Le macchine molecolari e il Nobel per la Chimica 2016

Fino a ieri le macchine molecolari erano note solo ad un ristretto pubblico di chimici impegnati o nello studio dei processi biochimici alla base del metabolismo o nella sintesi di nuove molecole da utilizzare nel campo delle nanotecnologie. Insomma era roba per pochi eletti, di nerds della conoscenza o topi da laboratorio, se proprio vogliamo dirla in un modo più prosaico. Ed, invece, la commissione che assegna i premi Nobel ha deciso di premiare tre scienziati, Jean-Pierre Sauvage, Fraser Stoddart e Bernard L. Feringa “for the design and synthesis of molecular machines“, da anni impegnati nella progettazione e nella sintesi di questi sistemi complessi tanto che ora il termine “macchine molecolari” viaggia di bocca in bocca e presto diventerà patrimonio comune come il termine “plastica” che è associato, sebbene non proprio correttamente, al nome di Giulio Natta, premio Nobel, assieme a Karl Ziegler, nel 1963 per le sue scoperte nell’ambito della chimica dei polimeri.

I vincitori del premio Nobel per la chimica 2016 (fonte https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/)
Ma cosa sono le macchine molecolari?
Tutti sappiamo cosa sia una macchina. Basta aprire un qualsiasi dizionario per trovare che una macchina è uno “strumento, apparato, congegno costituito da un numero variabile di parti collegate fra loro in rapporto cinematico, che serve per la trasformazione o per la trasmissione dell’energia o per il compimento di determinate operazioni” (da: http://dizionario.internazionale.it/…). In altre parole, si tratta di un sistema più o meno complesso composto da tante parti assemblate assieme in modo tale che il loro movimento relativo sia in grado di trasmettere energia o di compiere un lavoro.

Locomotiva a vapore, tipica macchina fatta di parti assemblate assieme, in grado di muoversi e capaci di compiere un lavoro (fonte https://www.flickr.com/photos/powerhouse_museum/sets/72157607071380541/)
In natura esistono tantissimi sistemi che possono essere assimilati a delle macchine. Una di queste è, per esempio, l’emoglobina, una proteina allosterica formata da quattro subunità – ovvero da quattro diverse componenti assemblate nel modo opportuno, che è in grado di trasportare l’ossigeno all’interno delle cellule e l’anidride carbonica fuori da esse (il funzionamento della molecola ed il significato di allosterismo sono già stati evidenziati in un mio articolo sul blog: http://www.laputa.it/blog/elogio-de…). La capacità che ha l’emoglobina di modulare la sua azione attraverso il movimento delle sue subunità la rende una vera e propria macchina in miniatura, ovvero una nanomacchina o macchina molecolare, il cui scopo è quello di consentire l’ossigenazione delle cellule al fine di assicurare il corretto funzionamento del nostro metabolismo.

L’emoglobina – tipica macchina molecolare la cui azione è modulata dalla sua capacità di movimento (fonte http://www.pianetachimica.it/mol_mese/mol_mese_2003/05_Emoglobina/emoglobina_1_ita.html)
Ma l’emoglobina non è la sola macchina molecolare presente negli esseri viventi.
Cosa dire, per esempio, degli enzimi che prendono il nome di DNA polimerasi e che sono coinvolti nella replicazione del DNA? Le DNA polimerasi sono delle molecole complesse che, in modo molto semplicistico, funzionano “scivolando” lungo i filamenti di DNA. Man mano che gli enzimi procedono, i due filamenti di DNA, avvolti a formare la famosa doppia elica descritta per la prima volta da Watson e Crick su Nature (http://www.nature.com/nature/dna50/…), si separano come se fossero le due parti di una cerniera che si aprono per effetto del passaggio del cursore metallico. Via via che le DNA polimerasi incontrano un “dente” della catena, esse “prelevano” dall’ambiente circostante la molecola adatta da “incastrare” sul “dente” stesso in modo tale da sintetizzare un filamento (ovvero una catena) di DNA che sia esattamente complementare a quella lungo cui stanno scivolando.

Schema della replicazione del DNA (fonte: http://www.chimica.unipd.it/fabrizio.mancin/pubblica/Suprachem/macchine%20molecolari.pdf)
Vogliamo parlare, poi, dell’ATP-asi, l’enzima coinvolto nella sintesi dell’ATP? Si tratta di un complesso molecolare che funziona come una vera e propria turbina per convertire l’energia associata ad un gradiente protonico (cioè la differente concentrazione di ioni H+ tra i due lati di una membrana cellulare) in energia chimica contenuta nei legami della molecola di ATP. L’enzima è fatto da tre parti. Una parte dell’enzima, “chiusa” all’interno della parete cellulare, è indicata come F0; questa è legata ad una estremità di una sorta di “albero a camme” la cui altra estremità è connessa ad una “lingua” che viene, generalmente, indicata come F1. I protoni presenti da un lato della membrana (quello dove essi sono in concentrazione più elevata) si incanalano in F0 attivandone un movimento meccanico di tipo rotatorio. Il movimento rotatorio viene trasmesso ad F1 attraverso l’albero a camme. Si verificano, quindi, due condizioni. Da una parte, il movimento rotatorio consente di “pompare” i protoni da un lato all’altro della parete cellulare. Dall’altra, la trasmissione del moto da F0 a F1 consente a quest’ultima subunità di “aprirsi” e “catturare” gli “ingredienti” necessari per la sintesi dell’ATP. Una volta catturati gli ingredienti, F1 si chiude impedendone l’allontanamento e promuovendo la formazione di ATP. Dopo la sintesi di ATP, la subunità F1 si apre e consente alla molecola appena formata di fuoriuscire (qui si trova un bellissimo filmato sul funzionamento dell’ATP-asi: https://www.youtube.com/watch?v=Pjd…).

Struttura e schema di funzionamento dell’ATP-asi (fonte: http://www.chimica-online.it/biologia/sintesi-atp.htm)
La tendenza attuale nel mondo chimico è la “biomimesi”, ovvero lo sviluppo di tecnologie chimiche in grado di produrre molecole che, in qualche modo, funzionino come i sistemi presenti in natura. Io stesso, in passato, sono stato impegnato in ricerche di questo tipo quando studiavo catalizzatori biomimetici per il recupero ambientale (http://www.suprahumic.unina.it/home…).
E’ proprio guardando al funzionamento delle macchine molecolari presenti nel metabolismo degli esseri viventi che è nata l’idea di usare aggregati di molecole (ovvero supramolecole) per “compiere” lavoro mirato a livello molecolare come trasmissione di energia o movimento. I primi prototipi di macchine molecolari sintetiche furono i rotassani e i catenani in cui il movimento meccanico era limitato ad uno “scivolamento” di due subunità l’una dentro l’altra.

Prototipi di macchine molecolari (fonte: http://www.ordinechimicicalabria.it/portale2016/congresso/contributi%20scientifici/T03%20CREDI.pdf)
Altro simpatico esempio di macchina molecolare è quello che è stato definito “ascensore molecolare” il cui futuro sembra essere quello di “veicolare”, attraverso meccanismi di “cattura/rilascio”, molecole aventi particolari caratteristiche chimiche (per esempio i contaminanti ambientali).

Esempio di ascensore molecolare (fonte: http://www.ordinechimicicalabria.it/portale2016/congresso/contributi%20scientifici/T03%20CREDI.pdf)
Alla luce di tutto quanto illustrato, è possibile dare una definizione di macchina molecolare (o nanomacchina) come di un aggregato molecolare (o supramolecola) in grado di compiere movimenti meccanici per trasmettere moto o trasferire energia attraverso stimoli chimico-fisici come interazione con la luce o gradienti di concentrazione.
Note conclusive
Chiedo scusa a tutti i biochimici per l’enorme superficialità che ho utilizzato per la descrizione dei meccanismi biochimici. Essi sono tutt’altro che così semplici, tuttavia ho cercato di semplificare al massimo il funzionamento delle macchine molecolari di tipo metabolico per un pubblico non troppo esperto. Spero di essere riuscito nell’intento.
Per approfondire:
  1. http://prometeo.sif.it/papers/onlin…
  2. http://www1.unipa.it/flor/materiale…
  3. http://www.ordinechimicicalabria.it/…
  4. http://www.itscienzachimica.altervista.org/…
  5. http://www.chimica-online.it/biolog…
  6. http://www.scienzagiovane.unibo.it/…
Fonti delle immagini:
  1. L’immagine di copertina è presa da: http://www.steinbeck-molecular.de/s…
  2. L’immagine dei laureati Nobel per la chimica 2016 è presa da: https://www.nobelprize.org/nobel_pr…
  3. La locomotiva a vapore è presa da: https://www.flickr.com/photos/powerhouse_museum/sets/72157607071380541/
  4. L’immagine dell’emoglobina è presa da: http://www.pianetachimica.it/mol_me…
  5. Lo schema della replicazione del DNA è preso da: http://www.chimica.unipd.it/fabrizi…
  6. Lo schema dell’ATP-asi è preso da: http://www.chimica-online.it/biolog…
  7. Lo schema dei rotassani, dei catenani e dell’ascensore molecolare è preso da: http://www.ordinechimicicalabria.it/…

Riflessioni di un docente di mezza età. Cos’è la vita?

Stamattina ho fatto la mia solita lezione. Dalle 8:00 alle 10:00. Non è proprio un orario piacevole per gli studenti. Si beccano la chimica del suolo di prima mattina quando i neuroni sono ancora in fase di riposo…ma va bene. Preferisco che certe cose vengano dette a mente fresca, quando non sono ancora stanchi ed annoiati da una mattinata di lezioni varie.
Oggi ho parlato della reazione del suolo che, tradotto per i non addetti, vuol dire pH del suolo, come si misura e il suo effetto sulla dinamica dei nutrienti. La figura qui sotto mostra la disponibilità di alcuni nutrienti in funzione del pH.
Disponibilità dei nutrienti in funzione del pH dei suoli (Fonte)

Come mio solito quando faccio lezione (che da qualche anno a questa parte faccio a braccio, ovvero senza seguire una preparazione preventiva e seguendo le indicazioni degli studenti attraverso la valutazione della loro espressione e delle loro domande) sono passato dalla delucidazione scientifica a considerazioni di natura filosofica.
Qual è l’effetto di un pH troppo acido o troppo basico sui suoli? La prima cosa che deve venire in mente è che, al di là di una asettica dinamica molecolare, si ha una selezione della tipologia di forme di vita che sono presenti sul suolo. Se la concentrazione idrogenionica è troppo elevata (molto più elevata di quella presente all’interno delle cellule dei micro organismi del suolo) si innescano processi osmotici che portano alla lisi cellulare. Lo stesso meccanismo è valido quando il pH è troppo basico (troppo acido e troppo basico in chimica del suolo vuol dire molto al di sotto di pH 5.5 e molto al di sopra di pH 7.5, rispettivamente). E’ chiaro che in queste condizioni estreme, riescono a sopravvivere solo micro organismi estremofili. In definitiva, per effetto di una variazione del pH dei suoli, si innescano meccanismi di selezione che portano alla predominanza di certe forme di vita su altre.
Effetto del pH sulla crescita microbica (Fonte)
Ma che cos’è la vita?

Sembra una domanda banale. Gli studenti in genere dicono: noi esseri umani, le piante, gli animali. Altri aggiungono: sono vita anche i micro organismi (che possono essere del suolo o anche quelli simbiotici che vivono al nostro interno). In generale, nessuno è in grado di dare una risposta univoca che si applichi contemporaneamente a tutte le forme di vita.

Negli anni scorsi (non oggi perché per mancanza di tempo sono andato subito alle conclusioni) proponevo un giochetto (che poi è lo stesso proposto da Pier Luigi Luisi nel libro indicato più in basso).
Noi oggi siamo coinvolti nell’esplorazione spaziale alla ricerca, tra l’altro, di nuove forme di vita. Cosa ci dobbiamo aspettare? Come riconoscere nuove forme di vita?
Ci viene spontaneo dire che quanto riportato nel seguente elenco son tutte forme di vita:
Mosca; Albero; Mulo; Bambino; Fungo; Ameba; Pollo; Corallo
Mentre quanto contenuto in questa lista non è vita:
Radio; Automobile; Robot; Cristallo; Luna; Computer; Mare; Carta
Ma perché?
Si potrebbe dire che la mosca, il mulo il bambino, l’ameba, il pollo sono forme di vita perché sono “oggetti” che crescono e si muovono. Ma allora un albero ed un fungo, che non si muovono, non sono forme di vita? Alla luce di “crescita” e “movimento” potremmo dire che la Luna e il mare (che si muovono e crescono periodicamente) sono forme di vita. Ma non è così. Ed allora, perché nel primo elenco ci sono forme di vita e nel secondo no? Si potrebbe dire che son forme di vita tutti quegli “oggetti” che reagiscono agli stimoli esterni. Ma allora, ancora una volta un fungo non è vita. Sembra non reagire ad alcuno stimolo. Un computer, invece, potrebbe essere forma di vita perché reagisce a degli stimoli elettrici. Lo stesso si potrebbe dire per un robot. Le cose viventi sono tutte quelle che sono in grado di riprodursi. Ma allora, alla luce di questo parametro, il mulo, che è sterile, non è una forma di vita.
Come si arguisce dall’esempio fatto, qualsiasi parametro si vada a prendere in considerazione, gli elementi della prima lista possono rientrare nella seconda lista e viceversa.
In realtà esiste una unica risposta alla domanda “perché gli elementi della prima lista sono forme di vita mentre quelli della seconda lista non lo sono?”: tutti gli elementi della prima lista hanno una cosa in comune, ovvero una attività metabolica che consente a tutti loro di essere autopoietici. Non è una brutta parola. Significa solo che tutti gli esseri viventi, grazie ai processi metabolici che li accomunano, sono in grado di autoripararsi. Pensate a quando vi fate un graffio: esce del sangue, ma, dopo un po’ di tempo, il sangue coagula, le cellule ricrescono e tutto torna come prima.
Coagulazione del sangue (Fonte)
Tutti gli elementi della seconda lista non sono dotati della proprietà autopietica perché non hanno alcun metabolismo.
Abbiamo risposto alla domanda relativa al parametro da usare per identificare le forme di vita. Ma ancora bisogna rispondere alla domanda “cos’è la vita?”
A questo punto viene spontaneo dire che la “vita” è una proprietà emergente dall’interazione di diverse componenti. In altre parole, la vita è una proprietà intrinseca di “macchine molecolari” complesse dotate di metabolismo. Essa “nasce” dalla combinazione di “caso e necessità”. Cambiamenti casuali di carattere ambientale hanno consentito la sintesi di molecole più o meno complesse. Nel momento in cui esse sono state casualmente ottenute per combinazione degli elementi chimici che le compongono e sotto la spinta di pressioni ambientali, hanno cominciato ad “agire” seguendo la “necessità” di leggi chimico-fisiche che già conosciamo o che scopriamo ogni giorno grazie alla nostra attività scientifica. Ogni cambiamento casuale delle condizioni al contorno (ovvero delle condizioni ambientali), comporta una risposta metabolica ben precisa con successiva necessaria evoluzione per adattamento alle nuove condizioni.
Conclusioni
Non so cosa i miei studenti abbiano capito da questa lezione. Alla fin fine le domande d’esame verteranno solo sul pH dei suoli e sul suo effetto sulla dinamica dei nutrienti. Devo dire, però, che dalle loro espressioni ho capito che sono rimasti colpiti. Io mi sono divertito. Ma come spesso mi viene detto, forse mi sono divertito perché ho avuto modo di essere logorroico e di annoiare un pubblico che è obbligato ad ascoltarmi e non è nella posizione di mandarmi a quel paese. Posso chiudere dicendo che non mi importa: la scienza è conoscenza e la conoscenza è anche la deriva pseudo filosofica attraverso cui un individuo è spinto a riflettere sul significato più profondo delle domande che si è sempre posto. Ho scelto di fare il “pensatore” buttandomi nella ricerca universitaria per soddisfare le mie curiosità più recondite.
Per chi vuole approfondire:
Erwin Schoeredinger, Che cos’è la vita? Adelhi (1995) (http://www.adelphi.it/libro/9788845…)
Ed Regis, Cos’è la vita? Chiavi di lettura della Zanichelli (2010) (http://online.scuola.zanichelli.it/…)
Pier Luigi Luisi Sull’origine della vita e della biodiversità Mondadori (2013) (http://www.laputa.it/libri/sullorig…)
Le macchine molecolari – https://www.facebook.com/notes/rino…
J.J. Monod, il caso e la necessità, Mondadori (1971) (https://monoskop.org/images/8/8e/Mo…)
Fonte dell’immagine di copertina: http://hdimagesnew.com/3d-dna-wallp…

La “memoria dell’acqua”, l’omeopatia ed i pregiudizi di conferma

Più volte, da quando il 29 Dicembre 2016 al Caffè dei Libri di Bassano del Grappa ho tenuto una lezione sull’omeopatia intesa come pratica esoterica senza fondamenti scientifici [1, 2], mi sono sentito rivolgere sempre la stessa argomentazione in base alla quale ci sono persone molto più titolate di me che svolgono lavori di ricerca molto approfonditi grazie ai quali i modelli in grado di spiegare gli effetti dei formulati omeopatici sono diventati sempre più definiti e circostanziati.
I fautori dell’omeopatia si basano però sul principio di autorità [3] e (ricopiando una risposta tipica che viene generalmente data a miei commenti sull’omeopatia) affermano: “se l’argomento omeopatia viene trattato sul piano chimico lei ha certamente ragione a sostenere che dopo un certo numero di diluizioni per il principio di Avogadro non può esistere residuo della sostanza iniziale; ma se l’argomento viene trattato sul piano quantistico, il discorso cambia radicalmente. (I miei riferimenti pro-omeopatia sono E. Del Giudice, G. Vitiello, V. Elia, I. Licata, Rustun Roy, E. Germanov ecc. ecc.)”.
In questo caso specifico, la persona che ha commentato si è dimenticata di Benveniste [4] e Montagnier [5] i cui studi sono stati rigettati da Nature, nel primo caso, e pubblicati su una rivista di cui si è editor-in-chief, nel secondo caso (il che equivale a dire: “pubblico il mio lavoro senza alcun contraddittorio”. Ma di questo mi occuperò a tempo debito in un altro momento).
In definitiva sembra che ci siano studiosi che analizzano le proprietà delle soluzioni a diluizione infinita e trovano risposte inoppugnabili alle basi dell’omeopatia.
Chi fa nomi e cognomi di studiosi coinvolti in ricerche sull’acqua ha qualche problema non solo con la chimica ma anche con la lettura di lavori scientifici ed in genere non si tratta di chimici ma di persone che si occupano di altro. Per esempio, l’argomentazione riportata sopra è stata fatta da una persona che di se stessa dice: “sono un epistemologo esperto in teoria dei sistemi, non un chimico; ma conosco molto bene gli argomenti e le dimostrazioni sperimentali degli scienziati che sostengono il valore dei trattamenti omeopatici “. In altre parole, si tratta di qualcuno che ha deciso di se stesso che è esperto di qualcosa di cui non è competente (vi dice niente l’effetto Dunning Kruger?). E come lui, tutti quelli che argomentano di pro-omeopatia “a spron battuto” nei vari social networks.
Essendo un chimico coinvolto in lavori di ricerca fin dall’inizio degli anni Novanta, sono coinvolto anche nei processi di peer review di lavori scientifici, ovvero sono chiamato a dare la mia opinione di esperto nella valutazione di lavori di ricerca. Questo accade almeno tre-quattro volte al mese, ovvero mi trovo a lavorare come revisore per almeno 36-48 volte all’anno. In questa sede voglio agire come revisore e prendere uno dei lavori pubblicati da uno dei tanti autori famosi per la loro posizione pro-omeopatia e capire nel merito cosa fanno.
Il lavoro a cui faccio riferimento è: V Elia, E Napoli and R Germano, The ‘Memory of Water’: an almost deciphered enigma. Dissipative structures in extremely dilute aqueous solutions, Homeopathy (2007) 96, 163–169 [6]. Chi è iscritto a Researchgate può liberamente scaricare il lavoro suddetto messo a disposizione dagli autori stessi.
Il lavoro si apre con una introduzione in cui si scrive:
“The ‘Memory of Water’ is a journalistic expression, first used in the French newspaper Le Monde, after the publication in 1988 of Jacques Benveniste’s famous paper in the international scientific journal Nature. In this paper he claimed, with biological experimental data, that ‘homeopathic dilutions’ of substances (ie so much diluted as to not contain any molecules of the substance initially diluted in it) are able to induce biological effects typical of the substance initially dissolved in it”.
Gli autori ammettono che il termine “memoria dell’acqua” ha solo un effetto “comunicativo” ma nessuna base scientifica. Citano a tal proposito il lavoro capostipite sulla “memoria dell’acqua” pubblicato su Nature nel 1988 da Jacques Benveniste [7] dimenticando, però, che questo lavoro fu pubblicato “sub condicio” (come evidenzia la Editorial reservation riportata in coda all’articolo stesso), ovvero con l’accordo che i risultati avrebbero dovuto essere valutati da una commissione di esperti nel laboratorio dell’autore. La valutazione ci fu e la risposta si trova nell’articolo su Nature a firma di John Maddox, James Randi e Walter W. Stewart: “High-dilution” experiments a delusion [8]:
“We conclude that the claims made by Davenas et al. are not to be believed. Our conclusion, not based solely on the circumstance that the only strictly doubleblind experiments we had witnessed proved to be failures, may be summarized as follows: The care with which the experiments reported have been carried out does not match the extraordinary character of the claims made in their interpretation […]. The phenomena described are not reproducible, but there has been no serious investigation of the reasons […]. The data lack errors of the magnitude that would be expected, and which are unavoidable […]. No serious attempt has been made to eliminate systematic errors, including observer bias […]. The climate of the laboratory is inimical to an objective evaluation of the exceptional data […]”.
In altre parole, il lavoro del gruppo gestito da Benveniste sopravvaluta gli effetti che gli autori riportano nelle loro conclusioni, manca di riproducibilità, manca di una seria valutazione degli errori sperimentali sia casuali che sistematici (per esempio gli autori non hanno fatto sforzi per eliminare i pregiudizi di conferma) e le condizioni del laboratorio non offrono sufficienti garanzie per una interpretazione oggettiva, e quindi credibile, dei dati.
Un lavoro scientifico che si basa sulle premesse ritenute sbagliate dalla comunità scientifica internazionale non si presenta molto bene. Il compito di tutti noi è prendere atto di ciò che è pubblicato (ci piaccia o meno) e, partendo da lì, costruire i nostri migliori modelli scientifici. Nel caso in oggetto la premessa di Elia et al. [6] è “la memoria dell’acqua è un fatto acclarato e dobbiamo solo capire a cosa è dovuta”. No, non è così. La “memoria dell’acqua” non è affatto acclarata [9, 10, 11, 12]. A sostegno della loro assunzione di partenza, Elia et al. [6] citano un saggio pubblicato da Bibliopolis in lingua Italiana [13]. Quale validità scientifica a livello internazionale possa avere un saggio scritto in italiano, quindi limitato alla sola comunità scientifica che è in grado di parlare quella lingua, non è dato sapere. Inoltre, la pubblicazione di libri non richiede la severa revisione tra pari a cui è soggetto invece un lavoro di ricerca. Chiunque può scrivere un libro per rendere pubblico il suo pensiero e magari ricorrere come spesso accade all’auto-pubblicazione. Ma si tratta di opinioni personali senza contraddittorio. Non c’è dialogo scientifico come quello riportato nei riferimenti [9-12].
Dopo l’introduzione, nella quale gli autori evidenziano la tipologia di problematiche che essi hanno deciso di analizzare, c’è un paragrafo intitolato “Methods”. Di solito questo paragrafo serve per descrivere le metodologie analitiche che gli autori di un lavoro decidono di utilizzare. Questo paragrafo inizia con: “The experimental methodologies used for our investigations were chosen as the most efficient among the many tested”.
Devo dire che è la prima volta, nella mia esperienza di lavoro e di revisore scientifico, che mi trovo di fronte ad una frase del genere. Di solito chi scrive un lavoro di ricerca cerca di giustificare in modo oggettivo la scelta delle tecniche analitiche che ha deciso di utilizzare. Se non si è in grado di trovare una giustificazione oggettiva in termini di sensibilità strumentale o peculiarità analitica, ci si rifà a “non ho soldi e queste sono le strumentazioni che la mia Istituzione mi ha messo a disposizione”. Ma dire che si scelgono tra le diverse tecniche quelle che si ritengono più efficienti, senza citare quali sono state prese in considerazione oltre quelle applicate nel lavoro inviato per la pubblicazione, e quali sono state scartate e per quali motivi, equivale a dire “ho scelto le tecniche che mi consentono di ottenere le risposte che desidero”. Non mi sembra un atteggiamento molto oggettivo. Non è così che devono essere presentate le proprie scelte alla comunità di riferimento.
Seguono, poi, le descrizioni delle diverse tipologie di figure che sembrano sostenere la validità delle conclusioni degli autori che chiosano “Much new experimental data converge towards the validation of the statement that water, at least in the context of the procedure of the homeopathic medicine production, really has a ‘memory’.” In altre parole, i dati sperimentali consentono di concludere che la memoria dell’acqua è reale.
In genere, uno dei primi corsi che vengono seguiti all’università dagli studenti che si iscrivono a una qualsiasi ex-facoltà scientifica riguardano la matematica che deve essere usata nella scienza [14]. Viene spiegato molto chiaramente che quando si riportano dati sperimentali occorre tener ben presente che essi sono sempre affetti da errore (sia casuale che sistematico) e che la buona pratica scientifica consiste nel riprodurre gli esperimenti in modo tale da indicare quantitativamente anche gli errori che sono stati commessi. Sotto l’aspetto visivo quanto appena scritto si traduce nel riportare grafici in cui ad ogni punto sperimentale sia associata una barra sia nella dimensione delle ascisse (se possibile, perché non sempre è possibile misurare l’errore sull’asse x) che in quella delle ordinate (l’asse y) indicanti l’incertezza nelle misure sperimentali. Alternativamente, se si riportano tabelle invece che grafici, occorre indicare l’intervallo di confidenza del valore misurato; detto in soldoni un numero in tabella deve essere sempre riportato come (a ± err).
Tutti i grafici discussi nel lavoro di Elia et al. [6] sono carenti in questo. Non c’è alcuna seria analisi degli errori sperimentali. Non viene riportato nulla in termini di intervallo di confidenza e mancano le barre di errore che consentirebbero a chiunque in grado di leggere quei grafici di capire l’attendibilità dei dati sperimentali riportati.
CONCLUSIONI
Il modello costruito sulla base di premesse sbagliate e fondato sulla valutazione di dati sperimentali di cui non si conosce l’attendibilità non è esso stesso attendibile. Per quanto mi riguarda, gli autori hanno voluto vedere ciò che solo nella loro mente è qualcosa di reale. In altre parole, hanno voluto trovare conferma a ciò che pensavano e non hanno fatto tentativi per falsificare, in senso popperiano, le loro ipotesi. Ciò che a mio avviso è più grave è che essi non hanno tenuto in alcun conto ciò che essi stessi (Elia è stato uno dei miei docenti all’Università degli Studi di Napoli Federico II) insegnano agli studenti, ovvero “rigida” attenzione agli errori sperimentali per permettere ai colleghi di tutto il mondo di poter valutare con serenità il proprio lavoro. Se fossi stato io il revisore del lavoro non ne avrei permesso la pubblicazione a causa degli innumerevoli bias che ho osservato. Ma non sono stato io il revisore, di conseguenza il lavoro è stato pubblicato e ci sarà qualcuno da qualche parte che presterà fiducia a quanto scritto.
RIFERIMENTI
  1. https://www.facebook.com/RinoConte1…
  2. http://www.laputa.it/omeopatia/
  3. http://web.unitn.it/files/download/…
  4. http://www.nature.com/news/2004/041…
  5. http://www.i-sis.org.uk/DNA_sequenc…
  6. https://www.researchgate.net/public…
  7. https://www.researchgate.net/profil…
  8. http://www.badscience.net/wp-conten…
  9. http://www.sciencedirect.com/scienc…
  10. http://www.sciencedirect.com/scienc…
  11. http://www.sciencedirect.com/scienc…
  12. http://www.sciencedirect.com/scienc…
  13. Germano R. AQUA. L’acqua elettromagnetica e le sue mirabolanti avventure. Napoli: Bibliopolis, 2007.
  14. http://www.chimicare.org/curiosita/…
L’immagine di copertina è presa da: http://www.numak.it/cisterne-serbat…

Le strane proprietà dell’acqua. L’effetto Mpemba

In che cosa consiste l’Effetto Mpemba?
Il mondo scientifico è molto variegato ed è estremamente libero. Ognuno si occupa delle cose che più lo incuriosiscono cercando di portare il proprio contributo alle conoscenze globali.
Tra le cose che attirano la curiosità di scienziati e gente comune sono le proprietà dell’acqua.
Qui, qui, qui, qui e qui sono descritte in modo divulgativo alcune delle sue proprietà influenzate dalla presenza dei legami a idrogeno.
Una caratteristica dell’acqua su cui non sembra esserci un accordo nel mondo scientifico è il cosiddetto effetto Mpemba, ovvero la capacità dell’acqua di congelare più velocemente se essa è prima riscaldata.
Il nome dell’effetto è quello di un Tanzaniano che, da ragazzino, affermava che era in grado di ottenere più velocemente i gelati se la crema veniva posta in freezer quando ancora calda. In realtà, l’osservazione del fenomeno pare risalga addirittura ad Aristotele, passando per Cartesio.
L’effetto descritto è un paradosso: logicamente si sarebbe tentati di pensare che essendo l’acqua fredda più vicina al punto di congelamento, essa debba congelare più velocemente dell’acqua calda che, invece, è più distante dal punto di congelamento.
Il disaccordo nel mondo scientifico di cui accennavo sopra si sviluppa su diversi livelli. Ci sono scienziati che ne negano l’esistenza perché in condizioni controllate non riescono ad osservare il fenomeno e scienziati che, invece, sembrano osservare il fenomeno e ne danno anche una spiegazione. Nell’ambito di chi spiega l’effetto Mpemba c’è chi dà importanza ai gas disciolti e chi, invece, pone l’accento sulla natura dei legami a idrogeno.
Qual è la mia posizione? Devo dire che personalmente sono piuttosto scettico, ma la mia è solo una opinione basata sulla lettura di un lavoro apparso recentemente su Scientific Reports. In questo lavoro, gli autori non solo evidenziano che i dati sperimentali riportati negli studi assertivi dell’effetto Mpemba sono deficienti in ripetibilità e riproducibilità, ma sono anche affetti dal pregiudizio di conferma degli autori stessi.
Lo scopo di questa nota è riportare non le mie opinioni in merito (non ho mai studiato direttamente questo effetto e non potrei esprimermi in merito se non approfondendo ulteriormente i singoli casi studio), ma lo stato dell’arte in merito a quelle che sono delle spiegazioni piuttosto affascinanti di un effetto che, se osservato con maggiore attendibilità, evidenzierebbe nuovi tipi di anomalie dell’acqua.
LA STRUTTURA DELL’ACQUA
È già stato spiegato altrove (qui, qui, qui, qui e qui) che ogni molecola di acqua è in grado di formare fino a quattro legami a idrogeno impegnando sia i due atomi di idrogeno legati all’ossigeno (in questo caso la molecola di acqua funziona da donatrice di idrogeno) sia i doppietti solitari localizzati sull’atomo di ossigeno (in questo caso la molecola di acqua funziona da accettrice di idrogeno). Si forma, in questo modo, un insieme di cinque molecole di acqua agganciate tra di loro a formare un tetraedro. Di queste cinque molecole di acqua, una è al centro del tetraedro, le altre quattro sono nei vertici. Queste ultime, a loro volta, sono al centro di un altro tetraedro i cui vertici sono occupati da altre molecole di acqua.

La struttura dell’acqua. Quattro molecole di acqua si dispongono lungo i vertici di un tetraedro il cui centro è occupato da una quinta molecola di acqua (fonte dell’immagine: https://it.wikipedia.org/wiki/Acqua)
Volendo avere una visione semplificata delle molecole di acqua legate tra loro, potremmo immaginare un insieme di tetraedri che evolvono nelle tre dimensioni e sono agganciati gli uni agli altri attraverso i propri vertici. Questa è una visione semplificata per diversi motivi. Ogni molecola di acqua può formare fino a quattro legami a idrogeno, ma non è detto che sia così. Ci possono essere molecole di acqua che ne formano tre ed altre che ne formano due, per esempio. Allo stesso modo bisogna ricordare che il legame a idrogeno non è statico, ma ha natura dinamica. Se indichiamo per semplicità il legame a idrogeno con due punti tra il simbolo dell’ossigeno e quello dell’idrogeno, mentre il legame covalente con un semplice trattino (H:O-H), possiamo scrivere un equilibrio del tipo:
H:O-H = H-O:H
dal quale si evince che il legame covalente si interscambia con quello a idrogeno. Infine, i tetraedri in cui sono inserite le molecole di acqua non sono regolari, ma distorti.
Avendo in mente tutto questo, si riesce a comprendere che il modello tridimensionale fatto di tetraedri agganciati per i vertici non è una buona rappresentazione dell’acqua liquida, pur rendendo l’idea. Questo modello è, però, sufficiente per comprendere come è fatta una delle tante forme di ghiaccio. Ebbene sì, di ghiaccio non ne esiste un solo tipo ma ce ne sono molti altri e non tutti hanno densità più piccola di quella dell’acqua liquida; in altre parole non tutte le forme di ghiaccio galleggiano sull’acqua [10].

Diagramma di fase dell’acqua. Sono evidenti le diverse forme di ghiaccio. Ne esistono undici differenti in cui le molecole di acqua sono “agganciate” tra loro in modi differenti (fonte dell’immagine: https://en.wikipedia.org/wiki/Ice)
Ciò che è importante da tutto questo discorso è capire che le molecole di acqua liquida tendono a formare dei “grappoli” tenuti insieme dai legami a idrogeno. La forma più elementare di uno di questi grappoli in cui diversi tetraedri sono “agganciati” tra loro attraverso i propri vertici è quella dell’icosaedro, un solido a 20 facce triangolari fatto dall’unione di 20 tetraedri per un totale di 280 molecole di acqua [11].

Icosaedro. Struttura più elementare in cui si raggruppano i tetraedri distorti formati dalle molecole di acqua (fonte dell’immagine: https://www.mindmeister.com/maps/public_map_shell/574542913/poliedros-o-s-lidos-geom-tricos)
LE SPIEGAZIONI PIÙ CONOSCIUTE DELL’EFFETTO MPEMBA
L’effetto dei legami a idrogeno
Recentemente [8, 9] è stato proposto che la variazione delle lunghezze dei legami a idrogeno e dei legami covalenti per effetto del riscaldamento sia direttamente coinvolta nell’effetto Mpemba.
Quando l’acqua è calda, le lunghezze dei legami a idrogeno H:O sono più grandi rispetto a quelle dei legami covalenti O-H. L’abbassamento della temperatura che si ottiene inserendo l’acqua calda nel congelatore comporta un accorciamento dei primi ed un allungamento dei secondi. Il “tira e molla” appena descritto può essere associato a due effetti: una sorta di “riscaldamento adiabatico” dovuto all’accorciamento del legame a idrogeno ed una sorta di “raffreddamento adiabatico” dovuto all’allungamento del legame covalente [12]. L’effetto Mpemba è spiegato dalla prevalenza del secondo effetto sul primo. In particolare, più calda è l’acqua, più efficiente è il raffreddamento dovuto all’allungamento dei legami covalenti [8, 9]. In altre parole, il raffreddamento dell’acqua avviene perché quando i legami covalenti O-H si allungano sottraggono energia ai legami a idrogeno H:O con conseguente raffreddamento complessivo.
Questa spiegazione assomiglia molto a quanto accade ad un vapore che si allontana dalla superficie di un liquido. Per capire cosa accade fate un esperimento molto semplice. Cospargete la mano con alcol etilico (un liquido facilmente volatile); agitate la mano; sentirete una senzazione di fresco. Ecco! L’evaporazione dell’alcol etilico comporta che alcune molecole si allontanino dalla mano. Per poterlo fare, però, hanno bisogno di energia. Questa energia viene sottratta alle molecole di liquido che sono ancora sulla mano. La conseguenza è che le molecole di alcol etilico che bagnano la mano si raffreddano e danno la sensazione che sentite.
L’effetto dei gas disciolti
Il meccanismo appena descritto non tiene conto dell’effetto sulla struttura dell’acqua liquida da parte dei gas disciolti la cui presenza diventa importante nel momento in cui si sottopone l’acqua a riscaldamento. Infatti, è esperienza comune che quando si aumenta la temperatura dell’acqua compaiono delle bolle dovute al fatto che, ad alte temperature, la solubilità dei gas disciolti diminuisce ed essi si allontanano dal sistema generando le bolle.
Cosa accade in presenza delle bolle? Abbiamo detto che l’acqua liquida ha una struttura a grappoli in cui l’unità elementare ha forma di icosaedro. Più rigida è questa struttura, più facilmente si forma il ghiaccio. Ne viene che l’acqua fredda dovrebbe ghiacciare prima di quella calda. In realtà, l’acqua calda contiene una quantità più grande di nano-bolle rispetto all’acqua fredda.

L’acqua riscaldata forma delle bolle dovute alla diminuzione della solubilità dei gas disciolti. Le bolle sono delle cavità in cui i gas, insolubili in acqua, vengono intrappolati da molecole di acqua che interagiscono tra loro mediante legami a idrogeno. All’aumentare della temperatura la pressione interna delle bolle diviene via via più grande di quella esterna. La conseguenza è che esse salgono in superficie. Qui i gas contenuti nelle bolle vengono liberati nell’aria mentre l’acqua liquida rimane “attaccata” alla superficie. Più aumenta la temperatura e più aumentano le dimensioni delle bolle (fonte dell’immagine: http://meteolive.leonardo.it/news/In-primo-piano/2/l-acqua-bolle-prima-in-montagna-/38316/)
Le nanobolle, grazie alla tensione superficiale che le contraddistingue [6], impediscono il congelamento dell’acqua. Tuttavia, la loro rapida rottura determina l’allontanamento dei gas in esse intrappolate con conseguente perdita di energia da parte delle molecole di liquido che in questo modo subiscono il rapido raffreddamento.
L’EFFETTO MPEMBA E LA NEVE ISTANTANEA
L’effetto Mpemba viene invocato per spiegare un fenomeno molto scenografico, ovvero la formazione di neve istantanea quando acqua bollente viene lanciata in area a temperature molto al di sotto di 0 °C [13, 14].

Acqua calda lanciata in aria quando la temperatura è di -30 °C congela istantaneamente (fonte dell’immagine: http://www.freddofili.it/15104-acqua-calda-congela/)
A questo link un video molto divertente che mostra come l’acqua bollente formi immediatamente la neve quando la temperatura ambientale è ben al di sotto di 0 °C:
CONCLUSIONI
Ma allora l’effetto Mpemba esiste o meno?
A quanto pare la riproduzione controllata in laboratorio di questo effetto non è affatto facile [6] ed anche le spiegazioni date non sono molto soddisfacenti sebbene la modellistica molecolare (ovvero la simulazione al computer del comportamento delle molecole di acqua) sia in grado di fornire risposte dettagliate in merito al comportamento dei legami a idrogeno quando il liquido caldo è sottoposto a congelamento. In effetti la parola fine non è stata ancora raggiunta. Per ora divertiamoci a vedere e sperimentare la formazione di neve istantanea badando a non farci cadere l’acqua bollente addosso (è certo che l’acqua bollente provochi ustioni).
RIFERIMENTI
    1. https://www.facebook.com/RinoConte1967/photos/a.1652785024943027.1073741829.1652784858276377/1861708800717314/?type=3
    1. https://www.facebook.com/RinoConte1967/photos/a.1652785024943027.1073741829.1652784858276377/1847184085503119/?type=3
    1. https://www.facebook.com/RinoConte1967/photos/a.1652785024943027.1073741829.1652784858276377/1818201761734685/?type=3
    1. https://www.facebook.com/RinoConte1967/posts/1847184085503119:0
    1. https://www.facebook.com/notes/rino-conte/pillole-di-scienza-il-ruolo-dei-legami-a-idrogeno-nel-comportamento-dellacqua-li/1856785507876310
    1. http://www1.lsbu.ac.uk/water/mpemba_effect.html
    1. http://www.nature.com/articles/srep37665.pdf
    1. http://pubs.rsc.org/en/content/articlepdf/2014/cp/c4cp03669g
    1. https://arxiv.org/ftp/arxiv/papers/1310/1310.6514.pdf
    1. http://www.laputa.it/libri/h2o-una-biografia-dellacqua/
    1. http://www.chimicare.org/blog/defin…
    1. http://www.chimicamo.org/chimica-fisica/compressione-ed-espansione-dei-gas.html
    1. http://www.3bmeteo.com/giornale-meteo/canada–temperature-a–30-c-ed-effetto-mpena-89600
  1. http://www.freddofili.it/15104-acqu…

Contraddizioni culturali e paradossi cognitivi. Naturale / buono = chimico / tossico

Contraddizioni culturali e paradossi cognitivi (Parte I)

Naturale : buono = chimico : tossico

Leggiamola così: naturale sta a buono come chimico sta a cattivo.

È la classica associazione di termini che i seguaci new age di un certo ambientalismo distorto invocano per giustificare scelte personali in merito a pratiche pseudo scientifiche che hanno deciso di utilizzare. La prima che mi viene in mente è quella che si basa sull’omeopatia ritenuta valida perché “su di me funziona” oppure perché “sono trenta anni che mi curo con l’omeopatia e funziona”, oppure ancora “l’omeopatia è naturale e come tale non fa male”.

Questo post non è dedicato all’omeopatia, ma ad evidenziare le dissonanze cognitive di tutti coloro che, come i seguaci dell’omeopatia, denigrano la chimica pur facendone ampiamente uso.

“Il colera è un’infezione diarroica acuta causata dal batterio Vibrio cholerae. La sua trasmissione avviene per contatto orale, diretto o indiretto, con feci o alimenti contaminati [tra cui acqua] e nei casi più gravi può portare a pericolosi fenomeni di disidratazione” [1].

1817-2017. Sono 200 anni. In questi duecento anni si sono avute ben sette pandemie di colera. L’ultima in ordine di tempo è iniziata nel 1961 e, dopo 56 anni, non si è ancora estinta. Nel 1973 il colera è arrivato anche a Napoli. Avevo sei anni. Mi ricordo il terrore della vaccinazione. In tutti questi anni il colera ha fatto milioni di vittime. Alcune fonti parlano di ben 40 milioni di morti [1, 2].

Nonostante la durata molto più lunga delle precedenti, la settima pandemia ha provocato molti meno morti delle altre. Questi sono principalmente nei paesi del terzo mondo, ovvero in quelli sottosviluppati. Proprio in questi paesi, infatti, ci sono carenze igienico-sanitarie che consentono la diffusione del vibrione del colera.

Se noi oggi possiamo dire di non dover più temere questa malattia, ormai dichiarata anche endemica, è perché facciamo parte di quella piccola parte del globo in cui vengono applicate le misure di prevenzione sanitaria in grado di debellare certi micro organismi patogeni per l’uomo.

L’acqua che noi usiamo come alimento è uno dei principali vettori per la trasmissione del colera – e non solo. L’acqua, tuttavia, è un prodotto naturale. Essa sgorga libera dalle rocce. Come prodotto naturale non può fare che bene. Ed invece non è così. L’acqua trasportata dagli acquedotti può essere contaminata, durante il suo tragitto verso i centri abitati, per ogni ordine di causa. Per esempio, se non vengono rispettati i limiti entro cui gli animali possono stazionare nei pressi dei pozzi di approvvigionamento idrico, si può verificare contaminazione fecale e la trasmissione di patologie come il colera. Per assicurare la potabilità delle acque, la chimica, che NON è sinonimo di tossico, ci viene in aiuto. Sapete come? Attraverso l’uso di un’arma di distruzione di massa. Sí, avete letto bene. Si utilizza un gas che durante la prima guerra mondiale è diventato tristemente famoso per il numero di morti e di invalidi permanenti che ha provocato: il cloro.

Il cloro è una molecola biatomica che si trova nella fase gassosa. Ha un colore giallo-verde dal caratteristico odore pungente. È in grado di provocare lesioni permanenti nei tessuti umani e se l’avvelenamento da cloro non è curato in tempo, provoca la morte. La sua azione si deve al fatto che interagisce con molti dei metaboliti che sono presenti nelle nostre cellule, modificandone la struttura e, di conseguenza, la funzionalità biochimica. Quando viene inserito in acqua reagisce dismutandosi (ovvero si trasforma) portando alla formazione di acido ipocloroso. Questo si dissocia in ipoclorito che a sua volta si decompone a cloruro ed ossigeno molecolare. L’ossigeno è un forte ossidante ed è quello che è in grado di distruggere le cellule dei batteri che possono contaminare l’acqua che arriva nelle nostre case [3]. Il problema del cloro gassoso è che è poco maneggevole. Il suo stoccaggio è reso difficile dalla sua corrosività. Per questo motivo oggi la sanificazione delle acque destinate al consumo umano viene effettuata utilizzando i sali solubili, e facilmente maneggiabili, dell’acido ipocloroso. Uno di questi è l’ipoclorito di sodio più noto come varechina. Sì, quella che trovate comunemente al supermercato.

Morale della favola. L’acqua prodotto naturale, quindi in principio ritenuta buona, non è, in realtà, così buona essendo vettore per patologie mortali se non sanificata. Il cloro, arma di distruzione di massa, quindi, “cattivo” per definizione, in realtà è buono perché ci aiuta a sanificare un prodotto naturale che poi tanto buono non è.

La chimica vi sembra ancora così cattiva?

Riferimenti
[1] http://www.epicentro.iss.it/problemi/colera/colera.asp
[2] http://www.who.int/mediacentre/factsheets/fs107/en/
[3] http://www.chimicamo.org/…/clorazione-dellacquareazioni-chi…