. Etichetta di un’acqua micellare proposta da un utente per dimostrare la differenza tra acque micellari e saponi

Ricopio qui quanto magistralmente scritto nel sito www.chimicamo.org:

I saponi sono sali solubili di acidi grassi quali l’acido oleico, l’acido stearico, l’acido palmitico, l’acido laurico e l’acido miristico. I saponi sono caratterizzati da una parte idrofoba costituita da una lunga catena carboniosa e da una parte idrofila costituita dal gruppo funzionale dell’acido carbossilico. Le soluzioni acquose di sapone si comportano come dispersioni colloidali a carattere micellare e sono dotate di reazione alcalina in seguito al grado di idrolisi del sapone nell’acqua. I saponi abbassano la tensione superficiale dell’acqua favorendo la stabilità e la formazione della schiuma. L’azione detergente è dovuta a diversi fattori tra cui l’attività capillare della soluzione acquosa che imbeve il tessuto staccandone lo sporco che viene allontanato dalla schiuma.

Quindi come si comportano i saponi in acqua? Formano micelle, ovvero sistemi chimici come quelli illustrati in Figura 4. E come funzionano le micelle fatte dalle componenti su citate? In modo semplicistico, le micelle fatte da aggregati degli acidi grassi riportati in Figura 7 non fanno altro che “intrappolare” le molecole che costituiscono la “macchia” permettendone l’allontanamento con l’acqua.

Figura 7. Acidi grassi i cui sali sodici sono tipicamente presenti nei saponi

Quando vi lavate le mani con una saponetta, oppure usate un sapone liquido cosa state facendo? Semplicemente state facendo interagire le componenti dei saponi con l’acqua in modo tale che si formino delle micelle. Queste ultime abbassano la tensione superficiale dell’acqua permettendo un migliore contatto tra l’acqua e la vostra pelle. Vi strofinate le mani in modo tale da permettere alle micelle a stretto contatto delle mani di interagire con lo sporco. Sciacquate le mani per allontanare le micelle che hanno “intrappolato” lo sporco.

Come funzionano le acque micellari? Tralasciando l’enorme quantità di profumi ed eccipienti vari che hanno il solo scopo di darvi una sensazione di “pelle liscia”, l’azione detergente è del tutto simile a quella descritta per i saponi. Le micelle possono essere fatte non dai sali degli acidi grassi riportati in Figura 7, ma dai gliceridi (mono, di, e tri) che li contengono. Per esempio, la composizione dell’acqua micellare riportata in Figura 6 riporta la presenza di gliceridi contenenti acido caprico (C10H20O2) e caprilico (C8H16O2) oltre che PEG 6 (PEG è l’acronimo di polietilenglicole che – questa è solo una curiosità – io utilizzavo tra la fine degli anni Ottanta e l’inizio degli anni Novanta come supporto solido per la sintesi in fase solida di oligonucleotidi ciclici. Come si vede il PEG è un tipico prodotto di sintesi che può avere diversi utilizzi. Si tratta del classico prodotto di sintesi che viene spacciato come naturale nelle acque micellari a loro volta considerate prodotti naturali o, comunque, più naturali dei saponi).

Per inciso il PEG 6 capric/capryl gliceride costa 1 euro ogni 25 g di prodotto. Tuttavia come indicato nella sua scheda di sicurezza è tutt’altro che un prodotto innocuo:

Non è un prodotto cosmetico pronto all’uso. Non deve essere utilizzato direttamente. Se non correttamente manipolato, può presentare controindicazioni e /o pericoli per la persona. Conservare lontano dalla portata dei bambini, fonti di calore, umidità e luce diretta. Evitare di inalare. Conservare a temperatura ambiente nel contenitore originale. Proteggere dal freddo e dal caldo eccessivi, non esporre ai raggi diretti del sole. Non utilizzare dopo la data di scadenza indicata. Non disperdere nell’ambiente il contenitore una volta esaurito il prodotto. Il prodotto contiene solo componenti biodegradabili. Nella diluizione indicata il prodotto non interferisce con gli impianti di trattamento delle acque reflue.

Conclusioni

Indipendentemente da quello che potete pensare, da un punto di vista chimico acque micellari e saponi sono prodotti che funzionano nello stesso modo. Se diluite un sapone liquido, lo applicate ad un batuffolo di ovatta e lo usate per pulirvi un pezzettino di pelle, avrete un effetto pulente del tutto analogo a quello di un’acqua micellare. L’effetto irritante che sentite quando usate un sapone tout court è legato alla sua concentrazione. Diluendolo, ne attenuate anche gli effetti. Del resto, leggendo la storia delle acque micellari, si evince che esse sono nate proprio per questo ad opera degli estetisti al lavoro sulle modelle durante le sfilate di moda. Per evitare gli effetti irritanti dovuti all’uso dei saponi, hanno pensato bene di diluire gli stessi. Poi sono arrivati i chimici coadiuvati dai pubblicitari che hanno esaltato proprietà che, in realtà, sono tipiche di tutti i surfattanti.

In definitiva, comprate quello che vi pare ma sappiate che state comprando semplicemente acqua e sapone.

Fonte dell’immagine di copertina: http://it.paperblog.com/review-acqua-micellare-lycia-3134640/

Fonte dell’immagine di chiusura: https://commons.wikimedia.org/wiki/File:Thats_all_folks.svg

Sull’evoluzione del termine “molecola”

Tutti sanno cos’è una molecola. Se si scende in strada e si chiede a qualcuno di definire il termine “molecola”, tutti, più o meno, diranno qualcosa come “molecola è l’acqua” oppure “la plastica è fatta di molecole” oppure “il sale è una molecola”.

Dire che l’acqua è una molecola, ribadire che anche il sale lo sia o dire che la plastica è fatta di molecole non definisce il termine “molecola”; piuttosto si sposta l’attenzione da un termine ad un altro dal momento che si riconduce il significato di “molecola” a quello di acqua, sale o plastica.

Se è nozione comune sapere cosa sia l’acqua e come essa sia fatta – per cui si tende ad associare la formula H2O al significato di “molecola” in modo tale che tutto ciò che è riconducibile a una situazione analoga possa essere considerato “molecola” – non lo è altrettanto per quanto riguarda la plastica o il sale. Per esempio, qual è la “molecola” che descrive il cloruro di sodio? E il solfato di sodio? E il permanganato di potassio? Questi sono tutti sali differenti tra loro. Ognuno di essi è descritto da una diversa formula bruta. Si può considerare la singola formula bruta (NaCl, Na2SO4, KMnO4, rispettivamente) come indicazione di molecola per i sali citati, esattamente come la formula H2O viene intuitivamente indicata come molecola di acqua?

E per la plastica? Solo per citare alcune delle plastiche che utilizziamo nella vita quotidiana, si può parlare di polivinilcloruro (PVC), polietilene (PE) e politetrafluoroetilene (PTFE). Le formule brute di questi sistemi sono rispettivamente (CH2CHCl)n, (C2H4)n e (C2F4)n. Queste formule appena descritte possono essere considerate alla stregua di “molecole” come la formula H2O lo è per l’acqua?

In realtà nessuna delle definizioni che spostano l’attenzione dal generale (ovvero “molecola”) al particolare (ovvero acqua, sale, plastica) è una buona definizione di molecola. Solo per fare un esempio banale, NaCl non è la molecola di cloruro di sodio.

Mentre per l’acqua, la formula H2O corrisponde ad una struttura ben precisa fatta da due atomi di idrogeno ed uno di ossigeno disposti nello spazio a formare un tetraedro (come nella figura di copertina di questa nota), per il cloruro di sodio (ma il discorso si estende ad ogni sale inorganico), la formula NaCl non corrisponde affatto ad una struttura fatta da uno ione sodio ed uno ione cloruro. Anzi, potrei dire, semplificando, che ogni ione (sia esso sodio che cloruro) è circondato da una nuvola di ioni di segno opposto. Ogni ione della nuvola occupa posizioni ben precise nello spazio tridimensionale a formare un reticolo che si estende all’infinito.

Una estensione infinita nello spazio tridimensionale è anche descrivibile per le plastiche. Il pedice “n” nelle formule brute scritte sopra indica proprio che la lunghezza della catena di atomi di carbonio è praticamente “infinita” potendo il valore di “n” essere compreso tra 0 ed infinito.

Alla luce di quanto sto scrivendo ne viene che una “molecola” di sale o una di plastica dovrebbero avere estensioni infinite. È possibile una cosa del genere?

Se si apre un qualsiasi libro di chimica generale del primo anno di università o un testo base usato nelle scuole superiori si trova una definizione molto chiara:

“una molecola è la più piccola particella di una sostanza che conserva intatte le proprietà chimiche e fisiche dell’intera sostanza ed è costituita da almeno due atomi, oppure da un gruppo di essi, tenuti assieme da forze chimiche”.

Rileggete la definizione e provate a riflettere. Non trovate ci sia qualcosa di strano in questa definizione?

Quando si parla di proprietà di una sostanza si intende una proprietà di massa.

L’acqua bolle a 100 °C. Non la singola H2O, bensì  un insieme di H2O. È  la massa di acqua ad avere quella temperatura di ebollizione ad una data pressione, non la singola H2O. Per quest’ultima non ha alcun senso definire un punto di ebollizione. In effetti, usando un linguaggio più moderno, potremmo dire che la temperatura di ebollizione dell’acqua (o di qualsiasi altro sistema chimico) altro non è che una proprietà emergente dall’interazione tra più sistemi del tipo H2O.

Lo stesso discorso si applica ai sali ed alle plastiche. Il PTFE ha un punto di fusione di circa 327 °C. Questa temperatura emerge dall’interazione tra diversi filamenti del tipo (C2F4)n. Il singolo filamento non ha una temperatura di fusione, esattamente come la singola H2O non ha una temperatura di ebollizione.

La definizione di “molecola” appena proposta considera anche due o più atomi tenuti assieme da forze chimiche. Ma quali forze?  Le interazioni tra due atomi o gruppi di atomi sono non solo interazioni covalenti, ma anche ioniche, legami a idrogeno e forze di Van der Waals. Quale di queste interazioni dobbiamo prendere in considerazione per la definizione di “molecola”?

Si potrebbe dire: atteniamoci alla vecchia distinzione proposta da Gilbert Lewis più di un secolo fa in base alla quale molecole sono tutte quelle in cui gli atomi interagiscono mediante legami covalenti, mentre altri sistemi, come i sali, sono identificati come solidi ionici non molecolari.

I gruppi chimici, ovvero le particelle con struttura ben definita, interagenti mediante forze di Van der Waals come devono essere classificati?

Pensiamo alle macchine molecolari. Queste le definiamo come aggregati supramolecolari (ovvero fatti da tante subunità) che interagiscono tra loro mediante legami deboli (legami a idrogeno e forze di Van der Waals) in grado di far emergere certe particolari proprietà. Perché non considerare tutto l’insieme, a cui si associano le proprietà emergenti, come intera molecola? Perché non considerare l’emoglobina, una delle macchine molecolari più semplici, come una unica unità molecolare piuttosto che come un sistema complesso fatto da diverse subunità ognuna delle quali non ha alcuna delle proprietà dell’insieme?

In realtà possiamo farlo. Nessuno ci impedisce di estendere il significato di “molecola” ad aggregati di subunità. È quanto suggerisce Whitesides in un suo lavoro su Annual Reviews of Analytical Chemistry.

“Molecola” è un termine che non deve essere inteso in modo fisso ed immutabile. Esso deve essere considerato in continua evoluzione in funzione del progredire delle conoscenze scientifiche. Il termine può essere usato semplicemente come una abbreviazione per consentire al pensiero chimico di elaborare nuovi concetti e nuove idee su scale sempre più vaste.

Ed allora cos’è una molecola? Potremmo dire che si tratta di una unità elementare in cui sono presenti atomi o gruppi ben definiti di particelle che interagiscono in qualsiasi modo così da realizzare delle ben precise proprietà emergenti.

Alla luce di questa definizione l’emoglobina è una molecola così come lo è la doppia elica del DNA o una qualsiasi macchina molecolare. Andando nell’ambito ambientale, anche le sostanze umiche, che sono state definite come aggregati supramolecolari di molecole di peso molecolare non superiore a 5000 Da, possono essere considerate a tutti gli effetti delle vere e proprie molecole.

Altre letture

What is a molecule? by Philip Ball

Fonte dell’immagine di copertina: Wikimedia commons

Acqua micellare. Ancora sulla dicotomia marketing/chimica

Questo è un post che ho scritto sulla mia pagina Facebook a Marzo 2016. Ero in viaggio ed ascoltavo distrattamente la televisione, quando sentii parlare di “acqua micellare”. Mi sono subito incuriosito ed ho fatto una veloce ricerca in rete per capire di cosa stessero parlando in televisione. Da qui in poi riporto quanto scritto un anno fa.

_____________

Potenza del marketing. Sono in viaggio e vagando qui e là mi è capitato di ascoltare un po’ di televisione. Uno spot pubblicitario dedicato alle donne esaltava le proprietà di un prodotto cosmetico chiamato “acqua micellare”. La mia curiosità chimica ha preso il sopravvento e mi sono chiesto cosa mai fosse questa cosa di cui non avevo mai sentito parlare.

Devo dire che, come chimico, so cosa sia una micella. Semplicisticamente, una micella non è altro che un aggregato supramolecolare in cui molecole con certe proprietà sono tenute insieme da interazioni di Van der Waals. Non si tratta di parolacce. Vuol solo dire che tante molecole anfoteriche, ovvero che hanno una estremità polare ed una coda apolare, quando sono in acqua ad una certa concentrazione, indicata come concentrazione micellare critica (CMC), tendono ad aggregarsi in modo tale che tutte le code apolari si mettono insieme ed escludono le molecole di acqua che tendono a rimanere vicine alle estremità polari. Si dimostra matematicamente che questo arrangiamento è favorito per fattori di carattere energetico. Ma non è il caso di andare oltre. Molecole che hanno questo comportamento sono, per esempio, i trigliceridi presenti nell’olio. Avete hai mescolato olio e acqua? Beh, fatelo. Osserverete la formazione di gocce di olio. Sono micelle. Altre molecole simili sono quelle che compongono i saponi. Ebbene, col termine di “acqua micellare” si intende proprio acqua e sapone. In altre parole, vi fanno pagare a peso d’oro delle formulazioni cosmetiche che altro non sono se non il classico “acqua e sapone” delle nostre nonne.

fonte dell’immagine di copertina: Wikimedia commons

Marketing e Chimica: quando la pseudo scienza prende il sopravvento

Devo dire che molte volte me le vado a cercare.
Letteralmente.
Mi piace camminare e mi piace leggere le etichette dei prodotti esposti in vetrina, soprattutto se si tratta di alimenti o prodotti per la pulizia. Mi lascia sempre esterrefatto quanto poco il marketing faccia per elaborare slogan che siano un minimo rispettosi delle conoscenze scientifiche. In questa breve nota voglio puntare l’attenzione su marketing e chimica.

Nelle mie peregrinazioni alla ricerca di perle di saggezza pseudo scientifica, mi capita talvolta di entrare nei negozi biologici. Sì, quei negozi col “bio” in evidenza perché “fa bene”. Secondo i creduloni new age il “bio” fa bene alla salute. Secondo me, che sono un credulone scientifico, fa bene alle tasche di chi vende. La foto di copertina ne è una prova lampante.

In uno dei negozi di una nota catena “bio” cosa trovo? Un caffè biologico. Passi per il biologico che è una pratica agronomica sostenibile, benché io abbia le mie idee al riguardo. Ma leggere nell’etichetta che questo caffè è decaffeinato ad acqua senza l’uso di solventi chimici e quindi è naturale, mi sembra veramente troppo. È una offesa personale per tutti quelli che vanno a scuola e cercano di imparare i rudimenti di una qualsiasi materia scientifica.

Mi piacerebbe chiedere ai produttori di questo caffè: “ma secondo voi, l’acqua che cos’è? Non è un prodotto chimico e non è il solvente per eccellenza?”

Sono sicuro che i signori mi risponderebbero che l’acqua è sicuramente più naturale dei solventi organici, dimostrando una profonda ignoranza in due modi distinti. Da un lato, l’acqua che noi beviamo non è naturalmente pura. Noi abbiamo bisogno di sanificarla perché altrimenti essa potrebbe essere veicolo di micro organismi patogeni per l’uomo con la conseguenza di possibili epidemie o anche pandemie.
Ho già scritto una nota al riguardo al seguente link.

Insomma, l’acqua che noi usiamo come alimento non è certo come essa sgorga dalle sorgenti, ma è trattata. E sono sicuro che anche l’acqua usata per la decaffeinizzazione lo sia. Il secondo punto che denota profonda ignoranza è che sono anni che il caffè non viene più decaffeinato con solventi organici. Oggi, proprio per evitare residui seppur minimi di solventi organici, il caffè viene decaffeinato con anidride carbonica supercritica. Si tratta di un particolare stato della materia per cui questa molecola che a temperatura ambiente è un gas, in condizioni particolari di pressione e temperatura diventa qualcosa a metà fra un liquido ed un gas. In queste condizioni, l’anidride carbonica estrae la caffeina con una efficienza superiore a quella di un qualsiasi solvente organico. Il vantaggio è che, quando si torna nelle condizioni di pressione e temperatura atmosferici, tutto il solvente super critico si allontana e non ne rimane traccia alcuna.

Morale della storia. Se volete divertirvi a leggere stupidari chimici, andate a passeggiare in uno qualsiasi dei negozi “bio” in giro per l’Italia. Ne troverete delle belle. In ogni caso il marketing sconclusionato, secondo me, è molto dannoso. È vero che il business prevede di fare soldi, ma non dovrebbe mai essere a discapito dell’etica che dovrebbe imporre la diffusione di informazioni corrette.

Per saperne di più:

Il processo di decaffeinizzazione

Elogio del riduzionismo ovvero dell’evoluzione del pensiero scientifico

<L’approccio del “risolvere un grande problema trovando le cose microscopiche che sono rotte ed aggiustarle” è chiamato riduzionismo – se si vuole comprendere un sistema complesso, bisogna scomporlo nelle parti che lo costituiscono. Il pensiero riduzionista ha dominato la scienza occidentale per secoli, aiutando l’Occidente a tirarsi fuori dal pantano dell’età medievale. Il riduzionismo può essere una gran bella cosa. Essendo stato bambino all’epoca di Jonas Salk, sono immensamente felice di aver beneficiato di un prodotto della scienza riduzionista, ovvero il vaccino scoperto da lui (o da Albert Sabin, ma non ci addentriamo in questo argomento), invece di aver avuto un pediatra che facesse una cerimonia su di me armato di ciondoli feticci e interiora di capra per propiziarsi il demone della polio. Gli approcci riduzionisti alle scienze mediche ci hanno fornito vaccini, farmaci che bloccano fasi specifiche della replicazione virale e hanno identificato precisamente quale parte di noi si guasta in moltissime malattie. È grazie al riduzionismo se, nel corso dell’ultimo secolo, la nostra aspettativa di vita è aumentata considerevolmente. Perciò, se si vuole comprendere la biologia del ciò che siamo […], l’approccio riduzionista fornisce regole del gioco piuttosto chiare: capire gli individui che formano la società; capire gli organi che costituiscono gli individui, le cellule che formano gli organi e, scendendo fino alle fondamenta dell’intero edificio, capire i geni che danno istruzioni alle cellule su cosa fare. Questa prospettiva ha dato luogo a un’orgia di ottimismo riduzionista nella forma del progetto di ricerca più dispendioso della storia delle scienze naturali, ovvero il sequenziamento del genoma umano>

Era il 2005 quando Robert M. Sapolsky scriveva nell’introduzione al suo “Monkeyluv: and other essays on our lives as animals”, che nella traduzione italiana de I Timoni – Castelvechi editori (2014) suona così: “l’uomo bestiale: come l’ambiente e i geni costruiscono la nostra identità“, quanto ho appena riportato.

Il suo elogio del riduzionismo è la base per evidenziare come ridurre il comportamento umano alla risultante lineare dei comportamenti dei geni contenuti nel DNA sia sbagliato. L’approccio più corretto è prendere in considerazione l’effetto combinato di geni ed ambiente. Insomma, usando un linguaggio più pop, la comprensione dell’uomo passa attraverso un approccio “olistico” che deve considerare tutto l’insieme, interno ed esterno, di ciò che caratterizza l’essere umano.

Non sono un neurofisiologo né un osservatore del comportamento umano; non sono in grado di sostenere o controbattere le argomentazioni di Sapolsky nel suo campo. Per questo mi addentro nel campo che mi è più congeniale che è quello chimico.

Indubbiamente scomporre un sistema complesso nelle sue singole componenti ha consentito l’enorme sviluppo scientifico degli ultimi 4 secoli. Se oggi sappiamo quante sono le forze che tengono insieme i nostri atomi e, nel loro complesso, l’insieme di atomi alla superficie terrestre, è perché qualcuno è andato a smontare la materia ed ha visto da cosa è composta.

L’approccio riduzionista è quello che ha permesso lo sviluppo di tecniche analitiche come la cromatografia in fase liquida o quella in fase gassosa; la risonanza magnetica nucleare ad alta e bassa risoluzione, e tutta una serie di tecniche oggi riconosciute come incomparabili per la valutazione della qualità degli alimenti o per la loro tracciabilità (questo tanto per stimolare la corda più populista di chi si preoccupa di sapere se l’olio extravergine che usa è tunisino o viene fatto raccogliendo le olive dietro casa).

Tuttavia, sebbene fin dagli albori della scienza ai giorni nostri ha prevalso l’idea che le proprietà di tutti i sistemi fossero comprensibili solo sulla base di una loro scomposizione nelle diverse componenti elementari e che la somma delle proprietà di ciascuna risultasse, in qualche modo, nelle proprietà dell’intero sistema, appare chiaro, oggi, che non è così. Usando un linguaggio matematico, si può dire che le proprietà dei sistemi complessi non sono una combinazione lineare delle proprietà delle singole componenti, quanto, piuttosto, la risultante delle  loro interazioni non lineari. Le eventuali relazioni lineari debbono essere considerate solo come caso particolare di quello più generale che si inquadra nella già citata relazione non lineare.

Un esempio abbastanza banale è il principio di Le Chatelier: quando un sistema all’equilibrio chimico viene perturbato per effetto di un’azione esterna, il sistema reagisce in maniera da ridurre o annullare la sollecitazione stessa ristabilendo l’equilibrio. Per esemplificare questa definizione prendiamo un composto A che, in una soluzione, è in equilibrio con il composto B secondo l’equazione:

dove n e m sono i coefficienti stechiometrici. Il sistema sotto osservazione contiene due componenti (A e B) che interagiscono tra loro in modo tale che aumentando la concentrazione del reagente A, la reazione si sposta a destra producendo una maggiore quantità di prodotto B. Allo stesso modo introducendo una certa quantità di B, la reazione si sposta verso sinistra portando alla formazione di A.

Pur sapendo che il sistema è fatto da due componenti  le cui proprietà possono essere studiate indipendentemente le une dalle altre, non possiamo dire che il comportamento del sistema nella sua totalità sia dato dalla combinazione lineare della concentrazione delle singole componenti (la concentrazione è una proprietà intensiva). Infatti, è possibile dimostrare che la relazione che lega la concentrazione di A a quella di B all’equilibrio chimico è:

dove k è comunemente indicata come costante di equilibrio (la x indica semplicemente l’operazione di moltiplicazione).

Possiamo concludere, da questo semplice esempio, che l’equilibrio chimico (croce di tutti gli studenti e delizia di tutti i docenti) non è altro che una proprietà delle soluzioni, emergente dalle interazioni non lineari delle proprietà (in questo caso la concentrazione) delle singole componenti della soluzione.

La storia della scienza (e,  nella fattispecie, della chimica in particolare) è ricca di esempi di questo tipo.

Volendo considerare un caso più complesso si può citare l’allosterismo. “L’allosterismo rappresenta una delle modalità  di regolazione della funzione di alcune proteine, di solito oligomeriche, […]; fra queste si ricordano l’emoglobina e numerosi enzimi”.  Originariamente proposta da Jaques Monod, la regolazione allosterica delle proteine consiste nel fatto che un piccolo metabolita si lega ad uno dei siti attivi della proteina modificandone la conformazione (ovvero la struttura tridimensionale) ed alterandone nel contempo le funzionalità (sia migliorandole, allosterismo positivo, che inibendole, allosterismo negativo). L’esempio più semplice è la regolazione allosterica positiva dell’emoglobina da parte della molecola di ossigeno. È noto che l’emoglobina è una proteina complessa costituita da quattro sub unità proteiche ognuna con un sito attivo che prende il nome di “gruppo eme“. Quando una molecola di ossigeno si lega al gruppo eme di una delle sub unità, la conformazione di questa sub unità si modifica secondo una modalità che potrebbe essere vista come una mano che si chiude a pugno dopo aver afferrato un oggetto. Le modificazioni conformazionali della sub unità suddetta modificano quelle delle altre sub unità che appaiono, quindi, nella nuova situazione come delle mani più aperte pronte ad afferrare un nuovo oggetto. Grazie a queste modificazioni conformazionali, la seconda molecola di ossigeno è in grado di legarsi al secondo sito attivo più velocemente di quanto  abbia fatto la prima molecola di ossigeno. A seguito di questa seconda interazione, le sub unità ancora libere subiscono delle ulteriori modificazioni conformazionali  aprendosi ancora di più e permettendo ad una terza molecola di ossigeno di legarsi ancora più velocemente rispetto alle prime due. La terza molecola di ossigeno induce dei nuovi cambiamenti conformazionali nell’ultima sub unità libera cosicché essa riceve l’ultima molecola di ossigeno con una facilità ancora maggiore rispetto alle precedenti. Da un punto di vista matematico l’allosterismo dell’emoglobina non è descrivibile mediante una relazione lineare, bensì attraverso una sigmoidale (Figura 1).

Figura 1. Curva di dissociazione dell’emoglobina. E’ evidente l’andamento a forma di S (sigmoidale) della curva (Fonte dell’immagine: http://docplayer.it/19154-Nel-definire-l-assistenza-al-neonato-con-insufficienza-respiratoria-e-necessario-considerare-che.html)

Come nel caso dell’equilibrio chimico su descritto, anche l’allosterismo non può essere considerato semplicemente come la risultante di una combinazione lineare delle proprietà delle singole sub componenti di un enzima/proteina, quanto piuttosto come una proprietà emergente dalle loro interazioni non lineari.

Tutta la chimica (dalla chimica organica, alla biochimica, alla chimica del suolo e così via) è ricca di sistemi complessi le cui proprietà emergono dalle interazioni tra le singole sub unità componenti. Come non ricordare, per esempio, la complessità del metabolismo in cui ogni singolo metabolita rappresenta solo un dente di un ingranaggio ben più complicato le cui caratteristiche non sono la somma di quelle dei singoli denti, ma da essi derivano. In questa ottica va inserito il concetto di vita vista come una proprietà che emerge dalle complesse interazioni occorrenti nei processi metabolici.

Qual è dunque l’importanza del riduzionismo nell’ottica scientifica attuale?

Nato come “concezione epistemologica che tende a formulare concetti e linguaggio di una teoria scientifica nei termini di un’altra teoria considerata più fondamentale“, il riduzionismo si è basato, a partire dal XVII secolo, “sull’ipotesi che tutta la realtà fisica possa essere in definitiva ‘ridotta’ (e spiegata) in termini di particelle materiali e dei loro movimenti“. L’idea che tutta la realtà fenomenologica potesse essere spiegata solo sulla base delle conoscenze delle caratteristiche delle singole componenti microscopiche è stata superata solo nel XX secolo quando ci si è resi conto che conoscere le proprietà delle tessere di un puzzle non aiuta a comprendere il disegno contenuto nel puzzle se non si riesce ad inserire ogni singola tessera nella giusta posizione dello schema del gioco. Da qui la rilettura in termini di proprietà emergenti di tutti i concetti scientifici come, per esempio, il principio di Le Chatelier precedentemente discusso.

Il riduzionismo deve essere, quindi, considerato come un approccio che consente non solo di conoscere i singoli dettagli della realtà fisica fino alle dimensioni microscopiche, ma anche in grado di riporre le varie sub componenti della stessa nella giusta posizione rispetto a tutte le altre in modo da poter riprodurre con accuratezza le proprietà macroscopiche dell’intero sistema rappresentato dalla realtà osservata. In questa ottica il giudizio (secondo la mia lettura, negativo) di Sapolsky in merito alla dispendiosità del progetto di ricerca sul genoma umano mi lascia molto perplesso. È pur vero che la conoscenza del genoma non risponde a tutte le domande che ci possiamo porre in merito al comportamento umano, ma è anche vero che attribuire ai geni la responsabilità di ogni cosa è solo una trovata di un giornalismo di bassa lega che deve fare business e vendere un prodotto a un pubblico le cui conoscenze scientifiche sono mediamente basse. Si tratta dello stesso pubblico che ha necessità di trovare delle correlazioni di causalità laddove esistono solo relazioni di casualità come nel caso dell’omeopatia e dell’autismo causato dai vaccini. Mi trovo, invece, molto d’accordo sull’idea dell’interazione corredo genetico/ambiente nello sviluppo del comportamento umano in quanto questo modo di pensare si inserisce molto bene nel modello di riduzionismo emergentista di cui si è discusso fino ad ora.

Fonte dell’immagine di copertina: https://universitarianweb.com/2014/05/08/mente-e-cervello-il-riduzionismo-delle-neuroscienze/

Articolo pubblicato anche su www.laputa.it

Cos’è e come funziona il GoreTex?

Avete mai sentito parlare di GoreTex?

Si tratta di un tessuto usato per impermeabilizzare. Allo stesso tempo, però, esso consente di rendere traspiranti gli indumenti per i quali viene utilizzato.

Si ottiene dal politetrafluoroetilene (PTFE). Si tratta di un polimero che è alla base del teflon, una plastica usata in diversi campi, dall’idraulica all’industria aerospaziale. Il teflon, sotto forma di nastro, viene usato per evitare le perdite nelle tubazioni, per fabbricare pentole antiaderenti o per la costruzione degli scudi che consentivano, fino a qualche anno fa, il rientro dello Space Shuttle dalle missioni spaziali.  L’elevata resistenza alle temperature rendeva, infatti, il PTFE particolarmente adatto ad evitare i danni dovuti all’attrito tra la struttura dello Space Shuttle e l’atmosfera Terrestre.

Quando il PTFE viene trattato in modo particolare (in termini tecnici si dice che viene espanso [1]) si ottiene un materiale brevettato dalla famiglia Gore (sì, quella del vice presidente degli Stati Uniti nell’epoca Clinton) che è stato battezzato GoreTex.

Il PTFE espanso ha un’area superficiale molto elevata. Poiché l’area superficiale è direttamente correlata alla porosità di un materiale, il GoreTex ha anche una elevata porosità. In particolare, la dimensione dei pori del GoreTex è dell’ordine dei 2 um (um sta per micrometri, ovvero 10^(-6) m)).

Una molecola di acqua occupa un volume del diametro di circa 0.2 nm (nm sta per nanometri, ovvero 10^(-9) m).

Il rapporto tra le dimensioni dei pori del GoreTex e il diametro di una molecola di acqua è di circa 10000 : 1, ovvero i pori del GoreTex sono diecimila volte più grandi di quelli di una singola molecola di acqua.

Poiché la dimensione dell’acqua in fase aerea (ovvero vapore) è molto più piccola di quella dei pori del GoreTex, il sudore, che altro non è che acqua in forma di vapore, riesce passare attraverso il tessuto. Al contrario, le molecole di acqua in fase liquida formano aggregati le cui dimensioni sono molto più grandi di quelle dei pori del GoreTex. Il risultato finale è un materiale plastico,(sì, il GoreTex è plastica) in grado di impedire la penetrazione dell’acqua dall’esterno (proprietà impermeabili) e di favorire la fuoriuscita del sudore (proprietà traspiranti).

La chimica dei materiali lascia sempre a bocca aperta

Riferimenti e note:

  1. L’espansione di un polimero si ottiene addizionando materiali espandenti quali, per esempio, il pentano, o qualsiasi altro idrocarburo, che bollono a temperature basse. Durante la fase di preparazione del polimero, che avviene a caldo, il materiale espandente si allontana e lascia “traccia” di sé nelle bolle che conferiscono “leggerezza” al prodotto finale. Nel caso specifico del GoreTex, l’espansione si ottiene termomeccanicamente, ovvero il filamento caldo viene viene teso con uno stratto secco

La foto di copertina è da Wikimedia Commons

L’inquinamento atmosferico

L’attività antropica, di qualsiasi natura, non è ad impatto nullo sull’ambiente. Questo vuol dire che qualsiasi cosa noi facciamo produciamo rifiuti che vanno ad influenzare gli equilibri tra biosfera, idrosfera, pedosfera ed atmosfera. In questa nota descrivo brevemente in cosa consiste l’inquinamento atmosferico. Si tratta di Uno dei problemi ambientali attualnente maggiormente al centro dell’attenzione mediatica. Questo non vuol dire che l’inquinamento di suoli, sedimenti ed acque sia meno importante; vuol dire solo che, al momento, sembra fare più notizia l’inquinamento atmosferico probabilmente perché fa una certa impressione, sul senso comune, pensare che l’immissione in atmosfera di gas apparentemente innocui possa provocare alterazioni notevoli sotto l’aspetto climatico.

In effetti è noto che tutte le molecole gassose che hanno un momento dipolare diverso da zero [1] sono in grado di assorbire la radiazione elettromagnetica che proviene dalla Terra così da passare da uno stato (vibrazionale/rotazionale) fondamentale ad uno eccitato. La transizione spontanea dallo stato eccitato a quello fondamentale può avvenire con emissione di calore portando ad un aumento globale della temperatura del pianeta, fenomeno che prende il nome di “effetto serra” [2].

Cerco di tradurre per i non tecnici. La radiazione solare è fatta da onde elettromagnetiche con lunghezza d’onda piuttosto corta (parte a destra della figura di copertina). Le molecole come anidride carbonica, metano ed acqua (sotto forma di vapore) risultano “trasparenti” alle lunghezze d’onda sopra citate. Per questo motivo le radiazioni suddette provenienti dal sole sono in grado di arrivare alla superficie della Terra.

Alcune di queste radiazioni sono comunque intercettate dall’ozono atmosferico e giungono “attenuate” sulla superficie terrestre come già spiegato nella nota al riferimento [3].

La superficie terrestre “restituisce” allo spazio aperto le radiazioni elettromagnetiche ma con lunghezza d’onda maggiore (parte a sinistra della figura di copertina) rispetto a quelle provenienti dall’esterno della Terra.

Le molecole come anidride carbonica, vapor d’acqua e metano (ovvero molecole a momento dipolare non nullo, sebbene questo momento dipolare risulti non nullo per la CO2 solo quando essa è nella conformazione non lineare) non sono “trasparenti” a queste lunghezze d’onda assorbendo, così, la radiazione proveniente dalla Terra. Il processo di assorbimento provoca delle “oscillazioni” molecolari (ovvero stiramenti e piegamenti dei legami chimici all’interno delle molecole) che a loro volta “restituiscono” energia termica (ovvero calore) alla superficie terrestre. Il risultato finale è molto simile a quello che si ottiene in una serra, ovvero un aumento della temperatura globale del pianeta.

Ci si potrebbe chiedere: ma come mai, invece, sembra che faccia sempre più freddo? dove è il riscaldamento? Chi chiede queste cose, in genere, non ha ben chiaro come funziona il riscaldamento globale. Faccio un esempio banale (didattico, oserei dire): supponiamo che si verifichi un aumento di 1 °C sulla superficie degli oceani a seguito dell’aumento di CO2 atmosferica. Questo aumento comporta un incremento della velocità di evaporazione dalla superficie degli oceani con immissione in atmosfera di quantità di vapor d’acqua più grandi rispetto a quelle che si avrebbero in assenza del riscaldamento anzidetto. Le correnti aeree trasportano queste enormi masse di vapor d’acqua sul continente dove, a contatto con aria più fredda, possono condensare e dar luogo a piogge più o meno torrenziali (le famose bombe d’acqua di cui parlano molto scenograficamente i giornalisti). La conseguenza di queste piogge è una temperatura più bassa sul continente. Tuttavia, a livello globale, la temperatura non è più bassa, ma più alta. E’ il riscaldamento globale la causa del clima simil-tropicale che oggi abbiamo nella parte Sud dell’Europa.

E’ stata data notizia [4] che uno scienziato che ha vissuto per una ventina di anni in Cina (uno dei paesi più contaminati della Terra) ha inventato un software per monitorare la contaminazione atmosferica terrestre ed essere informati minuto-per-minuto sulla quantità di particolato solido (quello che viene indicato come PM2.5) che si muove in atmosfera.

Se volete divertirvi a monitorare i flussi di corrente che trasportano questi PM2.5 basta cliccare su questo link: http://airvisual.com/earth, aspettare che la pagina si carichi e divertirsi a guardare momento per momento cosa accade nell’aria intorno a noi. Se poi si vuole conoscere la quantità di PM2.5 in un luogo particolare, basta cliccare sul luogo di interesse

Buon divertimento

Riferimenti
[1] https://www.scienzeascuola.it/…/legami-…/il-momento-dipolare
[2] http://www.castfvg.it/zzz/ids/effserra.html
[3] https://www.facebook.com/notes/rino-conte/pillole-di-scienza-il-buco-nellozono/1856401444581383
[4] http://www.sciencemag.org/…/watch-air-pollution-flow-across…

Il buco nell’ozono. Breve escursione nella chimica dell’atmosfera

La funzione “filtro” dell’ozono.
Si legge da tutte le parti che l’inquinamento ambientale, ed in particolar modo quello di origine antropica, provoca numerosi problemi ai vari comparti ambientali. Uno di questi è l’aria la cui composizione, negli strati più elevati, vede la presenza di una molecola che prende il nome di ozono.
L’ozono è una forma allotropica dell’ossigeno. In altre parole, l’ossigeno si può trovare sia sotto forma di molecola biatomica (O2) che di molecola triatomica (O3). E’ questa ultima forma di ossigeno a cui si dà il nome di “ozono” la cui struttura, per i più curiosi, è descritta nel riferimento [1].
La presenza dell’ozono negli strati alti dell’atmosfera è molto importante perché questa molecola è in grado di “intercettare” le radiazioni ultraviolette (RUV) proteggendoci dai loro effetti deleteri [2]. Sotto il profilo chimico, la reazione di “schermatura” da parte dell’ozono è:

O3 + RUV → O + O2                                                       (1)

In altre parole si forma un atomo di ossigeno eccitato ed una molecola di ossigeno. Il primo può ricombinarsi col secondo per riformare l’ozono (reazione (2)), oppure può reagire con un’altra molecola di ozono per formare ossigeno molecolare (reazione (3)):

O + O2 → O3                                                                       (2)

O + O3 → 2O2                                                                    (3)

L’inquinamento come causa della riduzione dell’ozono atmosferico
Come si intuisce, in sistemi non perturbati (come per esempio in assenza di contaminazione) le reazioni (1)-(3) assicurano il corretto apporto di ozono per evitare gli effetti delle radiazioni UV [2]. Nel momento in cui un certo tipo di contaminanti (che tecnicamente possiamo indicare come “catalizzatori”) viene in contatto con l’ozono, le reazioni (1)-(3) subiscono delle “alterazioni” legate al fatto che viene inibita la reazione (2) con incremento della quantità di ossigeno molecolare che non viene più trasformato in O3. La conseguenza è l’assottigliamento progressivo dello strato di ozono atmosferico che, giornalisticamente parlando, è conosciuto come “buco nell’ozono”. L’insieme delle reazioni che trasformano l’ozono in ossigeno molecolare in presenza di un generico contaminante (indicato con X) è:

X· + O3 → XO +O2                                                        (4)

XO + O → X· +O2                                                           (5)

X· è un radicale libero [3], ovvero un sistema molto reattivo che ha come caratteristica quella di avere un elettrone spaiato. La somma delle reazioni (4) e (5) dà la reazione (6) che consente di dire che l’azione di X· è quella di incrementare la quantità di ossigeno mediante l’inibizione della reazione (2), ovvero la riconversione in ozono, con conseguente assottigliamento dello spessore dello strato di ozono nell’atmosfera:

O3 + O → 2O2                                                               (6)

 I precursori dei radicali liberi
Alcuni precursori dei radicali coinvolti nelle reazioni (4) e (5) grazie ai quali si genera l’assottigliamento dello strato di ozono sono metano (CH4), acqua (H2O), protossido di azoto (N2O, meglio conosciuto come gas esilarante), o i famigerati clorofluorocarburi (CFC).
Metano ed acqua reagiscono con l’ossigeno atomico eccitato ottenuto nella reazione (1) per formare radicali ossidrili (OH·), ovvero i “catalizzatori” indicati con X nelle reazioni (4) e (5), secondo le reazioni (7) e (8):

O + CH4 → OH· + CH3                                              (7)

O + H2O → 2 OH·                                                        (8)

Sostituendo i radicali ossidrili alle X delle reazioni (4) e (5) si completa lo schema reattivo che porta alla degradazione dell’ozono in ossigeno molecolare.
Il ruolo del protossido di azoto è descrivibile con lo schema di reazioni da (9) a (11):

O + N2O → 2 NO·                                                      (9)

NO· + O3 → NO2 · + O2                                          (10)

NO2 · + O → NO· + O2                                             (11)

Infine i clorofluorocarburi come il CF2Cl(una volta usati come liquidi refrigeranti come per esempio nei frigoriferi) reagiscono come indicato nelle reazioni da (12) a (15)

CF2Cl2 + RUV → CF2Cl∙ + Cl∙                           (12)

Cl∙ + O3 → ClO∙ + O2                                             (13)

ClO∙ + O∙ → Cl∙ + O2                                              (14)

CF2Cl∙ + O2 → CF2O + ClO∙                               (15)

Questi appena descritti sono solo alcuni esempi di precursori dei radicali coinvolti nella degradazione dell’ozono atmosferico. Molti altri, con meccanismi più dettagliati che sono al di là dello scopo di una nota divulgativa su un bolg, sono riportati nelle letture consigliate.
Nuove ipotesi in merito alla degradazione dell’ozono atmosferico
Recentemente [4] è stato proposto un meccanismo alternativo per l’azione dei CFC nella degradazione dell’ozono. In particolare, l’acqua sotto forma di minuscoli cristalli di ghiaccio sospesi in atmosfera, interagisce con la radiazione cosmica, ovvero la luce solare, generando elettroni solvatati (e-) che rimangono assorbiti sulla superficie solida (Figura 1) secondo la reazione (16):

H2O + radiazione cosmica → e- + H3O+ + OH·     (16)

Gli elettroni solvatati reagiscono con i clorofluorocarburi assorbiti sulla superficie dei cristalli di ghiaccio per formare CF2Cl∙ e Cl∙ che poi innescano le reazioni riportate in (13)-(15)

Figura 1. Esempio di elettroni solvatati assorbiti su una superficie solida
L’ozono fa bene?
Alla luce di tutto quanto scritto si potrebbe pensare che siano tutte rose e fiori, ovvero che l’ozono apporti benefici all’essere umano. In realtà, non è così. Quanto appena analizzato in modo sommario ci informa che l’ozono è utile per impedire che raggi dannosi per la salute umana possano arrivare alla superficie terrestre. Noi ci siamo evoluti nel modo in cui ci presentiamo anche grazie al fatto che un “ombrello” fatto di ozono ha impedito ai raggi ultravioletti di una certa intensità di arrivare negli strati più bassi dell’atmosfera. Come si sarebbe evoluta la vita se questi raggi non fossero stati schermati? Non è dato saperlo e, comunque, la scienza non si fa con le ipotesi assurde. Resta il fatto che è grazie alla protezione offerta dall’ozono che la vita si presenta come la conosciamo. Da tutto quanto scritto si intuisce anche che l’ozono è una molecola reattiva ed in effetti i suoi effetti sulla salute umana si possono riassumere come segue:
“Concentrazioni relativamente basse di Ozono provocano effetti quali irritazioni alla gola ed alle vie respiratorie e bruciore agli occhi; concentrazioni superiori possono portare alterazioni delle funzioni respiratorie ed aumento della frequenza degli attacchi asmatici” [5].
L’Ozono, infine, “è responsabile anche di danni alla vegetazione e ai raccolti, con la scomparsa di alcune specie arbore dalle aree urbane. Alcune specie vegetali particolarmente sensibili alle concentrazioni di Ozono in atmosfera vengono oggi utilizzate come bioindicatori della formazione di smog fotochimico” [5].
Riferimenti
Letture consigliate ed approfondimenti

L’ innalzamento ebullioscopico: il ruolo dei legami a idrogeno nel comportamento dell’acqua.

Un po’ di tempo fa ho scritto un post riguardante il ruolo che i legami a idrogeno ricoprono nel comportamento dell’acqua. In particolare è stata analizzata la caratteristica delle molecole di acqua di “escludere” i soluti durante il processo di raffreddamento [1]. Adesso voglio concentrarmi (come promesso) sul ruolo che i legami a idrogeno ricoprono nel modulare le proprietà colligative. In particolare, voglio concentrarmi sull’innalzamento ebullioscopico [2], rimandando ad una nota successiva la spiegazione sull’abbassamento crioscopico [3].
E’ stato già evidenziato [1] che per innalzamento ebullioscopico si intende l’aumento della temperatura di ebollizione conseguente alla dissoluzione di un soluto in un solvente. In genere, per spiegare questo fenomeno si fa riferimento al fatto che l’addizione di un soluto in un solvente comporta un abbassamento della tensione di vapore di quest’ultimo con la conseguenza che è necessaria una temperatura più elevata per arrivare all’ebollizione [2].
Cosa vuol dire tensione di vapore? Molto semplicisticamente la “tensione di vapore” è la pressione (ovvero la forza) esercitata sulle pareti di un recipiente chiuso da parte delle molecole di vapore di una sostanza in equilibrio con la fase condensata (liquida o solida) della stessa sostanza [4].

Figura 1. Esempio di equilibrio tra una fase condensata (in questo caso liquida) ed il vapore
La Figura 1 esemplifica quanto appena scritto. Le molecole sulla superficie del liquido racchiuso nel pallone tappato di Figura 1 “sfuggono” dalla superficie e “galleggiano” nello spazio vuoto seguendo delle traiettorie casuali. Nelle condizioni di equilibrio, il numero di molecole di vapore che ritornano nella fase condensata (ovvero liquida, in questo caso) è uguale al numero di molecole che “sfuggono” dalla superficie. L’ “abbassamento della tensione di vapore” di cui si diceva sopra significa che la pressione esercitata dalle molecole di vapore sulle pareti del recipiente chiuso si abbassa per effetto dell’addizione di un soluto al solvente. In altre parole, l’equilibrio descritto dalla reazione riportata in Figura 2 si sposta verso sinistra (ovvero dalla parte del solvente in fase liquida) e l’ebollizione si interrompe. Occorre innalzare la temperatura per riportare il sistema all’ebollizione

Figura 2. Equilibrio tra fase liquida e fase vapore di un solvente di una generica soluzione
Come mai l’addizione di un soluto ad un solvente comporta l’abbassamento della tensione di vapore con conseguente innalzamento ebullioscopico? Molto semplicisticamente si potrebbe dire che il soluto “aggancia” le molecole di solvente impedendo che esse “sfuggano” dalla superficie della fase condensata. Occorre una quantità di calore più elevata (e, quindi, una temperatura più alta) per consentire alle molecole di solvente di opporsi alla resistenza offerta dal soluto e ristabilire le condizioni di equilibrio all’ebollizione.
Per spiegare meglio quanto accade addizioniamo il cloruro di sodio (NaCl) in acqua. il cloruro di sodio è un solido ionico [5] in cui lo ione sodio (catione) interagisce con lo ione cloruro (anione) mediante interazioni di natura elettrostatica. L’acqua è una molecola in cui la densità elettronica intorno all’ossigeno è più elevata che attorno agli atomi di idrogeno (Figura 3). Per questo motivo, l’ossigeno è dotato di una parziale carica negativa, mentre gli atomi di idrogeno di una parziale carica positiva (Figura 3). Dal momento che il centro delle cariche negative è diverso da quello delle cariche positive (ovvero si osserva l’anzidetta separazione di carica), la molecola di acqua ha carattere dipolare.

Figura 3. Struttura della molecola di acqua. Il colore rosso indica che gli elettroni di legame sono spostati verso l’ossigeno conferendo ad esso una parziale carica negativa. Di conseguenza gli atomi di idrogeno, avendo una densità di carica inferiore, sono parzialmente positivi
Abbiamo già evidenziato che il carattere dipolare della molecola di acqua è causa della formazione dei legami a idrogeno [1]. In questa sede il carattere dipolare dell’acqua ci consente di spiegare il meccanismo di dissoluzione del cloruro di sodio. Infatti, quando il cloruro di sodio viene messo in acqua si generano delle interazioni di natura elettrostatica del tipo Na(+)/H2O e Cl(-)/H2O. La componente negativa del dipolo acqua è orientata verso la carica positiva del sodio, mentre la parte positiva dello stesso dipolo è orientata verso lo ione cloro (Figura 4). In questo modo i due ioni del solido ionico si separano e si realizza la dissoluzione del sale.
Il processo di dissoluzione mediato dall’azione dell’acqua che circonda i due ioni si chiama “solvatazione”. In generale, i processi di dissoluzione di un soluto in un solvente sono dovuti alla solvatazione. Se questa non si può realizzare, la dissoluzione non avviene.
Le molecole di acqua si dispongono “a strati” intorno agli ioni. Ognuno degli strati viene indicato come “sfera di idratazione”. Le molecole di acqua più interne, ovvero quelle più vicine agli ioni, si collocano nella prima sfera di idratazione. A seguire tutte le altre sfere di idratazione [6]. L’identificazione del numero di sfere di idratazione richiede degli studi approfonditi [7] che vanno oltre gli scopi di questa nota.

Figura 4. Dissoluzione del cloruro di sodio in acqua. I due ioni sono solvatati
L’orientazione delle molecole di acqua intorno allo ione sodio è tale che non vengono più soddisfatti i requisiti geometrici necessari per la realizzazione dei legami a idrogeno (dei requisiti necessari per la formazione dei legami a idrogeno se ne è già parlato nel post precedente [1]). Per questo motivo i legami a idrogeno tra le molecole di acqua nella prima sfera di idratazione si interrompono [7]. Inoltre, l’interazione acqua/sodio comporta uno “scivolamento” della densità elettronica dei legami H-O dell’acqua verso l’ossigeno. Tradotto, vuol dire che aumenta la polarità del legame H-O, ovvero aumenta l’intensità della carica positiva sugli atomi di idrogeno a causa dell’aumento dell’intensità della carica negativa sull’ossigeno come effetto dell’interazione con lo ione sodio [7]. Per questo motivo le molecole di acqua nella prima sfera di idratazione (incapaci di formare legami a idrogeno tra loro) sono in grado di legarsi alle molecole di acqua nella seconda sfera di idratazione con legami a idrogeno la cui intensità è più forte che nell’acqua libera (ovvero l’acqua in cui non è disciolto alcun soluto). La natura dei legami a idrogeno tra le molecole di acqua nella prima e nella seconda sfera di idratazione incrementa la polarità dei legami H-O nelle molecole di quest’ultima sfera di idratazione. Le molecole di acqua della seconda sfera di idratazione sono, quindi, in grado di interagire con le molecole della terza sfera di idratazione con legami a idrogeno più forti di quelli che si realizzano tra le molecole di acqua libera. L’intensità dei legami a idrogeno diminuisce all’aumentare della distanza delle molecole di acqua dallo ione.
Uno ione in grado di intensificare le interazioni a idrogeno tra le molecole di acqua presenti nelle diverse sfere di idratazione si dice “strutturante”. La capacità strutturante di uno ione dipende dalle sue dimensioni. Più lo ione è piccolo, più elevata è la sua densità di carica (ovvero la quantità di carica per unità di volume) e più elevata è la forza del campo elettrico da essa generata in conseguenza della quale lo ione è in grado di indurre un ordine tra le molecole di acqua oltre la prima sfera di idratazione. Sono ioni destrutturanti quelli che hanno densità di carica tale che il campo elettrico da essa generato non è in grado di polarizzare le molecole di acqua al di fuori della prima sfera di idratazione (in altre parole ioni a dimensione crescente sono progressivamente più destrutturanti). Lo ione sodio ha caratteristiche strutturanti, mentre lo ione cloro ha caratteristiche destrutturanti. Tuttavia, è possibile misurare la forza strutturante/destrutturante di uno ione [7] e concludere che nel cloruro di sodio la natura strutturante dello ione sodio predomina su quella destrutturanrte dello ione cloro.
La conseguenza di tutto quanto scritto è che il sale da cucina (ma questo è un discorso di carattere generale) ha caratteristiche “strutturanti” per cui esso è in grado di ancorare le molecole di acqua alla superficie della fase liquida in modo tale che la quantità di energia necessaria per rimuoverle risulta essere più alta che in assenza del soluto.
Note conclusive
Questa trattazione si applica alle soluzioni lontane dall’idealità quali quelle ambientali come per esempio quella che viene indicata come “soluzione suolo”. Lo so. Sono stato particolarmente prolisso, ma mi sono lasciato prendere la mano. Una nota nata come “Pillola di scienza” è diventata la trascrizione di una delle mie lezioni di chimica del suolo. Spero di non aver annoiato e che qualcuno possa trovare ispirazione da quanto scritto. I miei studenti possono, certamente, usare queste cose come appunti integrativi al loro studio.
Riferimenti
  1. https://www.facebook.com/RinoConte1…
  2. http://www.chimica-online.it/downlo…
  3. http://www.chimica-online.it/downlo…
  4. http://www.chimica-online.it/downlo…
  5. http://www.chimicamo.org/chimica-ge…
  6. http://www.chimicamo.org/chimica-ge…
  7. https://www.researchgate.net/public…