L’acqua e la forza dei legami a idrogeno

L’acqua e la forza dei legami a idrogeno

Il ruolo che i legami a idrogeno svolgono nel comportamento dell’acqua è già stato evidenziato più volte in altre Pillole di scienza [1-3]. La formazione dei legami a idrogeno è stata ascritta al momento dipolare dell’acqua, ovvero al fatto che una parziale carica positiva è presente sugli atomi di idrogeno mentre una parziale carica negativa è presente sull’atomo di ossigeno. Grazie a questa separazione di carica, ogni molecola di acqua è in grado di circondarsi di un massimo di altre 4 molecole di acqua che sono agganciate alla prima attraverso 4 legami a idrogeno. Di questi, due legami sono ottenuti grazie al contributo degli elettroni delle coppie solitarie, gli altri due grazie al contributo degli atomi di idrogeno.

All’aumentare del numero di molecole di acqua che circondano una data molecola H2O, si osserva un comportamento singolare. Infatti, man mano che il numero di molecole di acqua aumenta intorno ad una di riferimento, si osserva un “rafforzamento” dei legami a idrogeno che la molecola di riferimento forma con quelle vicine. Questo “rafforzamento” è dovuto ad un incremento del modulo, ovvero del valore, del momento dipolare che passa da 1.85 D (la D è l’unità di misura del momento dipolare e si legge Debye) per l’acqua monomerica (cioè l’acqua da sola) a circa 3 D per l’acqua inserita in un cluster (cioè un grappolo, un insieme) fatto da 32 molecole di acqua.

Come si spiega il cambiamento del momento dipolare e, di conseguenza, il rafforzamento dei legami a idrogeno?

Sembra che il ruolo più importante nel definire il momento dipolare di una molecola di acqua non sia ricoperto dai legami O-H, ma dalle coppie solitarie (indichiamole semplicemente con lp) presenti sull’ossigeno. Quando il numero di molecole che circondano quella di riferimento aumenta, l’angolo lp-O-lp diminuisce passando da circa 125 gradi dell’acqua singola a circa 114 gradi dell’acqua circondata da altre 32 molecole di acqua. Questa diminuzione dell’angolo descritto porta all’incremento del valore del momento dipolare e della forza coi cui la molecola di acqua riesce a legare a sé le altre molecole di acqua via legami a idrogeno. Informazioni dettagliate per i più curiosi nel riferimento [4].

Riferimenti:

[1] https://www.facebook.com/RinoConte1967/photos/a.1652785024943027.1073741829.1652784858276377/1818201761734685/?type=3

[2] https://www.facebook.com/RinoConte1967/posts/1847184085503119:0

[3] https://www.facebook.com/notes/rino-conte/pillole-di-scienza-il-ruolo-dei-legami-a-idrogeno-nel-comportamento-dellacqua-li/1856785507876310

[4] Kemp & Gordon, An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules. J. Phys. Chem. A, 2008, 112: 4885-4894

I fluidi non newtoniani

Devo dire che la chimica è estremamente affascinante. Si imparano cose sempre nuove, anche se uno le ha studiate da tempo e già le conosce. Si rimane sempre sorpresi dal comportamento dei materiali. Soprattutto di certi sistemi fluidi che vanno sotto il nome di “fluidi non Newtoniani”.

Se siete chimici o fisici sono sicuro che li ha già sentiti. Ma chi non lo è, magari li ha avuti tra le mani senza rendersi conto che aveva a che fare con qualcosa dalle proprietà particolari.

Un fluido non newtoniano è un un fluido la cui viscosità varia a seconda dello sforzo di taglio che viene applicato. Questo significa che la viscosità (quindi la consistenza) del fluido non newtoniano dipende dall’intensità della forza che viene applicata ad una certa velocità. Per il breve lasso di tempo in cui viene applicata la forza, il liquido non newtoniano varia il suo stato da liquido a solido e viceversa.

Perché si chiama “liquido o fluido non newtoniano”? Semplicemente perché secondo la fluidodinamica classica elaborata da sir Isaac, la viscosità di un liquido è indipendente dalla forza applicata, ovvero le proprietà dei liquidi sono isotropiche (uguali in tutte le direzioni). Invece, esistono liquidi le cui proprietà sono anisotropiche, ovvero cambiano a seconda della direzione presa in considerazione. Nel caso specifico, la viscosità cambia a seconda della direzione lungo cui è applicata una forza.

Tipici fluidi non newtoniani? Per esempio il polimero reticolato mostrato nella foto che accompagna questa Pillola. Si tratta di una sorta di plastica (chiamata slime) che cambia forma a seconda di come viene maneggiata. Anche il dentifricio è un fluido non newtoniano

Qui un po’ di links che fanno vedere:
1. lo slime: http://www.sweetpaulmag.com/cra…/professor-figgys-glow-slime
2. il comportamento di un fluido non newtoniano: https://www.youtube.com/watch?v=AiLQ8zjE_BA
3. una lezione facile sui fluidi non newtoniani: http://www.urai.it/ftp/app/viscosimetria/corso/corso.pdf
4. come sia possibile camminare sulle acque: https://youtu.be/f2XQ97XHjVw

La biodiversità

La biodiversità

Fin da quando Darwin ha posto le basi della teoria dell’evoluzione è apparso chiaro, ed è diventato progressivamente sempre più evidente sotto il profilo sperimentale, che tutti gli organismi viventi hanno avuto origine da un progenitore comune che oggi noi chiamiamo LUCA, ovvero “Last universal common ancestor”. LUCA altro non è che il famoso brodo primordiale nel quale si sono realizzate tutte le condizioni chimico fisiche per la formazione delle protocellule e lo sviluppo del metabolismo che caratterizza tutti gli esseri viventi.

Solo l’evoluzione, associata all’adattamento alle condizioni ambientali, dal progenitore comune riesce a spiegare la similitudine tra il nostro patrimonio genetico e quello di tanti altri organismi viventi. Per esempio, oltre il 98% di similitudine esiste tra il DNA umano e quello degli scimpanzé, oltre il 90% di affinità esiste tra il DNA umano e quello dei topi mentre oltre il 50% di somiglianza accomuna il nostro DNA a quello delle piante (potremmo dire che quando mangiamo verdura siamo cannibali per il 50%).

La differenziazione genetica avviene in modo casuale per effetto di errori imprevedibili durante i processi di replicazione del DNA. La moltitudine di organismi che viene così generata è fatta da individui che sotto la spinta della pressione ambientale possono soccombere oppure sopravvivere. In quest’ultimo caso, il patrimonio genetico viene trasmesso alle generazioni successive.

Nel corso di milioni di anni, la differenziazione genetica ha prodotto l’insieme di organismi viventi (dai microorganismi all’uomo) che oggi siamo abituati a conoscere. In definitiva, tutti noi siamo il prodotto di modificazioni genetiche (ovvero alterazioni imprevedibili del DNA) che ci consentono di occupare delle ben precise nicchie ecologiche nelle quali siamo in grado di sopravvivere.

Cosa è, allora, la biodiversità? Volendo semplificare il più possibile, la biodiversità siamo tutti noi esseri viventi che variamo in numerosità intra- ed Inter- specie. Nella biodiversità vanno inclusi anche i compartimenti ambientali con i quali interagiamo e che interagiscono tra loro.

Il suolo come compartimento ambientale ha caratteristiche chimico, fisiche e biologiche che variano a seconda delle condizioni nelle quali esso si sviluppa. La variabilità di queste caratteristiche rappresenta la biodiversità dei suoli che, per i chimici del suolo come me, sono in tutto e per tutto dei veri e propri esseri viventi

Per saperne di più

Cristian De Duve, Alle origini della vita, Bollati Boringheri, 2011 (http://www.bollatiboringhieri.it/scheda.php…)

http://ww2.unime.it/snchimambiente/GAIA.doc

Come è fatto e come si ottiene l’olio di palma

Come è fatto e come si ottiene l’olio di palma

L’olio di palma è ottenuto dai frutti delle palme da olio che si presentano a grappoli. Questi frutti vengono raccolti e poi sottoposti all’azione del vapore in modo da disattivare la lipasi (1) e separare la polpa dai semi. La polpa così ottenuta viene pressata e l’olio opportunamente recuperato. L’olio ottenuto dalla pressatura della polpa viene chiarificato (2) per centrifugazione, quindi lavato con acqua calda e poi seccato. Il prodotto così ottenuto contiene un elevato ammontare di beta-carotene ed il suo colore varia dal giallo scuro al rosso. Durante la raffinazione (3) il colore giallo/rosso dell’olio di palma viene perso ed il prodotto finale si presenta di un colore giallo chiaro.
La composizione percentuale media in acidi grassi (4) dell’olio di palma è:

14:0 – 1%
16:0 – 43.8%
16:1 – 0.5%
18:0 – 5%
18:1 (9) – 39%
18:2 (9, 12) – 10%
18:3 (9, 12, 15) – 0.2%
20:0 – 0.5%

Come si evince dalla tabella, l’olio di palma è, per lo più, costituito da acidi grassi saturi e contiene un acido grasso monoinsaturo a 18 atomi di carbonio in quantità vicine al 40% in peso del totale.

L’olio di palma fa male? non più di tanti altri oli alimentari. Come per ogni alimento, è la dose che fa il veleno. Un consumo oculato di olio di palma (negli alimenti che lo contengono) non comporta assolutamente nulla, esattamente come un consumo oculato di un qualsiasi altro tipo di olio.

E la Nutella che contiene olio di palma? La Nutella fa male solo se ne viene ingurgitata una quantità notevole. Ma non è l’olio di palma a creare problemi quanto, piuttosto, l’elevato contenuto in zuccheri che può sfociare nel diabete

Note
(1) Lipasi – si tratta di un enzima che ha la funzione di degradare gli acidi grassi
(2) La chiarificazione di un olio consiste nella separazione dall’olio di tutte quelle componenti che ne possono compromettere la qualità nel corso del tempo. In altre parole vengono allontanate le sostanze che possono favorire fenomeni di ossidazione, idrolisi e fermentazione
(3) La raffinazione di un olio viene effettuata ogni qual volta esso non viene ottenuto attraverso la semplice spremitura dei semi (come nel caso dell’olio extra vergine di oliva). Questa procedura consiste nell’allontanamento di sostanze che possono essere pericolose o alterare il sapore del prodotto. Per esempio la raffinazione degli oli, in generale, serve per la rimozione della lecitina, degli acidi grassi liberi, per la decolorazione, il degommaggio e la rimozione di odori sgradevoli
(4) Un acido grasso viene indicato con due numeri separati dal segno “:” come per esempio x:y. Il primo numero (la x) indica il numero di atomi di carbonio; il secondo numero, la y, indica quanti doppi legami ci sono. Se y=0 si ha un acido grasso saturo. Se y è diverso da zero si ha un acido grasso insaturo, ovvero con uno o più doppi legami. Se è necessario individuare la posizione del doppio legame, la coppia di numeri viene fatta seguire da un numero tra parentesi tonda che indica l’atomo di carbonio dove si trova il doppio legame. Per esempio, 18:2 (9, 12) sta ad indicare un acido grasso a 18 atomi di carbonio con due doppi legami, uno in posizione 9 e l’altro in posizione 12.

Per saperne di più:

Belitz, Grosch e Schieberle Food Chemistry, Springer (2009)

Olio di palma, qualche precisazione in più

L’inquinamento atmosferico

L’attività antropica, di qualsiasi natura, non è ad impatto nullo sull’ambiente. Questo vuol dire che qualsiasi cosa noi facciamo produciamo rifiuti che vanno ad influenzare gli equilibri tra biosfera, idrosfera, pedosfera ed atmosfera. In questa nota descrivo brevemente in cosa consiste l’inquinamento atmosferico. Si tratta di Uno dei problemi ambientali attualnente maggiormente al centro dell’attenzione mediatica. Questo non vuol dire che l’inquinamento di suoli, sedimenti ed acque sia meno importante; vuol dire solo che, al momento, sembra fare più notizia l’inquinamento atmosferico probabilmente perché fa una certa impressione, sul senso comune, pensare che l’immissione in atmosfera di gas apparentemente innocui possa provocare alterazioni notevoli sotto l’aspetto climatico.

In effetti è noto che tutte le molecole gassose che hanno un momento dipolare diverso da zero [1] sono in grado di assorbire la radiazione elettromagnetica che proviene dalla Terra così da passare da uno stato (vibrazionale/rotazionale) fondamentale ad uno eccitato. La transizione spontanea dallo stato eccitato a quello fondamentale può avvenire con emissione di calore portando ad un aumento globale della temperatura del pianeta, fenomeno che prende il nome di “effetto serra” [2].

Cerco di tradurre per i non tecnici. La radiazione solare è fatta da onde elettromagnetiche con lunghezza d’onda piuttosto corta (parte a destra della figura di copertina). Le molecole come anidride carbonica, metano ed acqua (sotto forma di vapore) risultano “trasparenti” alle lunghezze d’onda sopra citate. Per questo motivo le radiazioni suddette provenienti dal sole sono in grado di arrivare alla superficie della Terra.

Alcune di queste radiazioni sono comunque intercettate dall’ozono atmosferico e giungono “attenuate” sulla superficie terrestre come già spiegato nella nota al riferimento [3].

La superficie terrestre “restituisce” allo spazio aperto le radiazioni elettromagnetiche ma con lunghezza d’onda maggiore (parte a sinistra della figura di copertina) rispetto a quelle provenienti dall’esterno della Terra.

Le molecole come anidride carbonica, vapor d’acqua e metano (ovvero molecole a momento dipolare non nullo, sebbene questo momento dipolare risulti non nullo per la CO2 solo quando essa è nella conformazione non lineare) non sono “trasparenti” a queste lunghezze d’onda assorbendo, così, la radiazione proveniente dalla Terra. Il processo di assorbimento provoca delle “oscillazioni” molecolari (ovvero stiramenti e piegamenti dei legami chimici all’interno delle molecole) che a loro volta “restituiscono” energia termica (ovvero calore) alla superficie terrestre. Il risultato finale è molto simile a quello che si ottiene in una serra, ovvero un aumento della temperatura globale del pianeta.

Ci si potrebbe chiedere: ma come mai, invece, sembra che faccia sempre più freddo? dove è il riscaldamento? Chi chiede queste cose, in genere, non ha ben chiaro come funziona il riscaldamento globale. Faccio un esempio banale (didattico, oserei dire): supponiamo che si verifichi un aumento di 1 °C sulla superficie degli oceani a seguito dell’aumento di CO2 atmosferica. Questo aumento comporta un incremento della velocità di evaporazione dalla superficie degli oceani con immissione in atmosfera di quantità di vapor d’acqua più grandi rispetto a quelle che si avrebbero in assenza del riscaldamento anzidetto. Le correnti aeree trasportano queste enormi masse di vapor d’acqua sul continente dove, a contatto con aria più fredda, possono condensare e dar luogo a piogge più o meno torrenziali (le famose bombe d’acqua di cui parlano molto scenograficamente i giornalisti). La conseguenza di queste piogge è una temperatura più bassa sul continente. Tuttavia, a livello globale, la temperatura non è più bassa, ma più alta. E’ il riscaldamento globale la causa del clima simil-tropicale che oggi abbiamo nella parte Sud dell’Europa.

E’ stata data notizia [4] che uno scienziato che ha vissuto per una ventina di anni in Cina (uno dei paesi più contaminati della Terra) ha inventato un software per monitorare la contaminazione atmosferica terrestre ed essere informati minuto-per-minuto sulla quantità di particolato solido (quello che viene indicato come PM2.5) che si muove in atmosfera.

Se volete divertirvi a monitorare i flussi di corrente che trasportano questi PM2.5 basta cliccare su questo link: http://airvisual.com/earth, aspettare che la pagina si carichi e divertirsi a guardare momento per momento cosa accade nell’aria intorno a noi. Se poi si vuole conoscere la quantità di PM2.5 in un luogo particolare, basta cliccare sul luogo di interesse

Buon divertimento

Riferimenti
[1] https://www.scienzeascuola.it/…/legami-…/il-momento-dipolare
[2] http://www.castfvg.it/zzz/ids/effserra.html
[3] https://www.facebook.com/notes/rino-conte/pillole-di-scienza-il-buco-nellozono/1856401444581383
[4] http://www.sciencemag.org/…/watch-air-pollution-flow-across…

Perché non siamo vegetariani e men che meno vegani

Perché non siamo vegetariani e men che meno vegani

Oggi va di moda il veganesimo, ovvero quella filosofia di vita che impone a chi fa questa scelta di evitare l’assunzione di qualsiasi cibo che abbia una qualsiasi origine animale. Come evidenziato, si tratta di una scelta dettata da motivazioni culturali di tipo anti specista; in altre parole si ritiene che tutti gli animali abbiano dignità pari a quella dell’uomo per cui quest’ultimo non deve uccidere animali di ogni specie, sebbene per scopi nutrizionali, perché, in questo modo, si configurerebbe un vero e proprio omicidio del tutto paragonabile a quello umano.

Non voglio discutere in questa sede dell’opportunità di questa scelta anti specista. Ognuno è libero di fare le scelte nutrizionali che preferisce e lascio a nutrizionisti esperti l’opportunità di valutare la dieta che ognuno di noi decide di seguire.

Qui voglio solo sfatare un mito di natura pseudo scientifica utilizzato dalle frange vegane oltranziste in base al quale gli uomini discendono dalle scimmie che sono erbivore e non hanno bisogno di proteine animali per sviluppare la forza di cui sono dotate. Per questo motivo l’uso che l’uomo fa della carne sarebbe una deviazione alimentare occorsa in un certo momento dell’evoluzione e priva di ogni validità scientifica.

Chi afferma una cosa del genere non fa altro che dimostrare la propria crassa ignoranza in fatto di conoscenze evolutive e di biologia animale. Cerca, in altre parole, di dare una giustificazione scientifica alle proprie remore morali che gli/le fanno immaginare gli animali come esseri “pucciosi” del tutto simili a quelli descritti nei fumetti Disney.

Veniamo al punto.

Tutti noi esseri umani, come del resto tutti gli esseri viventi, siamo caratterizzati da tratti vestigiali che sono prova inconfutabile dei processi evolutivi cui siamo stati, ed ancora siamo, sottoposti. Uno dei caratteri vestigiali più famosi è l’appendice vermiforme che rappresenta il tratto terminale dell’intestino cieco e si trova alla congiunzione tra l’intestino crasso e l’intestino tenue. Le dimensioni dell’appendice variano da essere umano a essere umano potendo raggiungere una lunghezza variabile da qualche centimetro a 30 centimetri e potendo essere assente in alcuni esseri umani. L’appendice vermiforme sembra essere del tutto inutile, tanto è vero che possiamo farne a meno senza che la qualità della nostra vita ne sia influenzata. Tuttavia, come tutti i tratti vestigiali, anche l’appendice, oggi inutile, aveva una funzione ben precisa. Infatti, quando ancora ci cibavamo in prevalenza di piante, avevamo non solo un intestino cieco molto più voluminoso di adesso, ma anche una appendice vermiforme più sviluppata di quanto non sia ora. La maggiore voluminosità di intestino cieco ed appendice assicurava agli individui dalla dieta vegetariana la presenza di una camera di fermentazione corredata da batteri in grado di degradare la cellulosa in glucosio, zucchero più facilmente assimilabile.

Quando, per effetto di una qualche mutazione casuale, il volume di intestino cieco ed appendice si è ridotto, abbiamo cominciato ad avere maggiori difficoltà nella degradazione della cellulosa (oggi noi umani non siamo più in grado di idrolizzare il legame beta 1-4 glicosidico che tiene unite le unità di glucosio nella cellulosa perché non abbiamo più una flora batterica in grado di sintetizzare gli enzimi deputati a questo scopo), la nostra alimentazione è cominciata a cambiare perché ci siamo dovuti adattare alle mutazioni anzidette: siamo passati da una alimentazione vegetariana a base di foglie ad una alimentazione a base di carne. In altre parole, indagini biologiche hanno dimostrato che nel corso dei processi evolutivi, gli animali che possedevano intestini più voluminosi erano in grado di digerire la cellulosa, quelli con intestini meno voluminosi non erano in grado di mangiare foglie. I processi evolutivi, insomma, ci hanno “imposto” di essere carnivori in quanto ad un certo punto del nostro percorso evolutivo, non siamo più stati in grado di digerire le foglie (base alimentare dei nostri progenitori) ed assimilare nutrienti da una alimentazione esclusivamente vegetariana.

Altro che vegani…
La nostra dieta è il risultato degli adattamenti evolutivi.

Per saperne di più:

Jerry A. Coyne, Perché l’evoluzione è vera (2011), codice edizioni

La vitamina C (acido ascorbico) e l’evoluzione

Sapete cos’è la L – gulonolattone ossidasi? Devo dire che letta così, sembra una parolaccia. In realtà, dal solo nome, come chimico, io capisco che si tratta di un enzima. Tuttavia non essendo un biochimico ed avendo sostenuto l’esame di biochimica nel purtroppo lontano 1988 (accidenti… già tutto sto tempo è passato?), mi ricordo ben poco, se non nulla, in merito alla sua funzione. Ho dovuto studiare per scrivere questa pillola e renderla digeribile non solo a me, ma anche ai non addetti ai lavori. Spero di esserci riuscito.

La L-gulonolattone ossidasi, chiamiamola per semplicità GLO, è un enzima coinvolto nella biosintesi dell’acido ascorbico che, comunemente, siamo abituati a chiamare vitamina C.

La vitamina C è importantissima per tutti gli esseri viventi. Per i mammiferi come noi è utile a contrastare lo scorbuto, una malattia che nel XIX secolo colpiva soprattutto i marinai che per lunghi periodi di tempo, durante la navigazione, non erano in grado di mangiare frutta fresca. In realtà, nel XIX secolo, anche quando erano a riposo a terra, i marinai evitavano la frutta e la verdura per mangiare principalmente carne, quando potevano, perché ritenuta il cibo dei ricchi. A terra e nei giorni di paga, chi poteva si rimpinzava di carne. Una dieta ricca di proteine e povera di vegetali è comunque deleteria; ma di questo parlerò in un’altra pillola.

Torniamo a noi e al Gulonolattone.

L’enzima GLO serve per sintetizzare la vitamina C, come detto. Quasi tutti i mammiferi riescono a sintetizzarla. Solo alcuni primati, i megachirotteri, ovvero pipistrelli noti come volpi volanti, e le cavie riescono a recuperare la vitamina C dalla loro alimentazione. Seguendo un regime dietetico bilanciato (chiedo perdono ai nutrizionisti che mi leggono se uso un linguaggio inappropriato) i problemi legati alla carenza di vitamina C non si presentano. Anche noi, come accennato, abbiamo bisogno di alimentazione per assumere la vitamina C. Noi, come quei pochi animali citati, non siamo in grado di sintetizzare la GLO. ma…sorpresa sorpresa: dalla mappatura del nostro, come di altri, DNA è venuto fuori che nel nostro genoma possediamo la sequenza genica necessaria per la sintesi dell’enzima citato. Come è posibile? E come mai, pur avendo tutto quanto necessario alla sintesi della vitamina C, abbiamo bisogno di assumerla mangiando?

La sequenza genica deputata alla sintesi del GLO è, purtroppo, disattivata. Fa parte dell’insieme delle informazioni genetiche che compongono il nostro junk DNA, ovvero il DNA spazzatura. La presenza di frammenti di DNA spazzatura è la prova tangibile che i processi evolutivi, che si basano su piccole modifiche di ciò che esiste per il miglioramento adattativo degli esseri viventi, sono un fatto reale e non la mera fantasia di un vecchio signore che, nella parte finale della sua vita, ha scritto una favoletta per far quadrare il cerchio delle sue osservazioni.

Quando, per effetto del cambiamento alimentare al quale ci siamo adattati durante la nostra evoluzione, abbiamo cominciato ad assumere vitamina C dagli alimenti, il nostro metabolismo ha pensato bene di spegnere l’interruttore per la sintesi di GLO per un motivo ben preciso: la via biosintetica per il GLO era troppo dispendiosa in termini energetici, mentre era più conveniente, energeticamente parlando, ricavare la vitamina C dagli alimenti. Il risultato finale è che, pur avendo gli strumenti adatti a fare un certo lavoro (sintesi della vitamina C), non siamo in grado di svolgerlo perché abbiamo perso la chiave che apre la cassetta degli attrezzi.

Per saperne di più:

Jerry A. Coyne, Perché l’evoluzione è vera, Codice edizioni (2011)

Pillole di scienza. Le matite copiative

Pillole di scienza: le matite copiative

Oggi 4 dicembre 2016 siamo chiamati alle urne per votare a favore o contro la riforma costituzionale proposta dal Parlamento Italiano.

Questa pagina è di carattere scientifico, quindi lascio fuori ogni considerazione inopportuna di carattere politico per concentrarmi unicamente su un aspetto scientifico che sta venendo fuori nelle ultime ore. Spero si tratti di bufale, ma sembra che alcuni personaggi famosi noti al grande pubblico stiano facendo mettere nei verbali delle commissioni presenti nei seggi elettorali che le matite copiative non siano indelebili. Questi personaggi farebbero meglio a fare il loro mestiere piuttosto che esacerbare gli animi, già di loro esacerbati, e fare figuracce da nulla mettendo in piazza la loro crassa ignoranza.

Le matite, in genere, sono dei bastoncini di legno con un’anima di grafite. La grafite è materiale carbonioso fatto da piani aromatici collegati tra loro da deboli interazioni di Van der Waals. Per effetto dello sfregamento su un foglio di carta, i legami di Van der Waals si rompono ed una traccia carboniosa è lasciata sul foglio di carta.

Le matite copiative che si usano nei seggi elettorali sono bastoncini di legno in cui l’anima non è fatta solo di grafite, ma contiene anche dei coloranti idrosolubili come, per esempio, violetto di metile, violetto cristallino, fucsina, rodamina, safranina,crisoidina, auramina, verde malachite, blu di metilene, bruno bismark. A seconda dei colori che si desiderano, si utilizzano uno o più dei vari coloranti in miscela. Quando la matita viene sfregata sul foglio di carta, non lascia solo una traccia carboniosa di tipo grafitico, ma anche del colorante. Mentre la traccia carboniosa può essere eliminata per abrasione, il colorante no. Quest’ultimo può essere eliminato solo con l’acqua, ma lascia una macchia indelebile che prova l’avvenuta manomissione della scheda elettorale.

In definitiva, cari personaggi famosi, fareste meglio ad imparare un po’ di chimica prima di addentrarvi in figuracce in merito alla non indelebilità delle matite copiative e ad eventuali complotti del tutto inesistenti.

Per saperne di più

https://unpodichimica.wordpress.com/…/…/24/matita-copiativa/

Pillole di scienza. Intolleranza al lattosio (Parte II)

Tempo fa ho scritto una nota sull’intolleranza al lattosio [1] in cui ho evidenziato che essa è dovuta all’assenza di un enzima (la lattasi) che è in grado di scindere il legame glicosidico che unisce glucosio e galattosio a formare la molecola anzidetta. La conseguenza di questa deficienza è l’insorgere di meteorismo, distensione addominale, digestione lenta, stanchezza, pesantezza di stomaco, senso di gonfiore gastrico e forti crampi in seguito ai processi di fermentazione a carico del lattosio che avvengono nel nostro stomaco [1].

Oggi completo la nota evidenziando come l’intolleranza non sia distribuita in modo uniforme tra le popolazioni del pianeta. Infatti, come indicato nella mappa a corredo di questa nota, ci sono popolazioni che riescono a “digerire” il lattosio come quelle del Nord Europa e dell’Nord-Est Asiatico, ed altre che mostrano una elevata intolleranza come quelle del Sud-Est Asiatico (le zone rosse o tendenti al rosso nella mappa indicano forte intolleranza, le zone verdi bassa intolleranza).

Circa 9000 anni fa l’uomo ha cominciato la domesticazione degli animali sviluppando, tra le tante cose, la pastorizia. Questa attività ha reso disponibile in grandi quantità anche agli adulti un alimento molto nutriente (il latte) utilizzato principalmente dai neonati prima dello svezzamento.

Indagini condotte su resti fossili datati tra i 3000 e gli 8000 anni fa, hanno dimostrato inequivocabilmente che la tolleranza/intolleranza al lattosio è legata proprio alla pastorizia [2]. Quelle popolazioni che hanno sviluppato prima la pastorizia risultano anche oggi più tolleranti al lattosio. Quelle popolazioni che, invece, hanno sviluppato più tardi la pastorizia hanno una capacità di digerire il lattosio più bassa [3].

La lattasi è un enzima prodotto grazie all’azione di un gene presente nel nostro DNA. La produzione di questo enzima richiede un lavoro biochimico enorme, per cui se il latte non è facilmente disponibile, come quando siamo in età pre-svezzamento, il gene per la produzione dell’enzima anzidetto viene disattivato. In altre parole, il nostro metabolismo, piuttosto che consumare risorse per produrre una molecola sotto utilizzata per mancanza di latte, preferisce chiudere l’attività e dedicare le proprie risorse alla produzione di sistemi molecolari più utilizzati e, di conseguenza, più utili al sostentamento della vita. Ecco perché da adulti noi possiamo risultare intolleranti al lattosio.

Il metabolismo delle popolazioni nelle quali il latte viene consumato in abbondanza anche da adulti perché facilmente disponibile, trova conveniente, sotto il profilo energetico, continuare a produrre la lattasi determinando, quindi, una maggiore tolleranza al disaccaride citato.

La presenza/assenza della lattasi nell’organismo umano è un bellissimo esempio di co-evoluzione genetico-culturale. In altre parole lo sviluppo puramente “culturale” della pastorizia, ha permesso l’adattamento e, quindi, l’evoluzione di popolazioni atte a digerire un alimento altamente nutriente.

Riferimenti

[1] https://www.facebook.com/RinoConte1967/photos/a.1652785024943027.1073741829.1652784858276377/1851447868410074/?type=3

[2] https://it.wikipedia.org/wiki/Pastorizia

[3] https://www.facebook.com/RinoConte1967/posts/1897417257146468

Riusciamo a sbucciare un’arancia senza sporcarci?

Riusciamo a sbucciare le arance senza sporcarci?
Inverno, tempo di freddo e di agrumi. Buone le arance, i mandarini ma buone soprattutto le clementine senza semi. Per uno come me, non dover “sputazzare” semi in giro per la stanza, è una gran cosa!

Avete mai fatto caso che quando si sbuccia un frutto del genere le mani si sporcano di succo? C’è stato qualcuno che si è chiesto se sia possibile trovare un metodo per evitare di sporcarsi quando si sbucciano gli agrumi. La notizia è apparsa nelle news di Science [1]. Ebbene è stato evidenziato che non c’è modo di non sporcarsi quando si sbucciano gli agrumi. Pare che basti una minima pressione per far schizzare via gocce di succo ad una velocità di circa 10 m/s, ovvero una velocità più elevata di quella degli insetti, con una accelerazione circa 1000 più intensa di quella che “sentono” gli astronauti quando lasciano la Terra.

Interessante, vero? Immagino che se qualcuno ha fatto uno studio del genere, c’è stato un committente che ha fatto una specifica richiesta. Magari in futuro potranno essere prodotti agrumi che non sporcano le mani mentre vengono sbucciati, con buona pace di quelli come me a cui piace sentire l’odore “agrumoso” sulle dita.

Riferimenti
[1] http://www.sciencemag.org/…/video-reveals-why-there-s-no-cl…

Share